1
|
Song Z, Wu T, Zhang L, Song H. Multi-responsive and self-sensing flexible actuator based on MXene and cellulose nanofibers Janus film. J Colloid Interface Sci 2025; 688:183-192. [PMID: 39999491 DOI: 10.1016/j.jcis.2025.02.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Flexible actuators are widely used in soft robots, flexible electronics, and biomedicine. However, there still exists a significant challenge in fabricating flexible actuators with multi-response and self-sensing capabilities. In order to address this issue, a novel multi-responsive and self-sensing flexible actuator incorporating an MXene/cellulose nanofibers (MXene/CNF) Janus film was ingeniously developed. MXene/CNF Janus film was prepared using a layered filtration method. The MXene layer of the Janus film exhibits outstanding photothermal conversion properties as well as remarkable electrothermal conversion performance, while its CNF layer showcases excellent moisture absorption properties. As a result of the hydrogen bonding between MXene and CNF, the MXene/CNF Janus film exhibits excellent mechanical properties (Young's modulus of 3620.55 MPa). Using MXene as the printing solution, MXene/polyethylene (MPE) strain sensor with the function of self-sensing the deformation of the flexible actuator was prepared on the PE film by electrohydrodynamic (EHD) printing technology. The MXene/CNF Janus film was assembled with MPE film to fabricate a MXene/CNF-MPE smart flexible actuator with multi-responsive actuation capability and the self-sensing deformation function. Under a near-infrared light intensity of 250 mW/cm2, the fabricated actuator can achieve a bending curvature of 1.54 cm-1 within 6.8 s, and it reaches a bending curvature of 4.39 cm-1 within 28 s under a 4 V voltage. Moreover, during the process of environmental humidity changing from 50 % to 80 %, the fabricated actuator demonstrates a bending curvature of 1.81 cm-1. While responding to these multiple stimuli, the flexible actuator can self-sense the bending deformation through the resistance change of the MPE-based flexible strain sensor. Lastly, the flexible actuator demonstrates the possibilities in gesture recognition of bionic hand and bionic flytrap.
Collapse
Affiliation(s)
- Zhiqi Song
- College of Mechanical Engineering, Jiaxing University, Jiaxing 314001, China; School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Wu
- College of Mechanical Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Libing Zhang
- College of Mechanical Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Haijun Song
- College of Mechanical Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
2
|
Peng Y, Sun F, Pan R. Multiplexed Sensing Textiles Enabled by Reconfigurable Weaving Meso-Structures for Intricate Kinematic Posture Recognition and Thermal Therapy Healthcare. ACS Sens 2025; 10:3051-3060. [PMID: 40176722 DOI: 10.1021/acssensors.5c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Wearable sensing textiles with multimodal mechanical stimulation detection capabilities have broad applications, such as sports guidance and rehabilitation training. However, current mainstream multimodal sensing textiles typically rely on combining discrete sensors with single functions intensively through sewing or adhesion to detect various mechanical stimuli. Herein, an all-in-one multiplexed sensing textile (MPST) capable of simultaneously detecting pressure and tensile strain is achieved by engineering an innovative hierarchical architecture of textiles. The functionality of MPST is directly derived from the reconfigurable sensing pathways of the woven meso-structures, enabling it to exhibit excellent pressure sensitivity (0.1 kPa-1), wide strain detection range (0-100%), superior durability, and desirable wearability. With the assistance of the Long Short-Term Memory (LSTM) algorithm, the MPST wearable system achieves a recognition accuracy of 97.5% in human kinematic postures of the elbow, knee, and foot. In addition, MPST demonstrates outstanding joule heating performance, which reaches 57.1 °C at a 2.5 V applied voltage. With its excellent multimodal sensing performance and joule heating ability, MPST holds great potential for applications in sports training guidance, assistive rehabilitation training, and soft robotics.
Collapse
Affiliation(s)
- Yangyang Peng
- Laboratory of Textile Intelligent Manufacturing, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- Laboratory of Soft Fibrous Materials and Physics, College of Textiles Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruru Pan
- Laboratory of Textile Intelligent Manufacturing, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
He G, Zhu C, Shi Y, Yu Y, Wu Y, Soutis C, Cao L, Liu X. Development of a mussel-inspired conductive graphene coated cotton yarn for wearable sensors. iScience 2025; 28:111711. [PMID: 39898041 PMCID: PMC11787537 DOI: 10.1016/j.isci.2024.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Graphene-based flexible yarn sensors are promising due to their exceptional conductivity and user-friendly properties, but ensuring stable graphene adsorption on fibers for long-term durability remains challenging. Herein, we produce a flexible polydopamine (PDA)-modified cotton yarn via a simple dip-coating process using a self-made sodium deoxycholate (SDC)-modified graphene dispersion, avoiding non-biodegradable, corrosion-prone metallic coatings. The resulting sensor exhibits low electrical resistance (as low as 21.1Ω ± 0.2/cm), high bending sensitivity (resistance change rate of 3.557 ± 0.002 for bending ranges from 40% to 100%), and outstanding durability over 2,000 flexural bending cycles. It can monitor various human body movements and physiological states and be integrated into wearable electronic textiles (e-textiles) for applications like monitoring knee movements, recognizing hand gestures, and detecting thoracic respiratory status. This work highlights the sensor's potential in personal and public healthcare applications.
Collapse
Affiliation(s)
- Guanliang He
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong 264006, China
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Chuang Zhu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuze Shi
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong 264006, China
| | - Yingjia Yu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong 264006, China
| | - Yi Wu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong 264006, China
| | - Constantinos Soutis
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Le Cao
- School of Electric and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xuqing Liu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong 264006, China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shanxi 710072, China
| |
Collapse
|
4
|
Sneha N, Shakthivel KR, Kiruthika S. Flexible and Durable Conducting Fabric Electrodes for Next-Generation Wearable Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7568-7580. [PMID: 39869529 DOI: 10.1021/acsami.4c15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles. In contrast to several existing techniques, the current study realizes highly conducting Au fabric (7-15 Ω/□) in a layer-by-layer coating. The obtained Au fabrics demonstrate excellent stability against various deformations and abrasions, and its sheet resistance remained unaltered even after multiple cycles of bending, twisting, scotch tape adhesions, and sandpaper abrasions. In addition, the prepared Au fabrics exhibit high robustness toward various chemical media, highlighting their anticorrosive properties. Although Au fabrics showed a slight increase in sheet resistance postwashing and ultrasonication tests, it was got ridden by coating a thin layer of a biocompatible polydimethylsiloxane (PDMS) polymer. Besides enhancing the adhesion of Au NPs, PDMS coating offered a hydrophobic surface to fabrics rendering their use toward self-cleaning applications. High-performing energy storage devices integrated with wearable technologies are in great demand. In this context, here, electropolymerized polyaniline (PANI)-coated Au fabrics were employed to develop supercapacitors with remarkable energy-storing capability. In a symmetric two-electrode configuration, the device offered a maximum areal capacitance of 660 mF/cm2 with high areal energy and power densities of 58.64 μWh/cm2 and 22.86 mW/cm2, respectively. The solid-state supercapacitor device (SSD) fabricated using Au/PANI-30 electrodes exhibited an areal capacitance of 495 mF/cm2 with energy and power densities of 33 μWh/cm2 and 10,660 μW/cm2, respectively. This LBL method offers a significant advantage over existing techniques by offering simple room-temperature fabrication with excellent conductivity and adaptability to various substrates and with ease of scalability.
Collapse
Affiliation(s)
- Namuni Sneha
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India
| | - Kamaraj R Shakthivel
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India
| | - S Kiruthika
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
5
|
Sonawane JR, Jundale R, Kulkarni AA. Continuous flow synthesis of metal nanowires: protocols, engineering aspects of scale-up and applications. MATERIALS HORIZONS 2025; 12:364-400. [PMID: 39436638 DOI: 10.1039/d4mh00781f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This review comprehensively covers the translation from batch to continuous flow synthesis of metal nanowires (i.e., silver, copper, gold, and platinum nanowires) and their diverse applications across various sectors. Metal nanowires have attracted significant attention owing to their versatility and feasibility for large-scale synthesis. The efficacy of flow chemistry in nanomaterial synthesis has been extensively demonstrated over the past few decades. Continuous flow synthesis offers scalability, high throughput screening, and robust and reproducible synthesis procedures, making it a promising technology. Silver nanowires, widely used in flexible electronics, transparent conductive films, and sensors, have benefited from advancements in continuous flow synthesis aimed at achieving high aspect ratios and uniform diameters, though challenges in preventing agglomeration during large-scale production remain. Copper nanowires, considered as a cost-effective alternative to silver nanowires for conductive materials, have benefited from continuous flow synthesis methods that minimize oxidation and enhance stability, yet scaling up these processes requires precise control of reducing environments and copper ion concentration. A critical evaluation of various metal nanowire ink formulations is conducted, aiming to identify formulations that exhibit superior properties with lower metal solid content. This study delves into the intricacies of continuous flow synthesis methods for metal nanowires, emphasizing the exploration of engineering considerations essential for the design of continuous flow reactors. Furthermore, challenges associated with large-scale synthesis are addressed, highlighting the process-related issues.
Collapse
Affiliation(s)
- Jayesh R Sonawane
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rajashri Jundale
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Amol A Kulkarni
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
6
|
Ren Y, Zhang F, Yan Z, Chen PY. Wearable bioelectronics based on emerging nanomaterials for telehealth applications. DEVICE 2025; 3:100676. [PMID: 40206603 PMCID: PMC11981230 DOI: 10.1016/j.device.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Nanomaterial-driven, soft wearable bioelectronics are transforming telemedicine by offering skin comfort, biocompatibility, and the capability for continuous remote monitoring of physiological signals. The devices, enabled by advanced zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) nanomaterials, have achieved new levels in electrical stability and reliability, allowing them to perform effectively even under dynamic physical conditions. Despite their promise, significant challenges remain in the fabrication, integration, and practical deployment of nanoscale materials and devices. Critical challenges include ensuring the durability and stability of nanomaterial-based bioelectronics for extended wear and developing efficient integration strategies to support multifunctional sensing modalities. Telemedicine has revolutionized healthcare by enabling remote health monitoring. The integration of nanomaterials within wearable devices is a central factor driving this breakthrough, as these materials enhance sensor sensitivity, durability, and multifunctionality. These wearable sensors leverage various operating principles tailored to specific applications, such as intraocular pressure monitoring, electrophysiological signal recording, and biochemical marker tracking.
Collapse
Affiliation(s)
- Yichong Ren
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Liu Q, Zhou J, Zeng Q, Sun D, Yu B, Yang L, Zhang Z, Wu J, Zhang Y. Flexible Dry Epidermal Electrophysiological Electrodes Based on One-Dimensional Platinum-Coated Silver Nanowires. ACS APPLIED NANO MATERIALS 2024; 7:18226-18236. [DOI: 10.1021/acsanm.3c03457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Affiliation(s)
- Qing Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Qi Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, China
| | - Dexin Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bin Yu
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhilin Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinglong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
8
|
Geißler D, Zhou B, Bello H, Sorysz J, Ray L, Javaheri H, Rüb M, Herbst J, Zahn E, Woop E, Bian S, Schotten HD, Joost G, Lukowicz P. Embedding textile capacitive sensing into smart wearables as a versatile solution for human motion capturing. Sci Rep 2024; 14:15797. [PMID: 38982105 PMCID: PMC11233671 DOI: 10.1038/s41598-024-66165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
This work presents a novel and versatile approach to employ textile capacitive sensing as an effective solution for capturing human body movement through fashionable and everyday-life garments. Conductive textile patches are utilized for sensing the movement, working without the need for strain or direct body contact, wherefore the patches can sense only from their deformation within the garment. This principle allows the sensing area to be decoupled from the wearer's body for improved wearing comfort and more pleasant integration. We demonstrate our technology based on multiple prototypes which have been developed by an interdisciplinary team of electrical engineers, computer scientists, digital artists, and smart fashion designers through several iterations to seamlessly incorporate the technology of capacitive sensing with corresponding design considerations into textile materials. The resulting accumulation of textile capacitive sensing wearables showcases the versatile application possibilities of our technology from single-joint angle measurements towards multi-joint body part tracking.
Collapse
Affiliation(s)
- Daniel Geißler
- Embedded Intelligence, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany.
| | - Bo Zhou
- Embedded Intelligence, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
| | - Hymalai Bello
- Embedded Intelligence, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
| | - Joanna Sorysz
- Embedded Intelligence, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
| | - Lala Ray
- Embedded Intelligence, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
| | - Hamraz Javaheri
- Embedded Intelligence, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
| | - Matthias Rüb
- Intelligent Networks, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
| | - Jan Herbst
- Intelligent Networks, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
| | - Esther Zahn
- Design Research eXplorations, German Research Center for Artificial Intelligence (DFKI), Berlin, Germany
| | - Emil Woop
- Design Research eXplorations, German Research Center for Artificial Intelligence (DFKI), Berlin, Germany
| | - Sizhen Bian
- Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Hans D Schotten
- Intelligent Networks, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
| | - Gesche Joost
- Design Research eXplorations, German Research Center for Artificial Intelligence (DFKI), Berlin, Germany
| | - Paul Lukowicz
- Embedded Intelligence, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
| |
Collapse
|
9
|
Wu S, Zhao T, Zhu Y, Paulino GH. Modular multi-degree-of-freedom soft origami robots with reprogrammable electrothermal actuation. Proc Natl Acad Sci U S A 2024; 121:e2322625121. [PMID: 38709915 PMCID: PMC11098090 DOI: 10.1073/pnas.2322625121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
Soft robots often draw inspiration from nature to navigate different environments. Although the inching motion and crawling motion of caterpillars have been widely studied in the design of soft robots, the steering motion with local bending control remains challenging. To address this challenge, we explore modular origami units which constitute building blocks for mimicking the segmented caterpillar body. Based on this concept, we report a modular soft Kresling origami crawling robot enabled by electrothermal actuation. A compact and lightweight Kresling structure is designed, fabricated, and characterized with integrated thermal bimorph actuators consisting of liquid crystal elastomer and polyimide layers. With the modular design and reprogrammable actuation, a multiunit caterpillar-inspired soft robot composed of both active units and passive units is developed for bidirectional locomotion and steering locomotion with precise curvature control. We demonstrate the modular design of the Kresling origami robot with an active robotic module picking up cargo and assembling with another robotic module to achieve a steering function. The concept of modular soft robots can provide insight into future soft robots that can grow, repair, and enhance functionality.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Tuo Zhao
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Glaucio H. Paulino
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
- Princeton Materials Institute, Princeton University, Princeton, NJ08544
| |
Collapse
|
10
|
Ye C, Zhao L, Yang S, Li X. Recent Research on Preparation and Application of Smart Joule Heating Fabrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309027. [PMID: 38072784 DOI: 10.1002/smll.202309027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Multifunctional wearable heaters have attracted much attention for their effective applications in personal thermal management and medical therapy. Compared to passive heating, Joule heating offers significant advantages in terms of reusability, reliable temperature control, and versatile coupling. Joule-heated fabrics make wearable electronics smarter. This review critically discusses recent advances in Joule-heated smart fabrics, focusing on various fabrication strategies based on material-structure synergy. Specifically, various applicable conductive materials with Joule heating effect are first summarized. Subsequently, different preparation methods for Joule heating fabrics are compared, and then their various applications in smart clothing, healthcare, and visual indication are discussed. Finally, the challenges faced in developing these smart Joule heating fabrics and their possible solutions are discussed.
Collapse
Affiliation(s)
- Chunfa Ye
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Longqi Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Sihui Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
11
|
Shukla D, Wang H, Awartani O, Dickey MD, Zhu Y. Surface Embedded Metal Nanowire-Liquid Metal-Elastomer Hybrid Composites for Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14183-14197. [PMID: 38457372 DOI: 10.1021/acsami.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Both liquid metal (LM) and metallic filler-based conductive composites are promising stretchable conductors. LM alloys exhibit intrinsically high deformability but present challenges for patterning on polymeric substrates due to high surface tension. On the other hand, conductive composites comprising metallic fillers undergo considerable decrease in electrical conductivity under mechanical deformation. To address the challenges, we present silver nanowire (AgNW)-LM-elastomer hybrid composite films, where AgNWs and LM are embedded below the surface of an elastomeric matrix, using two fabrication approaches, sequential and mixed. We investigate and understand the process-structure-property relationship of the AgNW-LM-elastomer hybrid composites fabricated using two approaches. Different weight ratios of AgNWs and LM particles provide tunable electrical conductivity. The hybrid composites show more stable electromechanical performance than the composites with AgNWs alone. In particular, 1:2.4 (AgNW:LMP w/w) sequential hybrid composite shows electromechanical stability similar to that of the LM-elastomer composite, with a resistance increase of 2.04% at 90% strain. The sequential approach is found to form AgIn2 intermetallic compounds which along with Ga-In bonds, imparts large deformability to the sequential hybrid composite as well as mechanical robustness against scratching, cutting, peeling, and wiping. To demonstrate the application of the hybrid composite for stretchable electronics, a laser patterned stretchable heater on textile and a stretchable circuit including a light-emitting diode are fabricated.
Collapse
Affiliation(s)
- Darpan Shukla
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hongyu Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Omar Awartani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
13
|
Gu J, Shen Y, Tian S, Xue Z, Meng X. Recent Advances in Nanowire-Based Wearable Physical Sensors. BIOSENSORS 2023; 13:1025. [PMID: 38131785 PMCID: PMC10742341 DOI: 10.3390/bios13121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Wearable electronics is a technology that closely integrates electronic devices with the human body or clothing, which can realize human-computer interaction, health monitoring, smart medical, and other functions. Wearable physical sensors are an important part of wearable electronics. They can sense various physical signals from the human body or the surrounding environment and convert them into electrical signals for processing and analysis. Nanowires (NW) have unique properties such as a high surface-to-volume ratio, high flexibility, high carrier mobility, a tunable bandgap, a large piezoresistive coefficient, and a strong light-matter interaction. They are one of the ideal candidates for the fabrication of wearable physical sensors with high sensitivity, fast response, and low power consumption. In this review, we summarize recent advances in various types of NW-based wearable physical sensors, specifically including mechanical, photoelectric, temperature, and multifunctional sensors. The discussion revolves around the structural design, sensing mechanisms, manufacture, and practical applications of these sensors, highlighting the positive role that NWs play in the sensing process. Finally, we present the conclusions with perspectives on current challenges and future opportunities in this field.
Collapse
Affiliation(s)
| | | | | | - Zhaoguo Xue
- National Key Laboratory of Strength and Structural Integrity, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Xianhong Meng
- National Key Laboratory of Strength and Structural Integrity, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
14
|
Li W, Sang M, Lou C, Liao G, Liu S, Wu J, Gong X, Ma Q, Xuan S. Triple-Responsive Soft Actuator with Plastically Retentive Deformation and Magnetically Programmable Recovery. ACS NANO 2023. [PMID: 37987998 DOI: 10.1021/acsnano.3c08888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Multistimuli responsiveness and programmable shape recovery are crucial for soft actuators in soft robotics, electronics, and wearables. However, existing strategies for actuation cannot attain power-free shape retention after removing the external energy supply. Here, a self-assembled density deposition method was developed to fabricate an electrothermal-NIR-magnetic triple-response actuator which was composed of cellulose nanofiber/poly(vinyl alcohol)/liquid metal (CNF/PVA/LM) and magnetic polydimethylsiloxane (MPDMS) layer. Interestingly, the large deformation can be controllably fixed and the temporary configuration will be programmable recovered under a magnetic field due to the thermal-plastic transferring behavior of the CNF/PVA/LM. Rolling robot prepared based on soft actuators exhibits good ability to avoid obstacles. In addition, the object handling and programmable release capabilities of the carrier robots demonstrate that this actuation approach will contribute to a better understanding of how to more rationally utilize various stimuli for application purposes.
Collapse
Affiliation(s)
- Wenwen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Congcong Lou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Guojiang Liao
- Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu Sichuan 610213, PR China
| | - Shuai Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jianpeng Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Qian Ma
- BASF Advanced Chemicals Co., Ltd. 333 Jiang Xin Sha Road, Pudong, Shanghai 200137, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| |
Collapse
|
15
|
Zou X, Xue J, Li X, Chan CPY, Li Z, Li P, Yang Z, Lai KWC. High-Fidelity sEMG Signals Recorded by an on-Skin Electrode Based on AgNWs for Hand Gesture Classification Using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19374-19383. [PMID: 37036803 DOI: 10.1021/acsami.2c21354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The human forearm is one of the most densely distributed parts of the human body, with the most irregular spatial distribution of muscles. A number of specific forearm muscles control hand motions. Acquiring high-fidelity sEMG signals from human forearm muscles is vital for human-machine interface (HMI) applications based on gesture recognition. Currently, the most commonly used commercial electrodes for detecting sEMG or other electrophysiological signals have a rigid nature without stretchability and cannot maintain conformal contact with the human skin during deformation, and the adhesive hydrogel used in them to reduce skin-electrode impedance may shrink and cause skin inflammation after long-term use. Therefore, developing elastic electrodes with stretchability and biocompatibility for sEMG signal recording is essential for developing HMI. Here, we fabricated a nanocomposite hybrid on-skin electrode by infiltrating silver nanowires (AgNWs), a one-dimensional (1D) nano metal material with conductivity, into polydimethylsiloxane (PDMS), a silicone elastomer with a similar Young's modulus to that of the human skin. The AgNW on-skin electrode has a thickness of 300 μm and low sheet resistance of 0.481 ± 0.014 Ω/sq and can withstand the mechanical strain of up to 54% and maintain a sheet resistance lower than 1 Ω/sq after 1000 dynamic strain cycles. The AgNW on-skin electrode can record high signal-to-noise ratio (SNR) sEMG signals from forearm muscles and can reflect various force levels of muscles by sEMG signals. Besides, four typical hand gestures were recognized by the multichannel AgNW on-skin electrodes with a recognition accuracy of 92.3% using machine learning method. The AgNW on-skin electrode proposed in this study has great potential and promise in various HMI applications that employ sEMG signals as control signals.
Collapse
Affiliation(s)
- Xiaoyang Zou
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Jiaqi Xue
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaoting Li
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Colin Pak Yu Chan
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Ziqi Li
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Pengyu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - King Wai Chiu Lai
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
16
|
Haridas A, Sharma S, Naskar K, Mondal T. Cross-Talk Signal Free Recyclable Thermoplastic Polyurethane/Graphene-Based Strain and Pressure Sensor for Monitoring Human Motions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17279-17292. [PMID: 36944054 DOI: 10.1021/acsami.3c01364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing a sensor that can read out cross-talk free signals while determining various active physiological parameters is demanding in the field of point-of-care applications. While there are a few examples of non-flexible sensors available, the management of electronic waste generated from such sensors is critical. Most of such available sensors are rigid in form factor and hence limit their usability in healthcare monitoring due to their poor conformity to human skin. Combining these facets, studies on the development of a recyclable cross-talk free flexible sensor for monitoring human motions and active parameters are far and few. In this work, we report on the development of a recyclable flexible sensor that can provide accurate data for detecting small changes in strain as well as pressure. The developed sensor could decipher the signals individually responsible due to strain as well as pressure. Hence, it can deliver a cross-talk free output. Thermoplastic polyurethane and graphene were selected as the model system. The thermoplastic polyurethane/graphene sensor exhibited a tensile strain sensitivity of GF ≃ 3.375 for 0-100% strain and 10.551 for 100-150% strain and a pressure sensitivity of ∼-0.25 kPa-1. We demonstrate the applicability of the strain sensor for monitoring a variety of human motions ranging from a very small strain of eye blinking to a large strain of elbow bending with unambiguous peaks and a very fast response and recovery time of 165 ms. The signals received are mostly electrical hysteresis free. To confirm the recyclability, the developed sensor was recycled up to three times. Marginal decrement in the sensitivity was noted with recycling without compromising the sensing capabilities. These findings promise to open up a new avenue for developing flexible sensors with lesser carbon footprints.
Collapse
Affiliation(s)
- Ajay Haridas
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Simran Sharma
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Kinsuk Naskar
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Titash Mondal
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
17
|
Dong P, Song Y, Yu S, Zhang Z, Mallipattu SK, Djurić PM, Yao S. Electromyogram-Based Lip-Reading via Unobtrusive Dry Electrodes and Machine Learning Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205058. [PMID: 36703524 DOI: 10.1002/smll.202205058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Lip-reading provides an effective speech communication interface for people with voice disorders and for intuitive human-machine interactions. Existing systems are generally challenged by bulkiness, obtrusiveness, and poor robustness against environmental interferences. The lack of a truly natural and unobtrusive system for converting lip movements to speech precludes the continuous use and wide-scale deployment of such devices. Here, the design of a hardware-software architecture to capture, analyze, and interpret lip movements associated with either normal or silent speech is presented. The system can recognize different and similar visemes. It is robust in a noisy or dark environment. Self-adhesive, skin-conformable, and semi-transparent dry electrodes are developed to track high-fidelity speech-relevant electromyogram signals without impeding daily activities. The resulting skin-like sensors can form seamless contact with the curvilinear and dynamic surfaces of the skin, which is crucial for a high signal-to-noise ratio and minimal interference. Machine learning algorithms are employed to decode electromyogram signals and convert them to spoken words. Finally, the applications of the developed lip-reading system in augmented reality and medical service are demonstrated, which illustrate the great potential in immersive interaction and healthcare applications.
Collapse
Affiliation(s)
- Penghao Dong
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yuanqing Song
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Shangyouqiao Yu
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Zimeng Zhang
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sandeep K Mallipattu
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Renal Section, Northport VA Medical Center, Northport, NY, 11768, USA
| | - Petar M Djurić
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Shanshan Yao
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
18
|
Meena JS, Choi SB, Jung SB, Kim JW. Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Mater Today Bio 2023; 19:100565. [PMID: 36816602 PMCID: PMC9932217 DOI: 10.1016/j.mtbio.2023.100565] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Sedentary lifestyles and evolving work environments have created challenges for global health and cause huge burdens on healthcare and fitness systems. Physical immobility and functional losses due to aging are two main reasons for noncommunicable disease mortality. Smart electronic textiles (e-textiles) have attracted considerable attention because of their potential uses in health monitoring, rehabilitation, and training assessment applications. Interactive textiles integrated with electronic devices and algorithms can be used to gather, process, and digitize data on human body motion in real time for purposes such as electrotherapy, improving blood circulation, and promoting wound healing. This review summarizes research advances on e-textiles designed for wearable healthcare and fitness systems. The significance of e-textiles, key applications, and future demand expectations are addressed in this review. Various health conditions and fitness problems and possible solutions involving the use of multifunctional interactive garments are discussed. A brief discussion of essential materials and basic procedures used to fabricate wearable e-textiles are included. Finally, the current challenges, possible solutions, opportunities, and future perspectives in the area of smart textiles are discussed.
Collapse
Affiliation(s)
- Jagan Singh Meena
- Research Center for Advanced Materials Technology, Core Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Su Bin Choi
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung-Boo Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Woong Kim
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
19
|
Wu S, Hong Y, Zhao Y, Yin J, Zhu Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. SCIENCE ADVANCES 2023; 9:eadf8014. [PMID: 36947625 PMCID: PMC10032605 DOI: 10.1126/sciadv.adf8014] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 06/14/2023]
Abstract
Many inspirations for soft robotics are from the natural world, such as octopuses, snakes, and caterpillars. Here, we report a caterpillar-inspired, energy-efficient crawling robot with multiple crawling modes, enabled by joule heating of a patterned soft heater consisting of silver nanowire networks in a liquid crystal elastomer (LCE)-based thermal bimorph actuator. With patterned and distributed heaters and programmable heating, different temperature and hence curvature distribution along the body of the robot are achieved, enabling bidirectional locomotion as a result of the friction competition between the front and rear end with the ground. The thermal bimorph behavior is studied to predict and optimize the local curvature of the robot under thermal stimuli. The bidirectional actuation modes with the crawling speeds are investigated. The capability of passing through obstacles with limited spacing are demonstrated. The strategy of distributed and programmable heating and actuation with thermal responsive materials offers unprecedented capabilities for smart and multifunctional soft robots.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yao Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Shukla D, Liu Y, Zhu Y. Eco-friendly screen printing of silver nanowires for flexible and stretchable electronics. NANOSCALE 2023; 15:2767-2778. [PMID: 36661027 PMCID: PMC9930198 DOI: 10.1039/d2nr05840e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Screen printing is a promising route towards high throughput printed electronics. Currently, the preparation of nanomaterial based conductive inks involves complex formulations with often toxic surfactants in the ink's composition, making them unsuitable as an eco-friendly printing technology. This work reports the development of a silver nanowire (AgNW) ink with a relatively low conductive particle loading of 7 wt%. The AgNW ink involves simple formulation and comprises a biodegradable binder and a green solvent with no toxic surfactants in the ink formulation, making it an eco-friendly printing process. The formulated ink is suitable for printing on a diverse range of substrates such as polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polyimide (PI) tape, glass, and textiles. By tailoring the rheological behaviour of the ink and developing a one-step post-printing process, a minimum feature size of 50 μm and conductivity as high as 6.70 × 106 S m-1 was achieved. Use of a lower annealing temperature of 150 °C makes the process suitable for plastic substrates. A flexible textile heater and a wearable hydration sensor were fabricated using the reported AgNW ink to demonstrate its potential for wearable electronic applications.
Collapse
Affiliation(s)
- Darpan Shukla
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
21
|
De Fazio R, Mastronardi VM, De Vittorio M, Visconti P. Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23041856. [PMID: 36850453 PMCID: PMC9965388 DOI: 10.3390/s23041856] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 05/03/2023]
Abstract
A quantitative evaluation of kinetic parameters, the joint's range of motion, heart rate, and breathing rate, can be employed in sports performance tracking and rehabilitation monitoring following injuries or surgical operations. However, many of the current detection systems are expensive and designed for clinical use, requiring the presence of a physician and medical staff to assist users in the device's positioning and measurements. The goal of wearable sensors is to overcome the limitations of current devices, enabling the acquisition of a user's vital signs directly from the body in an accurate and non-invasive way. In sports activities, wearable sensors allow athletes to monitor performance and body movements objectively, going beyond the coach's subjective evaluation limits. The main goal of this review paper is to provide a comprehensive overview of wearable technologies and sensing systems to detect and monitor the physiological parameters of patients during post-operative rehabilitation and athletes' training, and to present evidence that supports the efficacy of this technology for healthcare applications. First, a classification of the human physiological parameters acquired from the human body by sensors attached to sensitive skin locations or worn as a part of garments is introduced, carrying important feedback on the user's health status. Then, a detailed description of the electromechanical transduction mechanisms allows a comparison of the technologies used in wearable applications to monitor sports and rehabilitation activities. This paves the way for an analysis of wearable technologies, providing a comprehensive comparison of the current state of the art of available sensors and systems. Comparative and statistical analyses are provided to point out useful insights for defining the best technologies and solutions for monitoring body movements. Lastly, the presented review is compared with similar ones reported in the literature to highlight its strengths and novelties.
Collapse
Affiliation(s)
- Roberto De Fazio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
- Facultad de Ingeniería, Universidad Panamericana, Aguascalientes 20290, Mexico
- Correspondence: (R.D.F.); (V.M.M.); Tel.: +39-08-3229-7334 (R.D.F.)
| | - Vincenzo Mariano Mastronardi
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Italian Technology Institute IIT, 73010 Arnesano, Italy
- Correspondence: (R.D.F.); (V.M.M.); Tel.: +39-08-3229-7334 (R.D.F.)
| | - Massimo De Vittorio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Italian Technology Institute IIT, 73010 Arnesano, Italy
| | - Paolo Visconti
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Italian Technology Institute IIT, 73010 Arnesano, Italy
| |
Collapse
|
22
|
Wu S, Moody K, Kollipara A, Zhu Y. Highly Sensitive, Stretchable, and Robust Strain Sensor Based on Crack Propagation and Opening. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1798-1807. [PMID: 36548931 PMCID: PMC10403976 DOI: 10.1021/acsami.2c16741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft and stretchable strain sensors have been attracting significant attention. However, the trade-off between the sensitivity (gauge factor) and the sensing range has been a major challenge. In this work, we report a soft stretchable resistive strain sensor with an unusual combination of high sensitivity, large sensing range, and high robustness. The sensor is made of a silver nanowire network embedded below the surface of an elastomeric matrix (e.g., poly(dimethylsiloxane)). Periodic mechanical cuts are applied to the top surface of the sensor, changing the current flow from uniformly across the sensor to along the conducting path defined by the open cracks. Both experiment and finite element analysis are conducted to study the effect of the slit depth, slit length, and pitch between the slits. The stretchable strain sensor can be integrated into wearable systems for monitoring physiological functions and body motions associated with different levels of strain, such as blood pressure and lower back health. Finally, a soft three-dimensional (3D) touch sensor that tracks both normal and shear stresses is developed for human-machine interfaces and tactile sensing for robotics.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Katherine Moody
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Abhiroop Kollipara
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina27599, United States
| |
Collapse
|
23
|
Raza T, Tufail MK, Ali A, Boakye A, Qi X, Ma Y, Ali A, Qu L, Tian M. Wearable and Flexible Multifunctional Sensor Based on Laser-Induced Graphene for the Sports Monitoring System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54170-54181. [PMID: 36411520 DOI: 10.1021/acsami.2c14847] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The conversion of diverse polymeric substrates into laser-induced graphene (LIG) has recently emerged as a single-step method for the fabrication of patterned graphene-based wearable electronics with a wide range of applications in sensing, actuation, and energy storage. Laser-induced pyrolysis technology has many advantages over traditional graphene design: eco-friendly, designable patterning, roll-to-roll production, and controllable morphology. In this work, we designed wearable and flexible graphene-based strain and pressure sensors by laminating LIG from a commercial polyimide (PI) film. The as-prepared LIG was transferred onto a thin polydimethylsiloxane (PDMS) sheet, interwoven inside an elastic cotton sports fabric with the fabric glue as a wearable sensor. The single LIG/PDMS layer acts as a strain sensor, and a two-layer perpendicular stacking of LIG/PDMS (x and y laser-directed films) is designed for pressure sensing. This newly designed graphene textile (IGT) sensor performs four functions in volleyball sportswear, including volleyball reception detection, finger touch foul detection during blocking the ball from an opponent player, spike force measurements, and player position monitoring. An inexpensive sensor assists athletes in training and helps the coach formulate competition strategies.
Collapse
Affiliation(s)
- Tahir Raza
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Muhammad Khurram Tufail
- College of Physics, Qingdao University, Qingdao, Shandong266071, P. R. China
- College of Material Science and Engineering, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Afzal Ali
- Ocean University of China, Qingdao, Shandong266071, P. R. China
| | - Andrews Boakye
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Xiangjun Qi
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Yulong Ma
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Amjad Ali
- Materials Science & Engineering, Jiangsu University, Zhenjiang212013, China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong266071, P. R. China
| |
Collapse
|
24
|
Abstract
Thermal actuation is a common actuation method for soft robots. However, a major limitation is the relatively slow actuation speed. Here we report significant increase in the actuation speed of a bimorph thermal actuator by harnessing the snap-through instability. The actuator is made of silver nanowire/polydimethylsiloxane composite. The snap-through instability is enabled by simply applying an offset displacement to part of the actuator structure. The effects of thermal conductivity of the composite, offset displacement, and actuation frequency on the actuator speed are investigated using both experiments and finite element analysis. The actuator yields a bending speed as high as 28.7 cm-1/s, 10 times that without the snap-through instability. A fast crawling robot with locomotion speed of 1.04 body length per second and a biomimetic Venus flytrap were demonstrated to illustrate the promising potential of the fast bimorph thermal actuators for soft robotic applications.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA
| | - Gregory Langston Baker
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA.,Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Chen Y, Liang T, Chen L, Chen Y, Yang BR, Luo Y, Liu GS. Self-assembly, alignment, and patterning of metal nanowires. NANOSCALE HORIZONS 2022; 7:1299-1339. [PMID: 36193823 DOI: 10.1039/d2nh00313a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Armed with the merits of one-dimensional nanostructures (flexibility, high aspect ratio, and anisotropy) and metals (high conductivity, plasmonic properties, and catalytic activity), metal nanowires (MNWs) have stood out as a new class of nanomaterials in the last two decades. They are envisaged to expedite significantly and even revolutionize a broad spectrum of applications related to display, sensing, energy, plasmonics, photonics, and catalysis. Compared with disordered MNWs, well-organized MNWs would not only enhance the intrinsic physical and chemical properties, but also create new functions and sophisticated architectures of optoelectronic devices. This paper presents a comprehensive review of assembly strategies of MNWs, including self-assembly for specific structures, alignment for anisotropic constructions, and patterning for precise configurations. The technical processes, underlying mechanisms, performance indicators, and representative applications of these strategies are described and discussed to inspire further innovation in assembly techniques and guide the fabrication of optoelectrical devices. Finally, a perspective on the critical challenges and future opportunities of MNW assembly is provided.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Tianwei Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| |
Collapse
|
26
|
Yao S, Zhou W, Hinson R, Dong P, Wu S, Ives J, Hu X, Huang H, Zhu Y. Ultrasoft Porous 3D Conductive Dry Electrodes for Electrophysiological Sensing and Myoelectric Control. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101637. [PMID: 36276406 PMCID: PMC9581336 DOI: 10.1002/admt.202101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 05/12/2023]
Abstract
Biopotential electrodes have found broad applications in health monitoring, human-machine interactions, and rehabilitation. Here, we report the fabrication and applications of ultrasoft breathable dry electrodes that can address several challenges for their long-term wearable applications - skin compatibility, wearability, and long-term stability. The proposed electrodes rely on porous and conductive silver nanowire based nanocomposites as the robust mechanical and electrical interface. The highly conductive and conformable structure eliminates the necessity of conductive gel while establishing a sufficiently low electrode-skin impedance for high-fidelity electrophysiological sensing. The introduction of gas-permeable structures via a simple and scalable method based on sacrificial templates improves breathability and skin compatibility for applications requiring long-term skin contact. Such conformable and breathable dry electrodes allow for efficient and unobtrusive monitoring of heart, muscle, and brain activities. In addition, based on the muscle activities captured by the electrodes and a musculoskeletal model, electromyogram-based neural-machine interfaces were realized, illustrating the great potential for prosthesis control, neurorehabilitation, and virtual reality.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Weixin Zhou
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Robert Hinson
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - Penghao Dong
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jasmine Ives
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - He Huang
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
27
|
Li BM, Reese BL, Ingram K, Huddleston ME, Jenkins M, Zaets A, Reuter M, Grogg MW, Nelson MT, Zhou Y, Ju B, Sennik B, Farrell ZJ, Jur JS, Tabor CE. Textile-Integrated Liquid Metal Electrodes for Electrophysiological Monitoring. Adv Healthc Mater 2022; 11:e2200745. [PMID: 35734914 DOI: 10.1002/adhm.202200745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Indexed: 01/27/2023]
Abstract
Next generation textile-based wearable sensing systems will require flexibility and strength to maintain capabilities over a wide range of deformations. However, current material sets used for textile-based skin contacting electrodes lack these key properties, which hinder applications such as electrophysiological sensing. In this work, a facile spray coating approach to integrate liquid metal nanoparticle systems into textile form factors for conformal, flexible, and robust electrodes is presented. The liquid metal system employs functionalized liquid metal nanoparticles that provide a simple "peel-off to activate" means of imparting conductivity. The spray coating approach combined with the functionalized liquid metal system enables the creation of long-term reusable textile-integrated liquid metal electrodes (TILEs). Although the TILEs are dry electrodes by nature, they show equal skin-electrode impedances and sensing capabilities with improved wearability compared to commercial wet electrodes. Biocompatibility of TILEs in an in vivo skin environment is demonstrated, while providing improved sensing performance compared to previously reported textile-based dry electrodes. The "spray on dry-behave like wet" characteristics of TILEs opens opportunities for textile-based wearable health monitoring, haptics, and augmented/virtual reality applications that require the use of flexible and conformable dry electrodes.
Collapse
Affiliation(s)
- Braden M Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA.,Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,Air Force Life Cycle Management Center, Human Systems Division, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Brandon L Reese
- Department of Physics, Miami University, Oxford, OH, 45056, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Katherine Ingram
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Mary E Huddleston
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Meghan Jenkins
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Allison Zaets
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew Reuter
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew W Grogg
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - M Tyler Nelson
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Ying Zhou
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Beomjun Ju
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Busra Sennik
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Zachary J Farrell
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Jesse S Jur
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Christopher E Tabor
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| |
Collapse
|
28
|
Ding C, Wang J, Yuan W, Zhou X, Lin Y, Zhu G, Li J, Zhong T, Su W, Cui Z. Durability Study of Thermal Transfer Printed Textile Electrodes for Wearable Electronic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29144-29155. [PMID: 35723443 DOI: 10.1021/acsami.2c03807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Textile-based electronics hold great promise because they can endow wearable devices with soft and comfortable characteristics. However, the inherent porosity and fluffiness of fabrics result in high surface roughness, which presents great challenges in the manufacture of high-performance fabric electrodes. In this work, we propose a thermal transfer printing method to address the above challenges, in which electrodes or circuits of silver flake/thermoplastic polyurethane (TPU) composites are prefabricated on a release film by coating and laser engraving and then laminated by hot-pressing to a variety of fabrics and textiles. This universal and scalable production technique enables fabric electrodes to be made without compromising the original wearability, washability, and stretchability of textiles. The prepared fabric electrodes exhibit high conductivity (5.48 × 104 S/cm), high adhesion (≥1750 N/m), good abrasion/washing resistance, high patterning resolution (∼40 μm), and good electromechanical performance up to 50% strain. To demonstrate the potential applications, we developed textile-based radio frequency identification (RFID) tags for remote identification and a large-sized heater for wearable thermotherapy. More importantly, the solvent-free thermal transfer printing technology developed in this paper enables people to DIY interesting flexible electronics on clothes with daily tools, which can promote the commercial application of smart textile-based electronics.
Collapse
Affiliation(s)
- Chen Ding
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Jiayi Wang
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wei Yuan
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Xiaojin Zhou
- Suzhou Institute of Fiber Inspection, Suzhou 215123, People's Republic of China
| | - Yong Lin
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Guoqing Zhu
- Suzhou Institute of Fiber Inspection, Suzhou 215123, People's Republic of China
| | - Jie Li
- Jiangsu Textiles Quality Services Inspection Testing Institute, Nanjing 210007, People's Republic of China
| | - Tao Zhong
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Wenming Su
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zheng Cui
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
29
|
Nguyen VH, Papanastasiou DT, Resende J, Bardet L, Sannicolo T, Jiménez C, Muñoz-Rojas D, Nguyen ND, Bellet D. Advances in Flexible Metallic Transparent Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106006. [PMID: 35195360 DOI: 10.1002/smll.202106006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Transparent electrodes (TEs) are pivotal components in many modern devices such as solar cells, light-emitting diodes, touch screens, wearable electronic devices, smart windows, and transparent heaters. Recently, the high demand for flexibility and low cost in TEs requires a new class of transparent conductive materials (TCMs), serving as substitutes for the conventional indium tin oxide (ITO). So far, ITO has been the most used TCM despite its brittleness and high cost. Among the different emerging alternative materials to ITO, metallic nanomaterials have received much interest due to their remarkable optical-electrical properties, low cost, ease of manufacturing, flexibility, and widespread applicability. These involve metal grids, thin oxide/metal/oxide multilayers, metal nanowire percolating networks, or nanocomposites based on metallic nanostructures. In this review, a comparison between TCMs based on metallic nanomaterials and other TCM technologies is discussed. Next, the different types of metal-based TCMs developed so far and the fabrication technologies used are presented. Then, the challenges that these TCMs face toward integration in functional devices are discussed. Finally, the various fields in which metal-based TCMs have been successfully applied, as well as emerging and potential applications, are summarized.
Collapse
Affiliation(s)
- Viet Huong Nguyen
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Viet Nam
| | | | - Joao Resende
- AlmaScience Colab, Madan Parque, Caparica, 2829-516, Portugal
| | - Laetitia Bardet
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - Thomas Sannicolo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Carmen Jiménez
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - David Muñoz-Rojas
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - Ngoc Duy Nguyen
- Département de Physique, CESAM/Q-MAT, SPIN, Université de Liège, Liège, B-4000, Belgium
| | - Daniel Bellet
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| |
Collapse
|
30
|
Cho S, Chang T, Yu T, Lee CH. Smart Electronic Textiles for Wearable Sensing and Display. BIOSENSORS 2022; 12:bios12040222. [PMID: 35448282 PMCID: PMC9029731 DOI: 10.3390/bios12040222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice.
Collapse
Affiliation(s)
- Seungse Cho
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Taehoo Chang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
31
|
Tian B, Fang Y, Liang J, Zheng K, Guo P, Zhang X, Wu Y, Liu Q, Huang Z, Cao C, Wu W. Fully Printed Stretchable and Multifunctional E-Textiles for Aesthetic Wearable Electronic Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107298. [PMID: 35150063 DOI: 10.1002/smll.202107298] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Electronic textiles (e-textiles) that combine the wearing comfort of textiles and the functionality of soft electronics are highly demanded in wearable applications. However, fabricating robust high-performance stretchable e-textiles with good abrasion resistance and high-resolution aesthetic patterns for high-throughput manufacturing and practical applications remains challenging. Herein, the authors report a new multifunctional e-textile fabricated via screen printing of the water-based silver fractal dendrites conductive ink. The as-fabricated e-textiles spray-coated with the invisible waterproofing agent exhibit superior flexibility, water resistance, wearing comfort, air permeability, and abrasion resistance, achieving a low sheet resistance of 0.088 Ω sq-1 , high stretchability of up to 154%, and excellent dynamic stability for over 1000 cyclic testing (ε = 100%). The printed e-textiles can be explored as strain sensors and ultralow voltage-driven Joule heaters driven for personalized thermal management. They finally demonstrate an integrated aesthetic smart clothing made of their multifunctional e-textiles for human motion detection and body-temperature management. The printed e-textiles provide new opportunities for developing novel wearable electronics and smart clothing for future commercial applications.
Collapse
Affiliation(s)
- Bin Tian
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Yuhui Fang
- Laboratory for Soft Machines & Electronics, Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jing Liang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Ke Zheng
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Panwang Guo
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Xinyu Zhang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Youfusheng Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Qun Liu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Zhida Huang
- Laboratory for Soft Machines & Electronics, Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Changyong Cao
- Laboratory for Soft Machines & Electronics, Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
32
|
Islam MR, Afroj S, Beach C, Islam MH, Parraman C, Abdelkader A, Casson AJ, Novoselov KS, Karim N. Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications. iScience 2022; 25:103945. [PMID: 35281734 PMCID: PMC8914337 DOI: 10.1016/j.isci.2022.103945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
Wearable e-textiles have gained huge tractions due to their potential for non-invasive health monitoring. However, manufacturing of multifunctional wearable e-textiles remains challenging, due to poor performance, comfortability, scalability, and cost. Here, we report a fully printed, highly conductive, flexible, and machine-washable e-textiles platform that stores energy and monitor physiological conditions including bio-signals. The approach includes highly scalable printing of graphene-based inks on a rough and flexible textile substrate, followed by a fine encapsulation to produce highly conductive machine-washable e-textiles platform. The produced e-textiles are extremely flexible, conformal, and can detect activities of various body parts. The printed in-plane supercapacitor provides an aerial capacitance of ∼3.2 mFcm-2 (stability ∼10,000 cycles). We demonstrate such e-textiles to record brain activity (an electroencephalogram, EEG) and find comparable to conventional rigid electrodes. This could potentially lead to a multifunctional garment of graphene-based e-textiles that can act as flexible and wearable sensors powered by the energy stored in graphene-based textile supercapacitors.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR), University of the West of England, Frenchay, Bristol BS16 1QY, UK
| | - Shaila Afroj
- Centre for Print Research (CFPR), University of the West of England, Frenchay, Bristol BS16 1QY, UK
| | - Christopher Beach
- Department of EEE, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mohammad Hamidul Islam
- Centre for Print Research (CFPR), University of the West of England, Frenchay, Bristol BS16 1QY, UK
| | - Carinna Parraman
- Centre for Print Research (CFPR), University of the West of England, Frenchay, Bristol BS16 1QY, UK
| | - Amr Abdelkader
- Department of Design and Engineering, Bournemouth University, Dorset, BH12 5BB UK
| | - Alexander J. Casson
- Department of EEE, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kostya S. Novoselov
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117575, Singapore
- Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing 400714 China
| | - Nazmul Karim
- Centre for Print Research (CFPR), University of the West of England, Frenchay, Bristol BS16 1QY, UK
| |
Collapse
|
33
|
Zhang Y, Zhang T, Huang Z, Yang J. A New Class of Electronic Devices Based on Flexible Porous Substrates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105084. [PMID: 35038244 PMCID: PMC8895116 DOI: 10.1002/advs.202105084] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Indexed: 05/03/2023]
Abstract
With the advent of the Internet of Things era, the connection between electronic devices and humans is getting closer and closer. New-concept electronic devices including e-skins, nanogenerators, brain-machine interfaces, and implantable medical devices, can work on or inside human bodies, calling for wearing comfort, super flexibility, biodegradability, and stability under complex deformations. However, conventional electronics based on metal and plastic substrates cannot effectively meet these new application requirements. Therefore, a series of advanced electronic devices based on flexible porous substrates (e.g., paper, fabric, electrospun nanofibers, wood, and elastic polymer sponge) is being developed to address these challenges by virtue of their superior biocompatibility, breathability, deformability, and robustness. The porous structure of these substrates can not only improve device performance but also enable new functions, but due to their wide variety, choosing the right porous substrate is crucial for preparing high-performance electronics for specific applications. Herein, the properties of different flexible porous substrates are summarized and their basic principles of design, manufacture, and use are highlighted. Subsequently, various functionalization methods of these porous substrates are briefly introduced and compared. Then, the latest advances in flexible porous substrate-based electronics are demonstrated. Finally, the remaining challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Tengyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Zhandong Huang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Jun Yang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
- Shenzhen Institute for Advanced StudyUniversity of Electronic Science and Technology of ChinaShenzhen518000P. R. China
| |
Collapse
|
34
|
Huang Q, Zhu Y. Patterning of Metal Nanowire Networks: Methods and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60736-60762. [PMID: 34919389 DOI: 10.1021/acsami.1c14816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the advance in flexible and stretchable electronics, one-dimensional nanomaterials such as metal nanowires have drawn much attention in the past 10 years or so. Metal nanowires, especially silver nanowires, have been recognized as promising candidate materials for flexible and stretchable electronics. Owing to their high electrical conductivity and high aspect ratio, metal nanowires can form electrical percolation networks, maintaining high electrical conductivity under deformation (e.g., bending and stretching). Apart from coating metal nanowires for making large-area transparent conductive films, many applications require patterned metal nanowires as electrodes and interconnects. Precise patterning of metal nanowire networks is crucial to achieve high device performances. Therefore, a high-resolution, designable, and scalable patterning of metal nanowire networks is important but remains a critical challenge for fabricating high-performance electronic devices. This review summarizes recent advances in patterning of metal nanowire networks, using subtractive methods, additive methods of nanowire dispersions, and printing methods. Representative device applications of the patterned metal nanowire networks are presented. Finally, challenges and important directions in the area of the patterning of metal nanowire networks for device applications are discussed.
Collapse
Affiliation(s)
- Qijin Huang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
35
|
Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic Textiles for Wearable Point-of-Care Systems. Chem Rev 2021; 122:3259-3291. [PMID: 34939791 DOI: 10.1021/acs.chemrev.1c00502] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditional public health systems are suffering from limited, delayed, and inefficient medical services, especially when confronted with the pandemic and the aging population. Fusing traditional textiles with diagnostic, therapeutic, and protective medical devices can unlock electronic textiles (e-textiles) as point-of-care platform technologies on the human body, continuously monitoring vital signs and implementing round-the-clock treatment protocols in close proximity to the patient. This review comprehensively summarizes the research advances on e-textiles for wearable point-of-care systems. We start with a brief introduction to emphasize the significance of e-textiles in the current healthcare system. Then, we describe textile sensors for diagnosis, textile therapeutic devices for medical treatment, and textile protective devices for prevention, by highlighting their working mechanisms, representative materials, and clinical application scenarios. Afterward, we detail e-textiles' connection technologies as the gateway for real-time data transmission and processing in the context of 5G technologies and Internet of Things. Finally, we provide new insights into the remaining challenges and future directions in the field of e-textiles. Fueled by advances in chemistry and materials science, textile-based diagnostic devices, therapeutic devices, protective medical devices, and communication units are expected to interact synergistically to construct intelligent, wearable point-of-care textile platforms, ultimately illuminating the future of healthcare system in the Internet of Things era.
Collapse
Affiliation(s)
- Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael Bick
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
36
|
Cesarelli G, Donisi L, Coccia A, Amitrano F, D’Addio G, Ricciardi C. The E-Textile for Biomedical Applications: A Systematic Review of Literature. Diagnostics (Basel) 2021; 11:diagnostics11122263. [PMID: 34943500 PMCID: PMC8700039 DOI: 10.3390/diagnostics11122263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
The use of e-textile technologies spread out in the scientific research with several applications in both medical and nonmedical world. In particular, wearable technologies and miniature electronics devices were implemented and tested for medical research purposes. In this paper, a systematic review regarding the use of e-textile for clinical applications was conducted: the Scopus and Pubmed databases were investigate by considering research studies from 2010 to 2020. Overall, 262 papers were found, and 71 of them were included in the systematic review. Of the included studies, 63.4% focused on information and communication technology studies, while the other 36.6% focused on industrial bioengineering applications. Overall, 56.3% of the research was published as an article, while the remainder were conference papers. Papers included in the review were grouped by main aim into cardiological, muscular, physical medicine and orthopaedic, respiratory, and miscellaneous applications. The systematic review showed that there are several types of applications regarding e-textile in medicine and several devices were implemented as well; nevertheless, there is still a lack of validation studies on larger cohorts of subjects since the majority of the research only focuses on developing and testing the new device without considering a further extended validation.
Collapse
Affiliation(s)
- Giuseppe Cesarelli
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, 80125 Naples, Italy;
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
| | - Leandro Donisi
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Armando Coccia
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, 80125 Naples, Italy
| | - Federica Amitrano
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, 80125 Naples, Italy
- Correspondence:
| | - Giovanni D’Addio
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
| | - Carlo Ricciardi
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, 80125 Naples, Italy
| |
Collapse
|
37
|
Hosseini-Shahisavandi S, Zerafat M. Synthesis of carboxylated-silver nanowires: Electrical conductivity enhancement of isotropic conductive adhesives and long-term stability in a mixture of solvents. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Ma C, Liu YF, Bi YG, Zhang XL, Yin D, Feng J, Sun HB. Recent progress in post treatment of silver nanowire electrodes for optoelectronic device applications. NANOSCALE 2021; 13:12423-12437. [PMID: 34259675 DOI: 10.1039/d1nr02917g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the economical and practical solution synthesis and coating strategies, silver nanowires (AgNWs) have been considered as one of the most suitable alternative materials to replace commercial indium tin oxide (ITO) transparent electrodes. The primitive AgNW electrode cannot meet the requirements for preparing high performance optoelectronic devices due to its high contact resistance, large surface roughness and poor stability. Thus, various post-treatments for AgNW film optimization are needed before its actual applications, such as welding treatment to decrease contact resistance and passivation to increase film stability. This review investigates recent progress on the preparation and optimization of AgNWs. Moreover, some unique fabrication strategies to produce highly oriented AgNW films with unique anisotropic properties have also been carried out with detailed analysis. The representative devices based on the AgNW electrode have been summarized and discussed at the end of this review.
Collapse
Affiliation(s)
- Chi Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Cerone GL, Botter A, Vieira T, Gazzoni M. Design and Characterization of a Textile Electrode System for the Detection of High-Density sEMG. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1110-1119. [PMID: 34097613 DOI: 10.1109/tnsre.2021.3086860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Muscle activity monitoring in dynamic conditions is a crucial need in different scenarios, ranging from sport to rehabilitation science and applied physiology. The acquisition of surface electromyographic (sEMG) signals by means of grids of electrodes (High-Density sEMG, HD-sEMG) allows obtaining relevant information on muscle function and recruitment strategies. During dynamic conditions, this possibility demands both a wearable and miniaturized acquisition system and a system of electrodes easy to wear, assuring a stable electrode-skin interface. While recent advancements have been made on the former issue, detection systems specifically designed for dynamic conditions are at best incipient. The aim of this work is to design, characterize, and test a wearable, HD-sEMG detection system based on textile technology. A 32-electrodes, 15 mm inter-electrode distance textile grid was designed and prototyped. The electrical properties of the material constituting the detection system and of the electrode-skin interface were characterized. The quality of sEMG signals was assessed in both static and dynamic contractions. The performance of the textile detection system was comparable to that of conventional systems in terms of stability of the traces, properties of the electrode-skin interface and quality of the collected sEMG signals during quasi-isometric and highly dynamic tasks.
Collapse
|
40
|
Kang DH, Lee JH, Lee JW, Cho HS, Park SH, Lee KH, Kang SJ. Conditions for CNT - Coated Textile Sensors Applied to Wearable Platforms to Monitor Limb Joint Motion. J Med Syst 2021; 45:41. [PMID: 33608815 PMCID: PMC7895767 DOI: 10.1007/s10916-021-01709-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
Despite recent research on joint motion measurement to monitor human body movement, current measurement techniques and tools have significant limitations, including requiring large space for measurement and causing discomfort in test subjects wearing motion sensors. Our study aims, first, to develop carbon nanotube (CNT)-based textile joint motion sensors. Second, ours study aims to identify the most suitable CNT-based sensor structure and attachment method for use on a wearable platform during general exercise speeds. Lastly, we used these sensors on the human body, using sleeves and legs to find the most stable location, and we used the CNT-based sensor condition to monitor joint motions. We utilized our CNT-based sensor, which has proper elasticity as well as conductivity, and applied it to the elbow and knee joints. Based on the strain gauge principle, we monitored the variance of electric resistance that occurred when the CNT-based sensor was stretched due to limb motion. Our study tested 48 types of sensors. These sensors were applied to the CNT using different base knit textiles as well as different attachment methods, layers, sensor lengths, and sensor widths. The four most successful sensor types, which showed superior efficacy over the others in joint motion measurement, were selected for further study. These four sensors were then used to measure the elbow and knee joint motions of human subjects by placing them on different locations on sleeves and legs. The CNT knit textile sensors best suited to measuring joint motions are those with a double-layered CNT knit and 5 cm long × 0.5 cm or 1 cm wide sensors attached to a polyester¬-based knit using a welding method. The best position for the sensor to more stably monitor joint motions was the "below hinge position" from the elbow or knee hinge joint. Our study suggests an alternative strategy for joint-motion measurement that could contribute to the development of more comfortable and human-friendly methods of human limb motion measurement.
Collapse
Affiliation(s)
- Da-Hye Kang
- Department of Clothing & Textiles, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Joo-Hyeon Lee
- Department of Clothing & Textiles, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jeong-Whan Lee
- Department of Biomedical Engineering, College of Biomedical &Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si, Chungcheongbuk-do, 27478, Republic of Korea
| | - Hyun-Seung Cho
- Department of Clothing & Textiles, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seon-Hyung Park
- Department of Clothing & Textiles, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kang-Hwi Lee
- Department of Biomedical Engineering, College of Biomedical &Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si, Chungcheongbuk-do, 27478, Republic of Korea
| | - Seung-Jin Kang
- Department of Biomedical Engineering, College of Biomedical &Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si, Chungcheongbuk-do, 27478, Republic of Korea
| |
Collapse
|
41
|
Katouah H, El-Metwaly NM. Plasma treatment toward electrically conductive and superhydrophobic cotton fibers by in situ preparation of polypyrrole and silver nanoparticles. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104810] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Wearable strain sensor for real-time sweat volume monitoring. iScience 2020; 24:102028. [PMID: 33490926 PMCID: PMC7809499 DOI: 10.1016/j.isci.2020.102028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 01/05/2023] Open
Abstract
Reliably monitoring sweat volume has attracted much attention due to its important role in the assessment of physiological health conditions and the prevention of dehydration. Here, we present the first example of wearable strain sensor for real-time sweat volume monitoring. Such sweat volume monitoring sensor is simply fabricated via embedding strain sensing fabric in super-absorbent hydrogels, the hydrogels can wick sweat up off the skin surface to swell and then trigger the strain sensing fabrics response. This sensor can realize real-time detection of sweat volume (0.15-700 μL), shows excellent repeatability and stability against movement or light interference, reliability in the non-pathological range (pH: 4-9 and salinity: 0-100 mM NaCl) in addition. Such sensor combing swellable hydrogels with strain sensing fabrics provides a novel measurement method of wearable devices for sweat volume monitoring.
Collapse
|
43
|
Ha SH, Kim JM. Rapid and economic preparation of wearable thermotherapy pad based on simple cut-patterning of metal foil supported by plastic sheets. RSC Adv 2020; 11:918-926. [PMID: 35423695 PMCID: PMC8693371 DOI: 10.1039/d0ra05728b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Stretchable and skin-mountable heaters have found application in the emerging industry of wearable thermotherapy devices. However, despite their excellent heating performances, most of them commonly suffer from complex, time-consuming, costly, or insufficiently reproducible fabrication processes. In this study, we report a simple, economic, and reproducible strategy to fabricate high-performance stretchable heaters based on facile cut-patterning of plastic sheet/metal foil/plastic sheet (PMP) structures. Further, this method can be executed without expensive materials or cumbersome material synthesis. The fabricated PMP heater is confirmed to exhibit excellent and uniform heating performance at a low voltage and satisfactory electrothermal stability even under high strain and repeated loads. Additionally, the proposed heater designs can be easily customized by simply changing the computer-aided design drawings during the cutting process, which also enables fabrication of devices with large area. The fabricated PMP heater is confirmed to be able to maintain conformal contact with target surfaces even under stretched conditions, inducing a fairly uniform temperature distribution. Finally, it is successfully demonstrated that a PMP heating band can be easily worn on the wrist and is capable of transferring enough heat to increase blood perfusion in the heated area even at a low voltage, highlighting its potential in wearable thermotherapy. A simple, economic, and reproducible fabrication route to high-performance stretchable heaters is proposed towards wearable thermotherapy.![]()
Collapse
Affiliation(s)
- Sung-Hun Ha
- Department of Nano Fusion Technology and BK21 Plus Nano Convergence Technology Division, Pusan National University Busan 46241 Republic of Korea
| | - Jong-Man Kim
- Department of Nano Fusion Technology and BK21 Plus Nano Convergence Technology Division, Pusan National University Busan 46241 Republic of Korea.,Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University Busan 46214 Republic of Korea
| |
Collapse
|
44
|
Wu S, Yao S, Liu Y, Hu X, Huang HH, Zhu Y. Buckle-Delamination-Enabled Stretchable Silver Nanowire Conductors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41696-41703. [PMID: 32808757 DOI: 10.1021/acsami.0c09775] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlled buckling and delamination of thin films on a compliant substrate has attracted much attention for applications ranging from micro/nanofabrication to flexible and stretchable electronics to bioengineering. Here, a highly conductive and stretchable conductor is fabricated by attaching a polymer composite film (with a thin layer of silver nanowires embedded below the surface of the polymer matrix) on top of a prestretched elastomer substrate followed with releasing the prestrain. A partially delaminated wavy geometry of the polymer film is created. During the evolution of the buckle-delamination, the blisters pop-up randomly but self-adjust into a uniform distribution, which effectively reduces the local strain in the silver nanowires. The resistance change of the conductor is less than 3% with the applied strain up to 100%. A theoretical model on the buckle-delamination structure is developed to predict the geometrical evolution, which agrees well with experimental observation. Finally, an integrated silver nanowire/elastomer sensing module and a stretchable thermochromic device are developed to demonstrate the utility of the stretchable conductor. This work highlights the important relevance of mechanics-based design in nanomaterial-enabled stretchable devices.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shanshan Yao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina 27599, United States
| | - He Helen Huang
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina 27599, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
45
|
Photodynamic-active smart biocompatible material for an antibacterial surface coating. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:112012. [PMID: 32919175 DOI: 10.1016/j.jphotobiol.2020.112012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/12/2020] [Accepted: 08/30/2020] [Indexed: 01/19/2023]
Abstract
Here we present a new effective antibacterial material suitable for a coating, e.g., surface treatment of textiles, which is also time and financially undemanding. The most important role is played by hydrophobic carbon quantum dots, as a new type of photosensitizer, produced by carbonization of different carbon precursors, which are incorporated by swelling from solution into various polymer matrices in the form of thin films, in particular polyurethanes, which are currently commercially used for industrial surface treatment of textiles. The role of hydrophobic carbon quantum dots is to work as photosensitizers upon irradiation and produce reactive oxygen species, namely singlet oxygen, which is already known as the most effective radical for elimination different kinds of bacteria on the surface or in close proximity to such modified material. Therefore, we have mainly studied the effect of hydrophobic carbon quantum dots on Staphylococcus aureus and the cytotoxicity tests, which are essential for the safe handling of such material. Also, the production of singlet oxygen by several methods (electron paramagnetic spectroscopy, time-resolved near-infrared spectroscopy), surface structures (atomic force microscopy and contact angle measurement), and the effect of radiation on polymer matrices were studied. The prepared material is easily modulated by end-user requirements.
Collapse
|
46
|
Yang Z, Wang W, Bi L, Chen L, Wang G, Chen G, Ye C, Pan J. Wearable electronics for heating and sensing based on a multifunctional PET/silver nanowire/PDMS yarn. NANOSCALE 2020; 12:16562-16569. [PMID: 32749436 DOI: 10.1039/d0nr04023a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stretchable and flexible electronics built from multifunctional fibres are essential for devices in human-machine interactions, human motion monitoring and personal healthcare. However, the combination of stable heating and precision sensing in a single conducting yarn has yet to be achieved. Herein, a yarn comprising poly(ethylene terephthalate) (PET), silver nanowires (AgNWs), and polydimethylsiloxane (PDMS) was designed and prepared. The PET/AgNW/PDMS yarn exhibited high electrical conductivity at ≈3 Ω cm-1 and a large tolerance to tensile strain up to 100% its own length. Only a negligible loss of electromechanical performance was observed after 1700 strain cycles. And an excellent response to applied strain was also achieved across a huge stretching range. The PET/AgNW/PDMS yarn displayed excellent heating performance and outstanding breathability when used in a heating fabric, and excellent sensitivity for monitoring both gross and fine movements in humans when used as a sensor.
Collapse
Affiliation(s)
- Zhonglin Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wenwen Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Lili Bi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Liangjun Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Guixin Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Guinan Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Cui Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
47
|
Zhou W, Yao S, Wang H, Du Q, Ma Y, Zhu Y. Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes. ACS NANO 2020; 14:5798-5805. [PMID: 32347707 DOI: 10.1021/acsnano.0c00906] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present gas-permeable, ultrathin, and stretchable electrodes enabled by self-assembled porous substrates and conductive nanostructures. An efficient and scalable breath figure method is employed to introduce the porous skeleton, and then silver nanowires (AgNWs) are dip-coated and heat-pressed to offer electric conductivity. The resulting film has a transmittance of 61%, sheet resistance of 7.3 Ω/sq, and water vapor permeability of 23 mg cm-2 h-1. With AgNWs embedded below the surface of the polymer, the electrode exhibits excellent stability in the presence of sweat and after long-term wear. We demonstrate the promising potential of the electrode for wearable electronics in two representative applications: skin-mountable biopotential sensing for healthcare and textile-integrated touch sensing for human-machine interfaces. The electrode can form conformal contact with human skin, leading to low skin-electrode impedance and high-quality biopotential signals. In addition, the textile electrode can be used in a self-capacitance wireless touch sensing system.
Collapse
Affiliation(s)
- Weixin Zhou
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, United States
| | - Shanshan Yao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, United States
| | - Hongyu Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, United States
| | - Qingchuan Du
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Yanwen Ma
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, United States
| |
Collapse
|
48
|
Leal C, Lopes PA, Serra A, Coelho JFJ, de Almeida AT, Tavakoli M. Untethered Disposable Health Monitoring Electronic Patches with an Integrated Ag 2O-Zn Battery, a AgInGa Current Collector, and Hydrogel Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3407-3414. [PMID: 31888325 DOI: 10.1021/acsami.9b18462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stretchable electronics stickers that adhere to the human skin and collect biopotentials are becoming increasingly popular for biomonitoring applications. Such stickers include electrodes, stretchable interconnects, silicon chips for processing and communication, and batteries. Here, we demonstrate a material architecture and fabrication technique for a multilayer, stretchable, low-cost, rapidly deployable, and disposable sticker that integrates skin-interfacing hydrogel electrodes, stretchable interconnects, and a Ag2O-Zn (silver oxide-zinc) battery. In addition, the application of a printed biphasic current collector (AgInGa) for the Ag2O-Zn battery is reported for the first time. Surprisingly, and unlike previously reported batteries, the battery capacity increases after being subjected to strain cycles and reaches a record-breaking areal capacity of 6.88 mAh cm-2 post stretch. As a proof of concept, an application of heart rate monitoring is presented. The disposable patch is interfaced with a miniature battery-free electronics circuit for data acquisition, processing, and wireless transmission. A version of the patch partially covering the patient's chest can supply enough energy for continuous operation for ∼6 days.
Collapse
Affiliation(s)
- Cristina Leal
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Arménio Serra
- Department of Chemical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Aníbal T de Almeida
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| |
Collapse
|