1
|
Nambu H, Seto Y, Onuki Y, Yamazaki K, Tomohara K, Yakura T. Sulfur-Mediated Ring-Opening Cyclization of Spirocyclopropanes for the Construction of Benzo[b]thiophene Skeleton. Chem Asian J 2025:e00262. [PMID: 40366180 DOI: 10.1002/asia.202500262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
A novel approach for the construction of the benzo[b]thiophene skeleton has been developed. Regioselective ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes using sodium hydrosulfide as a sulfur-transfer reagent proceeded smoothly and subsequent addition of an acid afforded the corresponding tetrahydrobenzo[b]thiophen-4-one derivatives in good to excellent yields. Cycloheptane-1,3-dione-2-spirocyclopropanes could be also applied to the present protocol. In contrast, the reaction of monocyclic 1,1-diacetyl-2-phenylcyclopropane with sodium hydrosulfide and subsequent addition of an acid gave decomposition products instead of the desired product. This result suggests that the spiro structure is crucial for successful ring-opening cyclization. One of the products obtained from cyclohexane-1,3-dione-2-spirocyclopropanes could be converted into the 2-substituted 4-hydroxybenzo[b]thiophene derivative while avoiding oxidation of the sulfide to sulfoxide or sulfone. This protocol provides an alternative synthetic method to access benzo[b]thiophenes without using multisubstituted benzenes as starting materials, which are often difficult to prepare. To our knowledge, this is the first report of the synthesis of benzo[b]thiophenes from cyclopropanes.
Collapse
Affiliation(s)
- Hisanori Nambu
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, 930-0194, Japan
- Laboratory of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8412, Japan
| | - Yuki Seto
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, 930-0194, Japan
| | - Yuta Onuki
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, 930-0194, Japan
| | - Koga Yamazaki
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, 930-0194, Japan
| | - Keisuke Tomohara
- Laboratory of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8412, Japan
| | - Takayuki Yakura
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
2
|
Haq S, Khalid M, Braga AAC, Alhokbany N, Chen K. Design and evaluation of indacenothienothiophene based functional materials for second and third order nonlinear optics properties via DFT approach. Sci Rep 2025; 15:13262. [PMID: 40246890 PMCID: PMC12006305 DOI: 10.1038/s41598-025-96902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Nonlinear optics (NLO) is a fascinating field that explores how intense light interacts with matter. Organic chromophores are regarded as promising materials for nonlinear optics research due to their properties i.e., easy of process, structural versatility, and instant response to NLO effects. Therefore, in current research, a comprehensive investigation was carried out on a series of organic indacenothienothiophene (ITT) based chromophores (AOR and AO1-AO6) to explore their NLO properties through quantum chemical calculations. The DFT and TD-DFT methods at M06/6-311G(d,p) level were employed to investigate the optoelectronic properties of new designed compounds. The parent compound, i.e., AOIC was taken for the designing of the reference molecule (AOR) by substituting one terminal acceptor with donor in AOIC to develop push-pull architecture. The other derivatives (AO1-AO6) were designed via modulation of end-capped acceptor of AOR with benzothiophene (BT) based acceptors. These investigations revealed a red-shift absorption spectra (λmax = 783-848 nm) with reduced HOMO-LUMO energy gap (Egap = 1.741-1.956 eV) in AO1-AO6 as compared to AOR (Egap = 2.040; λmax=743 nm) in chloroform. Significant charge transferred from donor to BT acceptors through ITT core in AO1-AO6 as illustrated by DOS, FMOs and TDM analyses. All entitled compounds (AO1-AO6) exhibited a notable NLO response relative to the AOR. Particularly, AO2 displayed the prominent results like < α > = 2.790 × 10-22 esu, βtotal = 7.027 × 10-27 esu and γtotal = 11.440 × 10-32 esu among all the derivatives. This might be owing to unique optoelectronic characteristics such as lowest Egap (1.741 eV) and hardness (0.871 eV) with highest softness (0.574 eV) and absorption spectrum (820 nm) of AO2. Hence, these calculations illustrated that the end-capped substitution of acceptor moieties with BT acceptors and the incorporation of conjugated donor system played a vital role in improving the NLO aptitude. Overall, these ITT-based derivatives can be considered as potential materials for promising applications in NLO field.
Collapse
Affiliation(s)
- Saadia Haq
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Bartz RH, Hellwig PS, Rosa KM, Silva MS, Lenardão EJ, Jacob RG, Perin G. Recent advances in the synthesis of chalcogenylated heterocycles obtained by chalcogenocyclization. Org Biomol Chem 2025; 23:2997-3028. [PMID: 39930985 DOI: 10.1039/d4ob01691b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Heterocyclic molecules containing organochalcogens are important scaffolds that have attracted scientific interest due to their remarkable pharmacological properties. As a consequence, in recent years several protocols have been developed for the synthesis of this class of compounds. More specifically, cyclization reactions have become a powerful tool in the synthesis of heterocycles containing two or more chalcogen atoms. This review summarizes the recent advances in the synthesis of heterocycles containing two or more chalcogens (S, Se, and Te), through a wide diversity of cyclization reactions with different substrates, with emphasis on cyclization reactions of chalcogenoalkynes and alkenes in chalcogenocyclization reactions, highlighting their scope, main advantages, synthetic differences, and limitations.
Collapse
Affiliation(s)
- Ricardo H Bartz
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Paola S Hellwig
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
- Departament of Chemistry, Federal University of Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil.
| | - Kethelyn M Rosa
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Márcio S Silva
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Raquel G Jacob
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
4
|
Shafiq I, Kousar S, Rasool F, Ahamad T, Munawar KS, Bullo S, Ojha SC. Exploration of the synergistic effect of chrysene-based core and benzothiophene acceptors on photovoltaic properties of organic solar cells. Sci Rep 2024; 14:15105. [PMID: 38956211 PMCID: PMC11219797 DOI: 10.1038/s41598-024-65459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
To improve the efficacy of organic solar cells (OSCs), novel small acceptor molecules (CTD1-CTD7) were designed by modification at the terminal acceptors of reference compound CTR. The optoelectronic properties of the investigated compounds (CTD1-CTD7) were accomplished by employing density functional theory (DFT) in combination with time-dependent density functional theory (TD-DFT). The M06 functional along with a 6-311G(d,p) basis set was utilized for calculating various parameters such as: frontier molecular orbitals (FMO), absorption maxima (λmax), binding energy (Eb), transition density matrix (TDM), density of states (DOS), and open circuit voltage (Voc) of entitled chromophores. A red shift in the absorption spectra of all designed chromophores (CTD1-CTD7) was observed as compared to CTR, accompanied by low excitation energy. Particularly, CTD4 was characterized by the highest λmax value of 685.791 nm and the lowest transition energy value of 1.801 eV which might be ascribed to the robust electron-withdrawing end-capped acceptor group. The observed reduced binding energy (Eb) was linked to an elevated rate of exciton dissociation and substantial charge transfer from central core in HOMO towards terminal acceptors in LUMO. These results were further supported by the outcomes from TDM and DOS analyses. Among all entitled chromophores, CTD4 exhibited bathochromic shift (685.791 nm), minimum HOMO/LUMO band gap of 2.347 eV with greater CT. Thus, it can be concluded that by employing molecular engineering with efficient acceptor moieties, the efficiency of photovoltaic materials could be improved.
Collapse
Affiliation(s)
- Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Shehla Kousar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Faiz Rasool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Tansir Ahamad
- Department of Chemistry, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Khurram Shahzad Munawar
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
- Department of Chemistry, University of Mianwali, Mianwali, 42200, Pakistan
| | - Saifullah Bullo
- Department of Human and Rehabilitation Sciences, Begum Nusrat Bhutto Women University, Sukkur Sindh, Pakistan.
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Shafiq I, Khalid M, Maria G, Raza N, Braga AAC, Bullo S, Khairy M. Use of benzothiophene ring to improve the photovoltaic efficacy of cyanopyridinone-based organic chromophores: a DFT study. RSC Adv 2024; 14:12841-12852. [PMID: 38645518 PMCID: PMC11027887 DOI: 10.1039/d3ra06817j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
The benzothiophene based chromophores (A1D1-A1D5) with A-π-A configuration were designed via end-capped tailoring with benzothiophene type acceptors using reference compound (A1R). Quantum chemical calculations were accomplished at M06/6-311G(d,p) level to probe optoelectronic and photophysical properties of designed chromophores. Therefore, frontier molecular orbitals (FMOs), binding energy (Eb), open circuit voltage (Voc), transition density matrix (TDM), density of state (DOS) and UV-Vis analyses of A1R and A1D1-A1D5 were accomplished. The designed compounds (A1D1-A1D5) exhibited absorption values in the visible region as 616.316-649.676 nm and 639.753-665.508 nm in gas and chloroform phase, respectively, comparing with reference chromophore. An efficient charge transference from HOMO towards LUMO was found in A1D1-A1D5 chromophores which was further supported by TDM and DOS analyses. Among all chromophores, A1D2 exhibited unique characteristics such as reduced band gap (2.354 eV), higher softness (σ = 0.424 eV), lower exciton binding energy (0.491 eV) and maximum value of open circuit voltage (Voc = 1.981 V). Consequently, A1D2 may be considered as potential candidate for the development of optoelectronic devices. These analyses revealed that the studied compounds exhibited promising findings. They may be utilized in the realm of organic solar cells.
Collapse
Affiliation(s)
- Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Gul Maria
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Qu'ımica Fundamental, Instituto de Qu'ımica, Universidade de Saõ Paulo Av. Prof. Lineu Prestes, 748 Sao Paulo 05508-000 Brazil
| | - Saifullah Bullo
- Department of Human and Rehabilitation Sciences, Begum Nusrat Bhutto Women University Sukkur Sindh Pakistan
| | - Mohamed Khairy
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University Egypt
| |
Collapse
|
6
|
Khalid M, Murtaza S, Gull K, Abid S, Imran M, Braga AAC. Influence of acceptors on the optical nonlinearity of 5 H-4-oxa-1,6,9-trithia-cyclopenta[ b]-as-indacene-based chromophores with a push-pull assembly: a DFT approach. RSC Adv 2024; 14:1169-1185. [PMID: 38174281 PMCID: PMC10762516 DOI: 10.1039/d3ra06673h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Herein, a series of compounds (TPD1-TPD6) having a D-π-A architecture was quantum chemically designed via the structural modulation of TPR. Quantum chemical calculations were employed to gain a comprehensive insight into the structural and optoelectronic properties of the designed molecules at the M06/6-311G(d,p) level. Interestingly, all the designed chromophores displayed narrow energy gaps (2.123-1.788 eV) and wider absorption spectra (λmax = 833.619-719.709 nm) with a bathochromic shift in comparison to the reference compound (λmax = 749.602 nm and Egap = 3.177 eV). Further, Egap values were utilized to evaluate global reactivity parameters (GRPs), which indicate that all the chromophores expressed higher softness (σ = 0.134-0.559 eV-1) and lower hardness (η = 4.155-4.543 eV) values than the reference chromophore. Efficient charge transfer from donors towards acceptors was noted through FMOs, which was also supported by DOS and TDM analyses. Overall, the TPD3 derivative exhibited a remarkable reduction in the HOMO-LUMO band gap (1.788 eV) with a red shift as λmax = 833.619 nm. Furthermore, it exhibited prominent linear and non-linear characteristics such as μtotal = 24.1731 D, 〈α〉 = 2.89 × 10-22 esu, and βtotal = 7.24 × 10-27 esu, among all derivatives. The above findings revealed that significant non-linear optical materials could be achieved through structural tailoring with studied efficient acceptors.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Shahzad Murtaza
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Khansa Gull
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Saba Abid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| |
Collapse
|
7
|
Mohapatra AA, Pranav M, Yadav S, Gangadharappa C, Wu J, Labanti C, Wolansky J, Benduhn J, Kim JS, Durrant J, Patil S. Interface Engineering in Perylene Diimide-Based Organic Photovoltaics with Enhanced Photovoltage. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37191283 DOI: 10.1021/acsami.3c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The introduction of nonfullerene acceptors (NFA) facilitated the realization of high-efficiency organic solar cells (OSCs); however, OSCs suffer from relatively large losses in open-circuit voltage (VOC) as compared to inorganic or perovskite solar cells. Further enhancement in power conversion efficiency requires an increase in VOC. In this work, we take advantage of the high dipole moment of twisted perylene-diimide (TPDI) as a nonfullerene acceptor (NFA) to enhance the VOC of OSCs. In multiple bulk heterojunction solar cells incorporating TPDI with three polymer donors (PTB7-Th, PM6 and PBDB-T), we observed a VOC enhancement by modifying the cathode with a polyethylenimine (PEIE) interlayer. We show that the dipolar interaction between the TPDI NFA and PEIE─enhanced by the general tendency of TPDI to form J-aggregates─plays a crucial role in reducing nonradiative voltage losses under a constant radiative limit of VOC. This is aided by comparative studies with PM6:Y6 bulk heterojunction solar cells. We hypothesize that incorporating NFAs with significant dipole moments is a feasible approach to improving the VOC of OSCs.
Collapse
Affiliation(s)
| | - Manasi Pranav
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Suraj Yadav
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Jiaying Wu
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Chiara Labanti
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jakob Wolansky
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Ji-Seon Kim
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - James Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
- SPECIFIC IKC, College of Engineering, Swansea University, Bay Campus, Swansea, Wales SA1 8EN, United Kingdom
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Arshad MN, Shafiq I, Khalid M, Asad M, Asiri AM, Alotaibi MM, Braga AAC, Khan A, Alamry KA. Enhancing the Photovoltaic Properties via Incorporation of Selenophene Units in Organic Chromophores with A 2-π 2-A 1-π 1-A 2 Configuration: A DFT-Based Exploration. Polymers (Basel) 2023; 15:polym15061508. [PMID: 36987288 PMCID: PMC10051165 DOI: 10.3390/polym15061508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Currently, polymer organic solar cells (POSCs) are widely utilized due to their significant application, such as low-cost power conversion efficiencies (PCEs). Therefore, we designed a series of photovoltaic materials (D1, D2, D3, D5 and D7) by the incorporation of selenophene units (n = 1-7) as π1-spacers by considering the importance of POSCs. Density functional theory (DFT) calculations were accomplished at MPW1PW91/6-311G (d, p) functional to explore the impact of additional selenophene units on the photovoltaic behavior of the above-mentioned compounds. A comparative analysis was conducted for designed compounds and reference compounds (D1). Reduction in energy gaps (∆E = 2.399 - 2.064 eV) with broader absorption wavelength (λmax = 655.480 - 728.376 nm) in chloroform along with larger charge transference rate was studied with the addition of selenophene units as compared to D1. A significantly higher exciton dissociation rate was studied as lower values of binding energy (Eb = 0.508 - 0.362 eV) were noted in derivatives than in the reference (Eb = 0.526 eV). Moreover, transition density matrix (TDM) and density of state (DOS) data also supported the efficient charge transition origination from HOMOs to LUMOs. Open circuit voltage (Voc) was also calculated for all the aforesaid compounds to check the efficiency, and significant results were seen (1.633-1.549 V). All the analyses supported our compounds as efficient POSCs materials with significant efficacy. These compounds might encourage the experimental researchers to synthesize them due to proficient photovoltaic materials.
Collapse
Affiliation(s)
- Muhammad Nadeem Arshad
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maha M Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508-000, Brazil
| | - Anish Khan
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Jeong JE, Sutton JJ, Ryu HS, Kang M, Tay EJ, Nguyen TL, Gordon KC, Shim SH, Woo HY. Resonant Raman-Active Polymer Dot Barcodes for Multiplex Cell Mapping. ACS NANO 2023; 17:4800-4812. [PMID: 36863001 DOI: 10.1021/acsnano.2c11240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Resonance Raman spectroscopy is an efficient tool for multiplex imaging because of the narrow bandwidth of the electronically enhanced vibrational signals. However, Raman signals are often overwhelmed by concurrent fluorescence. In this study, we synthesized a series of truxene-based conjugated Raman probes to show structure-specific Raman fingerprint patterns with a common 532 nm light source. The subsequent polymer dot (Pdot) formation of the Raman probes efficiently suppressed fluorescence via aggregation-induced quenching and improved the dispersion stability of particles without leakage of Raman probes or particle agglomeration for more than 1 year. Additionally, the Raman signal amplified by electronic resonance and increased probe concentration exhibited over 103 times higher relative Raman intensities versus 5-ethynyl-2'-deoxyuridine, enabling successful Raman imaging. Finally, multiplex Raman mapping was demonstrated with a single 532 nm laser using six Raman-active and biocompatible Pdots as barcodes for live cells. Resonant Raman-active Pdots may suggest a simple, robust, and efficient way for multiplex Raman imaging using a standard Raman spectrometer, suggesting the broad applicability of our strategy.
Collapse
Affiliation(s)
- Ji-Eun Jeong
- Department of Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Joshua J Sutton
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| | - Hwa Sook Ryu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minsu Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Elliot J Tay
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| | - Thanh Luan Nguyen
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Keith C Gordon
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| | - Sang-Hee Shim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Han D, Lim C, Phan TNL, Kim Y, Kim BJ. Benzotriazole-Based Non-Fused Ring Acceptors for Efficient and Thermally Stable Organic Solar Cells. Macromol Rapid Commun 2022; 43:e2200530. [PMID: 35866445 DOI: 10.1002/marc.202200530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Indexed: 11/11/2022]
Abstract
Non-fused ring acceptors (NFRAs) have attracted significant attention for non-fullerene organic solar cells (OSCs) owing to their chemical tunability and facile synthesis. In this study, a benzotriazole-based NFRA with chlorinated end groups (Triazole-4Cl) is developed to realize highly efficient and thermally stable NFRA-based OSCs; an analogous NFRA with non-chlorinated end groups (Triazole-H) is synthesized for comparison. Triazole-4Cl film exhibits the high-order packing structure and the near-infrared absorption capability, which are advantageous in charge transport and light harvesting of the resulting OSCs. In particular, the strong crystalline behavior of Triazole-4Cl results in enhanced self-aggregation, leading to high charge carrier mobility. Owing to these properties, a PBDB-T(polymer donor):Triazole-4Cl OSC demonstrates a high short-circuit current, fill factor, and power conversion efficiency (PCE = 10.46%), outperforming a PBDB-T:Triazole-H OSC (PCE = 7.65%). In addition, the thermal stability of a PBDB-T:Triazole-4Cl OSC at an elevated temperature of 120°C exceeds that of a PBDB-T:Triazole-H OSC. This is mainly attributed to the significantly higher cold crystallization temperature of Triazole-4Cl (205.9°C). This work provides useful guidelines for the design of NFRAs to achieve efficient and thermally stable NFRA-based OSCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Daehee Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Chulhee Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tan Ngoc-Lan Phan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youngkwon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
11
|
Alikhani Z, Albertson AG, Walter CA, Masih PJ, Kesharwani T. Synthesis of Benzo[ b]thiophenes via Electrophilic Sulfur Mediated Cyclization of Alkynylthioanisoles. J Org Chem 2022; 87:6312-6320. [PMID: 35436400 DOI: 10.1021/acs.joc.1c02606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A stable dimethyl(thiodimethyl)sulfonium tetrafluoroborate salt was employed for the electrophilic cyclization reaction of o-alkynyl thioanisoles for the synthesis of 2,3-disubstituted benzo[b]thiophenes. The reaction described herein works well with various substituted alkynes in excellent yields, and a valuable thiomethyl group was introduced with ease. The reaction utilizes moderate reaction conditions and ambient temperature while tolerating various functionalities. To elucidate the mechanism, electrophilic addition reactions using the dimethyl(thiodimethyl)sulfonium tetrafluoroborate salt with diphenylacetylene was demonstrated.
Collapse
Affiliation(s)
- Zahra Alikhani
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, Florida 32514, United States
| | - Alyssa G Albertson
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, Florida 32514, United States
| | - Christopher A Walter
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, Florida 32514, United States
| | - Prerna J Masih
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, Florida 32514, United States
| | - Tanay Kesharwani
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, Florida 32514, United States
| |
Collapse
|
12
|
Fisyuk AS, Samsonenko AL, Kostyuchenko AS, Zheleznova TY, Shuvalov VY, Vlasov IS. Synthesis of New Fused 4H-Thieno[3,2-b]pyrrole Derivatives via Decomposition of Methyl 4-Azido-5-arylthiophene-2-carboxylates. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1799-9339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThis article is focused on the development of practical approaches to the synthesis of 4-azido-5-arylthiophene-2-carboxylates and 4-amino-5-arylthiophene-2-carboxylates using the Fiesselmann reaction. The photochemical and thermal (including microwave-assisted) decomposition of 4-azido-5-arylthiophene-2-carboxylates have been studied in order to synthesize fused 4H-thieno[3,2-b]pyrrole derivatives. The proposed approaches allow to obtain functionally substituted heteroacenes, which are of interest as building blocks for organic semiconductors.
Collapse
Affiliation(s)
- Alexander S. Fisyuk
- Laboratory of New Organic Materials, Omsk State Technical University
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University
| | - Anna L. Samsonenko
- Laboratory of New Organic Materials, Omsk State Technical University
- Faculty of Chemistry, Silesian University of Technology
| | - Anastasia S. Kostyuchenko
- Laboratory of New Organic Materials, Omsk State Technical University
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University
| | - Tatyana Yu. Zheleznova
- Laboratory of New Organic Materials, Omsk State Technical University
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University
| | - Vladislav Yu. Shuvalov
- Laboratory of New Organic Materials, Omsk State Technical University
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University
| | - Igor S. Vlasov
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University
| |
Collapse
|
13
|
Schweda B, Reinfelds M, Hofstadler P, Trimmel G, Rath T. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors-Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS APPLIED ENERGY MATERIALS 2021; 4:11899-11981. [PMID: 35856015 PMCID: PMC9286321 DOI: 10.1021/acsaem.1c01737] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic solar cells are on the dawn of the next era. The change of focus toward non-fullerene acceptors has introduced an enormous amount of organic n-type materials and has drastically increased the power conversion efficiencies of organic photovoltaics, now exceeding 18%, a value that was believed to be unreachable some years ago. In this Review, we summarize the recent progress in the design of ladder-type fused-ring non-fullerene acceptors in the years 2018-2020. We thereby concentrate on single layer heterojunction solar cells and omit tandem architectures as well as ternary solar cells. By analyzing more than 700 structures, we highlight the basic design principles and their influence on the optical and electrical structure of the acceptor molecules and review their photovoltaic performance obtained so far. This Review should give an extensive overview of the plenitude of acceptor motifs but will also help to understand which structures and strategies are beneficial for designing materials for highly efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Bettina Schweda
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Matiss Reinfelds
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Petra Hofstadler
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Gregor Trimmel
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| |
Collapse
|
14
|
Mok Y, Kim Y, Moon Y, Park JJ, Choi Y, Kim DY. Quinoidal Small Molecule Containing Ring-Extended Termini for Organic Field-Effect Transistors. ACS OMEGA 2021; 6:27305-27314. [PMID: 34693151 PMCID: PMC8529684 DOI: 10.1021/acsomega.1c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In this work, we synthesized and characterized two quinoidal small molecules based on benzothiophene modified and original isatin terminal units, benzothiophene quinoidal thiophene (BzTQuT) and quinoidal thiophene (QuT), respectively, to investigate the effect of introducing a fused ring into the termini of quinoidal molecules. Extending the terminal unit of the quinoidal molecule affected the extension of π-electron delocalization and decreased the bond length alternation, which led to the downshifting of the collective Raman band and dramatically lowering the band gap. Organic field-effect transistor (OFET) devices in neat BzTQuT films showed p-type transport behavior with low hole mobility, which was ascribed to the unsuitable film morphology for charge transport. By blending with an amorphous insulating polymer, polystyrene, and poly(2-vinylnaphthalene), an OFET based on a BzTQuT film annealed at 150 °C exhibited improved mobility up to 0.09 cm2 V-1 s-1. This work successfully demonstrated that the extension of terminal groups into the quinoidal structure should be an effective strategy for constructing narrow band gap and high charge transporting organic semiconductors.
Collapse
Affiliation(s)
| | | | - Yina Moon
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jong-Jin Park
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yeonsu Choi
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Dong-Yu Kim
- School of Materials Science and Engineering
(SMSE), Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
15
|
Singh S, Nerella S, Pabbaraja S, Mehta G. Stitching Ynones with Nitromethanes: Domino Synthesis of Functionally Enriched Benzofurans and Benzothiophenes. J Org Chem 2021; 86:12093-12106. [PMID: 34414759 DOI: 10.1021/acs.joc.1c01104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A convenient one-pot benzannulation of regioisomeric 2- or 3-substituted furan and thiophene ynones with a range of nitromethanes has been discovered to directly access densely and diversely functionalized benzofurans and benzothiophenes. In this protocol, the nitro group in nitromethanes functions as recursive carbanion activator to setup tandem Michael addition-6π-electrocyclization, and its eventual sacrificial elimination facilitates aromatization and overall benzannulation. This benzannulation was also explored with furan/thiophene based o-halo ynones wherein a Michael addition-SNAr process operates and nitromethanes leave their imprint to deliver nitro substituted benzo-furans and -thiophenes.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.,School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sharanya Nerella
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
16
|
Chen L, Cao C, Lai H, Zhu Y, Pu M, Zheng N, He F. End-Group Modifications with Bromine and Methyl in Nonfullerene Acceptors: The Effect of Isomerism. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29737-29745. [PMID: 34129322 DOI: 10.1021/acsami.1c08060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of isomeric molecules has been widely exploited in molecular structures associated with organic solar cells (OSC) and is an effective pathway to finely tune the photoelectric properties and device performance. The molecular properties of nonfullerene acceptors and the morphology of blend films can be effectively controlled by manipulating isomeric substituent positions on benzene-fused end-capping groups (EG) in acceptors. Here, three isomeric EGs were designed and synthesized which simultaneously possess an electron-withdrawing bromine and an electron-donating methyl substituent. By linking three isomeric EGs, (Br,Me), (Br,Me)-1, and (Br,Me)-2 each with the BTP-CHO core, three isomeric small-molecule acceptors (SMA) were obtained. The power conversion efficiency (PCE) of PM6:BTP-(Br,Me)-1-based OSCs is 13.43%, is much higher than that of PM6:BTP-(Br,Me)- (11.92%) and PM6:BTP-(Br,Me)-2- (11.08%) based devices. Our results show that isomeric EGs can provide strategies to tune the absorption spectra of SMAs, intramolecular charge transfer (ICT) and electron mobility of organic semiconductor device, and ultimately increase the performance of nonfullerene acceptors.
Collapse
Affiliation(s)
- Lin Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Congcong Cao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Chen T, Karapala VK, Chen J, Hsu C. Recent advances of carbazole‐based
nonfullerene
acceptors: Molecular design, optoelectronic properties, and photovoltaic performance in organic solar cells. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tsung‐Wei Chen
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Vamsi Krishna Karapala
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Jiun‐Tai Chen
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Chain‐Shu Hsu
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
18
|
Hsu TG, Huang CL, Yin WC, Cao FY, Wang CW, Sahoo SK, Chang SL, Chou HC, Cheng YJ. Synthesis of Ring-Locked Tetracyclic Dithienocyclopentapyrans and Dibenzocyclopentapyran via 1,5-Hydride Shift and Copper-Catalyzed C-O Bond Formation for Nonfullerene Acceptors. Org Lett 2021; 23:1692-1697. [PMID: 33621105 DOI: 10.1021/acs.orglett.1c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We discovered a unique synthetic route to construct 2H-pyran-containing tetracyclic dithienocyclopentapyran (DTCP) and dibenzocyclopentapyran (DBCP) architectures. The synthesis involves an acid-induced dehydration cyclization followed by a [1,5] hydride-shift isomerization to form a cyclopentanone moiety which was converted to the pyran-embedded tetracyclic products by a CuI-catalyzed intramolecular C-O bond formation in good yield. DTCP was used as a building block to prepare an acceptor-donor-acceptor (A-D-A) type n-type material DTCP-BC leading to a solar cell efficiency of 9.32%.
Collapse
Affiliation(s)
- Tze-Gang Hsu
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ching-Li Huang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wen-Ching Yin
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Fong-Yi Cao
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Wei Wang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Santosh K Sahoo
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Shao-Ling Chang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsiao-Chieh Chou
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yen-Ju Cheng
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
19
|
Cao FY, Su YC, Hsueh YC, Chou CC, Cheng YJ. Alcohol-Soluble Zwitterionic 4-(Dimethyl(pyridin-2-yl)ammonio)butane-1-sulfonate Small Molecule as a Cathode Modifier for Nonfullerene Acceptor-Based Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10222-10230. [PMID: 33615795 DOI: 10.1021/acsami.0c21449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new zwitterionic small molecule 4-(dimethyl(pyridin-2-yl)ammonio)butane-1-sulfonate (PAS), synthesized from 2-dimethylaminopyrindine (2-DMAP), was developed for the ITO cathode modifier. PAS and 2-DMAP dissolved in methanol can form a thin layer on ITO cathode by a simple spin-coating process. The heteroatom moieties in 2-DMAP (sp2 and sp3 nitrogen) and PAS (sp2 nitrogen and sulfonate ion) can coordinate to the ITO surface and decrease the ITO work function by the induced surface dipoles. The fullerene-based (PBDTT-FTTE:PC71BM) inverted OSCs using PAS and 2-DMAP interlayer can achieve PCEs of 8.95 and 8.26%, respectively, which are superior to the devices without a modifier (PCE = 3.25%) and comparable to the corresponding ZnO-based device (PCE = 8.57%). Nevertheless, 2-DMAP, like other nitrogen-containing polymer interlayer materials, turns out to be not applicable to inverted organic solar cells (I-OSCs) with IT-4F as the n-type electron acceptor because the amino group of 2-DMAP can act as a nucleophile to attack the end-group of IT-4F at the interface. The decomposition of IT-4F by 2-DMAP was carefully proved to be via retro-aldol condensation. As a result, the device (PBDBT-F:IT-4F) modified with 2-DMAP displayed a low PCE of 7.34%. The zwitterionic PAS with reduced nucleophilicity and basicity can modify the ITO surface without decomposing IT-4F. The PBDBT-F:IT-4F-based device modified with PAS maintained a high PCE of 11.41%. Most importantly, the PAS-based device using the well-known Y6 acceptor (PBDBT-F:Y6) can achieve a PCE of 13.82%. This new interfacial material can be universally applied to I-OSCs employing various A-D-A-type acceptors installed with the electrophilic 1,1-dicyanamethylene-5,6-difluoro-3-indanone (FIC) end-group.
Collapse
Affiliation(s)
- Fong-Yi Cao
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yen-Chen Su
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yung-Ching Hsueh
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chia-Cheng Chou
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
20
|
Forti G, Nitti A, Osw P, Bianchi G, Po R, Pasini D. Recent Advances in Non-Fullerene Acceptors of the IDIC/ITIC Families for Bulk-Heterojunction Organic Solar Cells. Int J Mol Sci 2020; 21:E8085. [PMID: 33138257 PMCID: PMC7662271 DOI: 10.3390/ijms21218085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
The introduction of the IDIC/ITIC families of non-fullerene acceptors has boosted the photovoltaic performances of bulk-heterojunction organic solar cells. The fine tuning of the photophysical, morphological and processability properties with the aim of reaching higher and higher photocurrent efficiencies has prompted uninterrupted worldwide research on these peculiar families of organic compounds. The main strategies for the modification of IDIC/ITIC compounds, described in several contributions published in the past few years, can be summarized and classified into core modification strategies and end-capping group modification strategies. In this review, we analyze the more recent advances in this field (last two years), and we focus our attention on the molecular design proposed to increase photovoltaic performance with the aim of rationalizing the general properties of these families of non-fullerene acceptors.
Collapse
Affiliation(s)
- Giacomo Forti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
| | - Andrea Nitti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
| | - Peshawa Osw
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
- Department of Chemistry, College of Science, Salahaddin University, 44001 Erbil, Iraq
| | - Gabriele Bianchi
- Research Center for Renewable Energies and Environment, Istituto Donegani, Eni Spa, Via Fauser 4, 28100 Novara, Italy; (G.B.); (R.P.)
| | - Riccardo Po
- Research Center for Renewable Energies and Environment, Istituto Donegani, Eni Spa, Via Fauser 4, 28100 Novara, Italy; (G.B.); (R.P.)
| | - Dario Pasini
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
- INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
21
|
Zhang C, Song X, Liu KK, Zhang M, Qu J, Yang C, Yuan GZ, Mahmood A, Liu F, He F, Baran D, Wang JL. Electron-Deficient and Quinoid Central Unit Engineering for Unfused Ring-Based A 1 -D-A 2 -D-A 1 -Type Acceptor Enables High Performance Nonfullerene Polymer Solar Cells with High V oc and PCE Simultaneously. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907681. [PMID: 32378305 DOI: 10.1002/smll.201907681] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/12/2020] [Accepted: 04/01/2020] [Indexed: 05/20/2023]
Abstract
Here, a pair of A1 -D-A2 -D-A1 unfused ring core-based nonfullerene small molecule acceptors (NF-SMAs), BO2FIDT-4Cl and BT2FIDT-4Cl is synthesized, which possess the same terminals (A1 ) and indacenodithiophene unit (D), coupling with different fluorinated electron-deficient central unit (difluorobenzoxadiazole or difluorobenzothiadiazole) (A2 ). BT2FIDT-4Cl exhibits a slightly smaller optical bandgap of 1.56 eV, upshifted highest occupied molecular orbital energy levels, much higher electron mobility, and slightly enhanced molecular packing order in neat thin films than that of BO2FIDT-4Cl. The polymer solar cells (PSCs) based on BT2FIDT-4Cl:PM7 yield the best power conversion efficiency (PCE) of 12.5% with a Voc of 0.97 V, which is higher than that of BO2FIDT-4Cl-based devices (PCE of 10.4%). The results demonstrate that the subtle modification of A2 unit would result in lower trap-assisted recombination, more favorable morphology features, and more balanced electron and hole mobility in the PM7:BT2FIDT-4Cl blend films. It is worth mentioning that the PCE of 12.5% is the highest value in nonfused ring NF-SMA-based binary PSCs with high Voc over 0.90 V. These results suggest that appropriate modulation of the quinoid electron-deficient central unit is an effective approach to construct highly efficient unfused ring NF-SMAs to boost PCE and Voc simultaneously.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Xin Song
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center, Thuwal, 23955-6900, Saudi Arabia
- Center of Micro-Nano Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kai-Kai Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Ming Zhang
- Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240, China
| | - Jianfei Qu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Gui-Zhou Yuan
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Feng Liu
- Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240, China
| | - Feng He
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Derya Baran
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center, Thuwal, 23955-6900, Saudi Arabia
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| |
Collapse
|
22
|
Chen L, Zeng M, Weng C, Tan S, Shen P. Nonhalogenated-Solvent-Processed Efficient Polymer Solar Cells Enabled by Medium-Band-Gap A-π-D-π-A Small-Molecule Acceptors Based on a 6,12-Dihydro-diindolo[1,2- b:10,20- e]pyrazine Unit. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48134-48146. [PMID: 31823611 DOI: 10.1021/acsami.9b17185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this contribution, a series of A-π-D-π-A small molecules (SMs), IPY-T-IC, IPY-T-ICCl, and IPY-T-ICF, containing the central donor unit (D) of 6,12-dihydro-diindolo[1,2-b:10,20-e]pyrazine (IPY), the π-conjugated bridge of thiophene, and the end-accepting group (A) of 3-(dic yanomethylidene)indol-1-one, 5,6-dichloro-3-(dicyanomethylidene)indol-1-one, or 5,6-difluoro-3-(dicyanomethylene)indol-1-one, were developed, characterized, and employed as the acceptor materials for polymer solar cells (PSCs). Influences of the different end-accepting groups on thermal properties, spectral absorption, energy levels, photovoltaic performance, and film morphology of these small-molecule acceptors (SMAs) were investigated in detail. These SMAs exhibit an excellent thermal stability and strong crystallization. The absorption spectra of these SMs mainly locate the wavelength between 400 and 700 nm, associated with the optical band gaps in the range of 1.75-1.90 eV. Compared with nonhalogenated IPY-T-IC, the halogenated SMAs IPY-T-ICCl and IPY-T-ICF present better absorption abilities, wider absorption region, and downshifted highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels. With regard to the complementary spectral absorption and matched HOMO/LUMO levels, PTB7-Th as a low-band gap polymer was chosen to be an electron donor to pair with these SMAs for fabricating bulk-heterojuntion PSCs. Under optimized conditions, among these SMAs, the PTB7-Th:IPY-T-IC-based PSC processed from a halogenated solvent system (chlorobenzene + 1-chloronaphthalene) delivers the best power conversion efficiency (PCE) of 7.32%, mainly because of more complementary spectral absorption, upper-lying LUMO level, higher and balanced carrier mobility, more efficiently suppressed trap-assisted recombination, better charge collection property, and blend morphology. Encouragingly, an improved PCE of up to 7.68% is achieved when the IPY-T-IC-based solar cell was processed from a nonhalogenated solvent system (o-xylene + 2-methylnaphthalene). In view of the large band gap of these IPY-based SMAs, the PCE of over 7.5% is notable and attractive for the related community. Our study argues that the IPY moiety is a potential electron-donating building moiety to develop medium-band-gap high-performance A-π-D-π-A SMAs for nonhalogenated-solvent-processed photovoltaic devices.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Min Zeng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Chao Weng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Songting Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Ping Shen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| |
Collapse
|