1
|
You H, Xiong J, Gao R, Lou WY, Wu X. Ratiometric fluorescent detection of protease activity in foods based on microwave-assisted synthesized casein-directed gold nanoclusters. Food Chem 2025; 474:143078. [PMID: 39904085 DOI: 10.1016/j.foodchem.2025.143078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Developing a versatile probe for activity detection of protease is of significant importance due to its crucial roles in food processing, disease diagnosis, and pharmaceuticals. However, the sensitivity of probe towards interfering agents especially in complex samples hindered its development. Here, casein-directed gold nanoclusters (casein-AuNCs) were fabricated in a household microwave oven in 30 s, which displayed strong red emission with a large Stokes shift of 310 nm and high storage stability. Conjugation of fluorescein isothiocyanate (FITC) with casein-AuNCs enabled the ratiometric fluorescent detection of protease activity. Mechanistic investigation confirmed that upon protease hydrolysis, aggregation of AuNCs occurred, leading to fluorescence decay. This sensor exhibited good linearity and sensitivity for protease activity detection over a wide pH range, with detection limits of 0.29 U/mL and good anti-interference performance in real sample analysis.
Collapse
Affiliation(s)
- Haoxing You
- Lab of Applied Biocatalysis, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Jun Xiong
- Lab of Applied Biocatalysis, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Ruichen Gao
- Lab of Applied Biocatalysis, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
2
|
Abraham MK, Madanan AS, Varghese S, Shkhair AI, Indongo G, Rajeevan G, Kala AB, George S. Tungsten disulphide nanosheet modulated fluorescent gold nanocluster immunoprobe for the detection of tau peptide: Alzheimer's disease biomarker. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1125-1136. [PMID: 39811969 DOI: 10.1039/d4ay02014f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The neuronal tau peptide serves as a key biomarker for neurodegenerative diseases, specifically, Alzheimer's disease, a condition that currently has no cure or definitive diagnosis. The methodology to noninvasively detect tau levels from body fluids remains a major hurdle for a rapid and simple diagnostic approach. Thus, developing new detection methods for sensing tau protein levels is crucial. In this work, we report an immunoprobe based on anti-tau antibody (mAb-tau)-conjugated fluorescent gold nanoclusters (AuNCs) quenched with tungsten disulphide nanosheets (WS2 NS) for the detection of tau protein in human serum samples. The mAb-tau conjugated probe is designed to provide a specific binding site for the tau peptide by strong antigen-antibody interface. The WS2 NS surface quenches the fluorescence of mAb-tau@AuNCs, which is subsequently recovered by the addition of tau peptide in a linear concentration range (63.3-615.38 pg mL-1). The enhancement in fluorescence of WS2 NS@mAb-tau@AuNCs enables the quantification of tau peptide in concentrations pertinent to human serum tau levels in Alzheimer's patients. The developed probe achieves a limit of detection (LOD) and limit of quantification (LOQ) of 6.54 pg mL-1 and 21.8 pg mL-1 for tau peptide in PBS buffer. The study is further extended in spiked human serum samples, with satisfactory recovery percentages in the range of 94.37-117.53%. The technique holds promise as an immunoprobe for tau peptide detection and has potential in developing an economically viable probe for the clinical diagnosis of tau-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| | - Arathy B Kala
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
- International Interuniversity Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram-695581, Kerala, India
| |
Collapse
|
3
|
Chen X, Su C, Yang Y, Weng Z, Zhuang Q, Hong G, Peng H, Chen W. Clinical Evaluation of the HER2 Extracellular Domain in Breast Cancer Patients by Herceptin-Encapsulated Gold Nanocluster Probe-Based Electrochemiluminescence Immunoassay. Anal Chem 2025; 97:872-879. [PMID: 39739962 DOI: 10.1021/acs.analchem.4c05496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The extracellular domain (ECD) of human epidermal growth factor receptor 2 (HER2) serves as a promising biomarker for the early diagnosis and treatment of breast cancer (BC). However, due to the heterogeneity of tumors, assessing HER2 status through a core needle biopsy presents significant challenges. In this study, we propose a facile and high-performance electrochemiluminescence immunoassay (ECLIA) platform utilizing a herceptin-encapsulated gold nanoclusters (HER-AuNCs)/(diisopropylamino)ethanol (DIPEA-OH) ECL system for the clinical evaluation of HER2 ECD in BC patients. The two-in-one HER-AuNCs ECL probes integrate the immunological recognition capabilities of HER with the ECL performance of AuNCs. Coupled with the low-potential and high ECL intensity of the HER-AuNCs/DIPEA-OH system, this ECL biosensing platform offers advantages in simplicity, high sensitivity, specificity, and sample saving. Consequently, the proposed ECLIA method enables ultrasensitive detection of HER2 in the range of 0.05-10 ng/mL with a detection limit of 11 pg/mL. Notably, the serum HER2 (sHER2) ECD ECLIA analytical strategy demonstrates strong correlation with tissue HER2 expression in clinical specimens. Furthermore, the sHER2 ECD ECLIA method effectively identifies individuals with HER2-negative status within the low HER2 expression population, thereby providing enhanced guidance for treatment decisions involving antibody-drug conjugates (ADC) in BC patients. Thus, the combined diagnostic approach proposed in this work accurately differentiates between HER2-positive, HER2-negative, and low-expression BC patients, facilitating informed, clinically personalized treatment decisions.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350004, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Canping Su
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yu Yang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhimin Weng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Quanquan Zhuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
4
|
Dong B, Hu K, Mao Y, Wen K, Wang Z, Qu H, Zheng L. A nanomaterial-independent and fluorescent immunoassay based on Eu-micelles for rapid and sensitive detection of fluoroquinolones in chicken. Food Chem 2024; 459:140419. [PMID: 39024876 DOI: 10.1016/j.foodchem.2024.140419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Fluorescent nanoprobes are widely applied in innovate enzyme-linked immunosorbent assays (ELISA) for detection of fluoroquinolones (FQs) residue in foodstuffs. Nevertheless, the complicated synthesis of nanoprobes hampers their practical applications. Herein, a nanomaterial-independent and fluorescent ELISA for sensitive detection of FQs is developed using the Eu-micelles as signal probe. Non-nanostructured Eu-micelles with high quantum yield and stability are facilely synthesized through the assembly of Eu3+ and ligands. Alkaline phosphatase catalyzes hydrolysis of 4-nitrophenyl phosphate to 4-nitrophenol. The fluorescent Eu-micelles can be readily quenched by 4-nitrophenol via static quenching. The signal generation mechanism integrates well with conventional ELISA systems. The established fluorescent ELISA achieves sensitive detection of FQs with a limit of detection of 0.03 μg/kg. The validation results from LC-MS show that the fluorescent ELISA exhibits good accuracy and recoveries. Our study presents a nanomaterial-independent strategy for developing the rapid immunoassay for FQs, which holds good promise for practical applications.
Collapse
Affiliation(s)
- Baolei Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kaiying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
5
|
Yang L, Hou P, Wei J, Li B, Gao A, Yuan Z. Recent Advances in Gold Nanocluster-Based Biosensing and Therapy: A Review. Molecules 2024; 29:1574. [PMID: 38611853 PMCID: PMC11013830 DOI: 10.3390/molecules29071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Gold nanoclusters (Au NCs) with bright emission and unique chemical reactivity characters have been widely applied for optical sensing and imaging. With a combination of surface modifications, effective therapeutic treatments of tumors are realized. In this review, we summarize the recently adopted biosensing and therapy events based on Au NCs. Homogeneous and fluorometric biosensing systems toward various targets, including ions, small molecules, reactive oxygen species, biomacromolecules, cancer cells, and bacteria, in vitro and in vivo, are presented by turn-off, turn-on, and ratiometric tactics. The therapy applications are concluded in three aspects: photodynamic therapy, photothermal therapy, and as a drug carrier. The basic mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of Au NC-based biosensing and therapy systems.
Collapse
Affiliation(s)
| | | | | | | | - Aijun Gao
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
García-Guzmán C, Morales-Narváez E, Coutino-Gonzalez E. Bioactive Luminescent Silver Clusters Confined in Zeolites Enable Quick and Wash-Free Biosensing. Angew Chem Int Ed Engl 2023; 62:e202307718. [PMID: 37782257 DOI: 10.1002/anie.202307718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
The simultaneous capture and detection of biomolecules is crucial for revolutionizing bioanalytical platforms in terms of portability, response time and cost-efficiency. Herein, we demonstrate how the sensitivity to external stimuli and changes in the local electronic environment of silver clusters lead to an advantageous biosensing platform based on the fluorometric response of bioactive luminescent silver clusters (BioLuSiC) confined in faujasite X zeolites functionalized with antibodies. The photoluminescence response of BioLuSiC was enhanced upon immunocomplex formation, empowering a wash-free and quick biodetection system offering optimal results from 5 min. Proteins and pathogens (immunoglobulin G and Escherichia coli) were targeted to demonstrate the biosensing performance of BioLuSiC, and a human serum titration assay was also established. BioLuSiC will pave the way for innovative bioanalytical platforms, including real-time monitoring systems, point-of-care devices and bioimaging techniques.
Collapse
Affiliation(s)
- Cecilia García-Guzmán
- Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato, 37150, Mexico
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro, 76230, Mexico
| | - Eduardo Coutino-Gonzalez
- Sustainable Materials Unit, VITO, Flemish Institute for Technological Research, Boeretang 200, Mol, B-2400, Belgium
| |
Collapse
|
7
|
Sych TS, Polyanichko AM, Buglak AA, Kononov AI. Quantitative determination of albumin and immunoglobulin in human serum using gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122796. [PMID: 37156175 DOI: 10.1016/j.saa.2023.122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
In this experimental study, we developed a simple and selective approach to determine the concentrations of human serum albumin (HSA) and total amount of immunoglobulins (Ig) in real human serum (HS) sample using luminescent gold nanoclusters (Au NCs). In doing so, Au NCs were grown directly on the HS proteins without any sample pretreatment. We synthesized Au NCs on HSA and Ig and studied their photophysical properties. Using combined fluorescent and colorimetric assay we were able to obtain protein concentrations with a high degree of accuracy relative to techniques currently used in clinical diagnostics. We used method of standard additions to determine both HSA and Ig concentrations in HS by the Au NCs absorbance and fluorescence signals. A simple and cost-effective method developed in this work represents an excellent alternative to the techniques currently used in clinical diagnostics.
Collapse
Affiliation(s)
- Tomash S Sych
- Department of Molecular Biophysics and Polymer Physics, St Petersburg University, 199034 Saint Petersburg, Russia.
| | - Alexander M Polyanichko
- Department of Molecular Biophysics and Polymer Physics, St Petersburg University, 199034 Saint Petersburg, Russia
| | - Andrey A Buglak
- Department of Molecular Biophysics and Polymer Physics, St Petersburg University, 199034 Saint Petersburg, Russia
| | - Alexei I Kononov
- Department of Molecular Biophysics and Polymer Physics, St Petersburg University, 199034 Saint Petersburg, Russia
| |
Collapse
|
8
|
Martinez-Sade E, Martinez-Rojas F, Ramos D, Aguirre MJ, Armijo F. Formation of a Conducting Polymer by Different Electrochemical Techniques and Their Effect on Obtaining an Immunosensor for Immunoglobulin G. Polymers (Basel) 2023; 15:polym15051168. [PMID: 36904408 PMCID: PMC10007133 DOI: 10.3390/polym15051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In this work, a conducting polymer (CP) was obtained through three electrochemical procedures to study its effect on the development of an electrochemical immunosensor for the detection of immunoglobulin G (IgG-Ag) by square wave voltammetry (SWV). The glassy carbon electrode modified with poly indol-6-carboxylic acid (6-PICA) applied the cyclic voltammetry technique presented a more homogeneous size distribution of nanowires with greater adherence allowing the direct immobilization of the antibodies (IgG-Ab) to detect the biomarker IgG-Ag. Additionally, 6-PICA presents the most stable and reproducible electrochemical response used as an analytical signal for developing a label-free electrochemical immunosensor. The different steps in obtaining the electrochemical immunosensor were characterized by FESEM, FTIR, cyclic voltammetry, electrochemical impedance spectroscopy, and SWV. Optimal conditions to improve performance, stability, and reproducibility in the immunosensing platform were achieved. The prepared immunosensor has a linear detection range of 2.0-16.0 ng·mL-1 with a low detection limit of 0.8 ng·mL-1. The immunosensing platform performance depends on the orientation of the IgG-Ab, favoring the formation of the immuno-complex with an affinity constant (Ka) of 4.32 × 109 M-1, which has great potential to be used as point of care testing (POCT) device for the rapid detection of biomarkers.
Collapse
Affiliation(s)
- Erika Martinez-Sade
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Francisco Martinez-Rojas
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Danilo Ramos
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Maria Jesus Aguirre
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Departamento de Química de Los Materiales, Faculta de Química y Biología, Universidad de Santiago de Chile, USACH, Av. L.B. O’Higgins 3363, Santiago 9170022, Chile
| | - Francisco Armijo
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence:
| |
Collapse
|
9
|
Sun Y, Yue T, Yuan Y, Shi Y. Unlabeled fluorescence ELISA using yellow emission carbon dots for the detection of
Alicyclobacillus acidoterrestris
in apple juice. EFOOD 2023. [DOI: 10.1002/efd2.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Affiliation(s)
- Yuhan Sun
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Tianli Yue
- College of Food Science and Technology Northwest University Xi'an China
| | - Yahong Yuan
- College of Food Science and Technology Northwest University Xi'an China
| | - Yiheng Shi
- School of Food Science and Engineering Shaanxi University of Science and Technology Xi'an China
| |
Collapse
|
10
|
Wei D, Li M, Wang Y, Zhu N, Hu X, Zhao B, Zhang Z, Yin D. Encapsulating gold nanoclusters into metal-organic frameworks to boost luminescence for sensitive detection of copper ions and organophosphorus pesticides. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129890. [PMID: 36084467 DOI: 10.1016/j.jhazmat.2022.129890] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Gold nanoclusters (Au NCs) with luminescence property are emerging as promising candidates in fluorescent methods for monitoring contaminants, but low luminescence efficiency hampers their extensive applications. Herein, GSH-Au NCs@ZIF-8 was designed by encapsulating GSH-Au NCs with AIE effect into metal-organic frameworks, achieving high luminescence efficiency and good stability through the confinement effect of ZIF-8. Accordingly, a fluorescent sensing platform was constructed for the sensitive detection of copper ions (Cu2+) and organophosphorus pesticides (OPs). Firstly, the as-prepared GSH-Au NCs@ZIF-8 could strongly accumulate Cu2+ due to the adsorption property of MOFs, accompanied by a significant fluorescence quenching effect with a low detection limit of 0.016 μM for Cu2+. Besides, thiocholine (Tch), the hydrolysis product of acetylthiocholine (ATch) by acetylcholinesterase (AchE), could coordinate with Cu2+ by sulfhydryl groups (-SH), leading to a significant fluorescence recovery, which was further used for the quantification of OPs owing to its inhibition to AChE activity. Furthermore, a hydrogel sensor was explored to accomplish equipment-free, visual, and quantitative monitoring of Cu2+ and OPs by a smartphone sensing platform. Overall, this work provides an effective and universal strategy for enhancing the luminescence efficiency and stability of Au NCs, which would greatly promote their applications in contaminants monitoring.
Collapse
Affiliation(s)
- Dali Wei
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingwei Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xialin Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Bertorelle F, Wegner KD, Perić Bakulić M, Fakhouri H, Comby-Zerbino C, Sagar A, Bernadó P, Resch-Genger U, Bonačić-Koutecký V, Le Guével X, Antoine R. Tailoring the NIR-II Photoluminescence of Single Thiolated Au 25 Nanoclusters by Selective Binding to Proteins. Chemistry 2022; 28:e202200570. [PMID: 35703399 DOI: 10.1002/chem.202200570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/28/2022]
Abstract
Atomically precise gold nanoclusters are a fascinating class of nanomaterials that exhibit molecule-like properties and have outstanding photoluminescence (PL). Their ultrasmall size, molecular chemistry, and biocompatibility make them extremely appealing for selective biomolecule labeling in investigations of biological mechanisms at the cellular and anatomical levels. In this work, we report a simple route to incorporate a preformed Au25 nanocluster into a model bovine serum albumin (BSA) protein. A new approach combining small-angle X-ray scattering and molecular modeling provides a clear localization of a single Au25 within the protein to a cysteine residue on the gold nanocluster surface. Attaching Au25 to BSA strikingly modifies the PL properties with enhancement and a redshift in the second near-infrared (NIR-II) window. This study paves the way to conrol the design of selective sensitive probes in biomolecules through a ligand-based strategy to enable the optical detection of biomolecules in a cellular environment by live imaging.
Collapse
Affiliation(s)
- Franck Bertorelle
- Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France.,Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
| | - K David Wegner
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM) at, Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000, Split, Croatia
| | - Hussein Fakhouri
- Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France.,Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM) at, Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000, Split, Croatia
| | - Clothilde Comby-Zerbino
- Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Amin Sagar
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM) at, Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000, Split, Croatia.,Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Xavier Le Guével
- Institute for Advanced Biosciences, Université Grenoble Alpes/ INSERM1209/CNRS-UMR5309, 38700, La Tronche, France
| | - Rodolphe Antoine
- Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| |
Collapse
|
12
|
Tang Z, Chen F, Wang D, Xiong D, Yan S, Liu S, Tang H. Fabrication of avidin-stabilized gold nanoclusters with dual emissions and their application in biosensing. J Nanobiotechnology 2022; 20:306. [PMID: 35761380 PMCID: PMC9235210 DOI: 10.1186/s12951-022-01512-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Protein-stabilized gold nanoclusters (Prot-Au NCs) have been widely used in biosensing and cell imaging owing to their excellent optical properties and low biotoxicity. However, several Prot-Au NCs reported in the literature do not retain the biological role of the protein, which greatly limits their ability to directly detect biomarkers. This study demonstrated for the first time the successful synthesis of dual-function avidin-stabilized gold nanoclusters (Av–Au NCs) using a one-pot method. The resulting Av–Au NCs exhibited intense blue and red emissions under 374 nm excitation. Furthermore, the Av–Au NCs retained the native functionality of avidin to bind to biotin. When DNA strands modified with biotin at both ends (i.e., linker chains) were mixed with Av–Au NCs, large polymers were formed, indicating that Av–Au NCs could achieve fluorescence signal amplification by interacting with biotin. Taking advantage of the aforementioned properties, we constructed a novel enzyme-free fluorescent biosensor based on the Av–Au NCs-biotin system to detect DNA. The designed fluorescent biosensor could detect target DNA down to 0.043 nM, with a wide line range from 0.2 nM to 20 µM. Thus, these dual-functional Av–Au NCs were shown to be an excellent fluorescent material for biosensing. Avidin-stabilized gold nanoclusters (Av–Au NCs) were synthesized for the first time by a water-bath method. The synthesized Av–Au NCs not only exhibited intense blue and red emissions under 374 nm excitation, but also retained the native functionality of avidin to bind to biotin. The fluorescent signal amplification system constructed by the interaction of Av–Au NCs with biotin was successfully applied to detect target DNA in vitro.
Collapse
Affiliation(s)
- Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Fengjiao Chen
- Guangshan County People's Hospital, Xinyang, 465450, Henan, China
| | - Dan Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Dongmei Xiong
- Nursing School of Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Shaoying Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China.
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, China.
| |
Collapse
|
13
|
Shi Y, Hu Y, Jiang N, Yetisen AK. Fluorescence Sensing Technologies for Ophthalmic Diagnosis. ACS Sens 2022; 7:1615-1633. [PMID: 35640088 PMCID: PMC9237824 DOI: 10.1021/acssensors.2c00313] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Personalized and point-of-care (POC) diagnoses are critical for ocular physiology and disease diagnosis. Real-time monitoring and continuous sampling abilities of tear fluid and user-friendliness have become the key characteristics for the applied ophthalmic techniques. Fluorescence technologies, as one of the most popular methods that can fulfill the requirements of clinical ophthalmic applications for optical sensing, have been raised and applied for tear sensing and diagnostic platforms in recent decades. Wearable sensors in this case have been increasingly developed for ocular diagnosis. Contact lenses, as one of the commercialized and popular tools for ocular dysfunction, have been developed as a platform for fluorescence sensing in tears diagnostics and real-time monitoring. Numbers of biochemical analytes have been examined through developed fluorescent contact lens sensors, including pH values, electrolytes, glucose, and enzymes. These sensors have been proven for monitoring ocular conditions, enhancing and detecting medical treatments, and tracking efficiency of related ophthalmic surgeries at POC settings. This review summarizes the applied ophthalmic fluorescence sensing technologies in tears for ocular diagnosis and monitoring. In addition, the cooperation of fabricated fluorescent sensor with mobile phone readout devices for diagnosing ocular diseases with specific biomarkers continuously is also discussed. Further perspectives for the developments and applications of fluorescent ocular sensing and diagnosing technologies are also provided.
Collapse
Affiliation(s)
- Yuqi Shi
- Department
of Chemical Engineering, Imperial College
London, South
Kensington, London, SW7
2BU, United Kingdom
| | - Yubing Hu
- Department
of Chemical Engineering, Imperial College
London, South
Kensington, London, SW7
2BU, United Kingdom
| | - Nan Jiang
- West
China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ali K. Yetisen
- Department
of Chemical Engineering, Imperial College
London, South
Kensington, London, SW7
2BU, United Kingdom
| |
Collapse
|
14
|
Khan IM, Niazi S, Yue L, Zhang Y, Pasha I, Iqbal Khan MK, Akhtar W, Mohsin A, Chughati MFJ, Wang Z. Research update of emergent gold nanoclusters: A reinforced approach towards evolution, synthesis mechanism and application. Talanta 2022; 241:123228. [DOI: 10.1016/j.talanta.2022.123228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
|
15
|
Immunofluorescent-aggregation assay based on anti-Salmonella typhimurium IgG-AuNCs, for rapid detection of Salmonella typhimurium. Mikrochim Acta 2022; 189:160. [PMID: 35347452 DOI: 10.1007/s00604-022-05263-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
Sensitive and rapid detection of pathogenic bacteria plays an important role in avoiding food poisoning. However, the practical application value of conventional assays for detection of foodborne bacteria, are limited by major drawbacks; these include the laboriousness of pure culture preparation, complexity of DNA extraction for polymerase chain reaction, and low sensitivity of enzyme-linked immunosorbent assay. Herein, we designed a non-complex strategy for the sensitive, quantitative, and rapid detection of Salmonella typhimurium with high specificity, using an anti-Salmonella typhimurium IgG-AuNC-based immunofluorescent-aggregation assay. Salmonella typhimurium was agglutinated with fluorescent anti-Salmonella typhimurium IgG-AuNC on a glass slide, and observed using a fluorescence microscope with photoexcitation and photoemission at 560 nm and 620 nm, respectively. Under optimized reaction conditions, the AuNC-based immunofluorescent-aggregation assay had a determination range between 7.0 × 103 and 3.0 × 108 CFU/mL, a limit of detection of 1.0 × 103 CFU/mL and an assay response time of 3 min. The technique delivered good results in assessing real samples.
Collapse
|
16
|
Qian S, Wang Z, Zuo Z, Wang X, Wang Q, Yuan X. Engineering luminescent metal nanoclusters for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214268] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Chai OJH, Wu Z, Xie J. All Hydroxyl-Thiol-Protected Gold Nanoclusters with Near-Neutral Surface Charge. J Phys Chem Lett 2021; 12:9882-9887. [PMID: 34609875 DOI: 10.1021/acs.jpclett.1c02989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrophilic gold nanoclusters (Au NCs) whose physical and chemical properties are not susceptible to large changes in pH are greatly desired for diverse applications. Here, we design Au NCs protected by a hydroxyl-thiol ligand (e.g., 1-thioglycerol (TG)) with a molecular formula of Au34(TG)22 as a proof-of-concept for a Au NC model with near-neutral surface charge. Unlike hydrophilic thiols with charged functional groups (e.g., carboxylate-thiol) that are usually used for hydrophilic Au NCs, this type of Au NCs is protected by hydroxyl-thiols, which are less susceptible to the prevailing pH conditions as the hydroxyl group is less acidic than water. More interestingly, the resulting Au NCs also possess pH-independent fluorescence intensity, making them suitable for applications under strong acidic conditions, which are currently not available in the reported hydrophilic Au NCs.
Collapse
Affiliation(s)
- Osburg J H Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhennan Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
18
|
Peng YJ, Huang H, Wang CJ. DFT investigation on electronic structure, chemical bonds and optical properties of Cu6(SR)6 nanocluster. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Hong G, Su C, Huang Z, Zhuang Q, Wei C, Deng H, Chen W, Peng H. Electrochemiluminescence Immunoassay Platform with Immunoglobulin G-Encapsulated Gold Nanoclusters as a "Two-In-One" Probe. Anal Chem 2021; 93:13022-13028. [PMID: 34523333 DOI: 10.1021/acs.analchem.1c02850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biomolecule-functionalized Au nanoclusters (AuNCs) have drawn great interest in the electrochemiluminescence (ECL) field due to their unique optical/electrical properties, biocompatibility, and versatile bioapplication potentials. Herein, we proposed a two-in-one ECL probe of immunoglobulin G-encapsulated AuNCs (IgG-AuNCs) for the development of a high-performance ECL immunoassay (ECLIA) platform. The IgG-AuNCs were not only used as an ECL probe due to their excellent anodic ECL performance with triethylamine (TEA) as a coreactant but also used as the biorecognition element because of their well-retained bioactivity of the IgG. As a proof of concept, a new type of competitive immunosensing platform has been applied to detect IgG representing several merits of facile preparation, rapid detection, sample saving, and good analytical performance. The sensing platform exhibited a linear range of 0.5-50,000 ng/mL with a limit of detection of 0.06 ng/mL for IgG detection with high selectivity. In addition, this convenient ECLIA platform also performed well in real serum sample detection. Notably, our work not only proved the "two-in-one" immuno-AuNC probe-based ECLIA strategy but also developed a rational framework for study of ECL bioassay platforms based on multifunctional AuNCs and other related nanomaterials.
Collapse
Affiliation(s)
- Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Canping Su
- School of Clinical Medicine, Fujian Medical University, Fuzhou 350004, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Quanquan Zhuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Chaoguo Wei
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
20
|
He SB, Lin MT, Yang L, Noreldeen HAA, Peng HP, Deng HH, Chen W. Protein-Assisted Osmium Nanoclusters with Intrinsic Peroxidase-like Activity and Extrinsic Antifouling Behavior. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44541-44548. [PMID: 34494808 DOI: 10.1021/acsami.1c11907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extensive studies have laid the groundwork for understanding peroxidase-like nanozymes. However, improvements are still required before their practical applications. On one hand, it is significant to explore highly reactive nanozymes. On the other hand, it is necessary to avoid fouling formed on the surface of nanozymes, which will affect their activity and the results of H2O2 sensors or H2O2-related applications. Herein, a strategy is reported to design osmium nanoclusters (Os NCs) with the existence of bovine serum albumin (BSA) through biomineralization. BSA-Os NCs were found to possess intrinsic peroxidase-like activity with a high specific activity (6120 U/g). Studies also found that the catalytic activity of BSA-Os NCs was better than those of reported protein-assisted metal nanozymes (e.g., BSA-Pt NPs and BSA-Au NCs). More significantly, BSA has been confirmed as a protective shell to give Os NCs extrinsic antifouling property in some typical ions (e.g., Hg2+, Ag+, Pb2+, I-, Cr6+, Cu2+, Ce3+, S2-, etc.), saline (0-2 M), or protein (0-100 mg/mL) conditions. Under optimal conditions, a colorimetric sensor was established to realize a linear range of H2O2 from 1.25 to 200 μM with a low detection limit of 300 nM. On this basis, remarkable features enable a BSA-Os NCs-based colorimetric sensor to detect H2O2 from complex systems with clear color gradients. Together, this work highlights the advantages of protein-assisted Os nanozymes and provides a paragon for peroxidase-like nanozymes in H2O2-related applications.
Collapse
Affiliation(s)
- Shao-Bin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
- Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Meng-Ting Lin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Liu Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
21
|
Sousa AA, Schuck P, Hassan SA. Biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters. NANOSCALE ADVANCES 2021; 3:2995-3027. [PMID: 34124577 PMCID: PMC8168927 DOI: 10.1039/d1na00086a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 05/03/2023]
Abstract
The use of nanoparticles (NPs) in biomedicine has made a gradual transition from proof-of-concept to clinical applications, with several NP types meeting regulatory approval or undergoing clinical trials. A new type of metallic nanostructures called ultrasmall nanoparticles (usNPs) and nanoclusters (NCs), while retaining essential properties of the larger (classical) NPs, have features common to bioactive proteins. This combination expands the potential use of usNPs and NCs to areas of diagnosis and therapy traditionally reserved for small-molecule medicine. Their distinctive physicochemical properties can lead to unique in vivo behaviors, including improved renal clearance and tumor distribution. Both the beneficial and potentially deleterious outcomes (cytotoxicity, inflammation) can, in principle, be controlled through a judicious choice of the nanocore shape and size, as well as the chemical ligands attached to the surface. At present, the ability to control the behavior of usNPs is limited, partly because advances are still needed in nanoengineering and chemical synthesis to manufacture and characterize ultrasmall nanostructures and partly because our understanding of their interactions in biological environments is incomplete. This review addresses the second limitation. We review experimental and computational methods currently available to understand molecular mechanisms, with particular attention to usNP-protein complexation, and highlight areas where further progress is needed. We discuss approaches that we find most promising to provide relevant molecular-level insight for designing usNPs with specific behaviors and pave the way to translational applications.
Collapse
Affiliation(s)
- Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo São Paulo SP 04044 Brazil
| | - Peter Schuck
- National Institute of Biomedical Imaging and Bioengineering, NIH Bethesda MD 20892 USA
| | - Sergio A Hassan
- BCBB, National Institute of Allergy and Infectious Diseases, NIH Bethesda MD 20892 USA
| |
Collapse
|
22
|
Zhang P, Draz MS, Xiong A, Yan W, Han H, Chen W. Immunoengineered magnetic-quantum dot nanobead system for the isolation and detection of circulating tumor cells. J Nanobiotechnology 2021; 19:116. [PMID: 33892737 PMCID: PMC8063296 DOI: 10.1186/s12951-021-00860-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Highly efficient capture and detection of circulating tumor cells (CTCs) remain elusive mainly because of their extremely low concentration in patients’ peripheral blood. Methods We present an approach for the simultaneous capturing, isolation, and detection of CTCs using an immuno-fluorescent magnetic nanobead system (iFMNS) coated with a monoclonal anti-EpCAM antibody. Results The developed antibody nanobead system allows magnetic isolation and fluorescent-based quantification of CTCs. The expression of EpCAM on the surface of captured CTCs could be directly visualized without additional immune-fluorescent labeling. Our approach is shown to result in a 70–95% capture efficiency of CTCs, and 95% of the captured cells remain viable. Using our approach, the isolated cells could be directly used for culture, reverse transcription-polymerase chain reaction (RT-PCR), and immunocytochemistry (ICC) identification. We applied iFMNS for testing CTCs in peripheral blood samples from a lung cancer patient. Conclusions It is suggested that our iFMNS approach would be a promising tool for CTCs enrichment and detection in one step. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00860-1.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.,Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Anwen Xiong
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, China
| | - Wannian Yan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Huanxing Han
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China. .,Ailex Technology Group Co., Ltd., Shanghai, 201108, China.
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China. .,Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
23
|
Zhuang QQ, Chen RT, Zheng YJ, Huang KY, Peng HP, Lin Z, Xia XH, Chen W, Deng HH. Detection of tetanus toxoid with fluorescent tetanus human IgG-AuNC-based immunochromatography test strip. Biosens Bioelectron 2021; 177:112977. [PMID: 33434779 DOI: 10.1016/j.bios.2021.112977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/29/2022]
Abstract
Assays for detecting tetanus toxoid are of great significance to be applied in the research of the safety testing of tetanus vaccine. Currently, guinea pigs or mice are usually used to evaluate the toxicity in these assays. Herein, a facile and quick biomineralization process was carried out to generate tetanus human immunoglobulin G (Tet-IgG)-functionalized Au nanoclusters (Tet-IgG-AuNCs). The obtained Tet-IgG-AuNCs exhibited strong red emission with a photoluminescence quantum yield of 13%. Based on surface plasmon resonance measurements, the apparent dissociation constant of the Tet-IgG-AuNC-tetanus toxoid complexes was measured to be 2.27 × 10-8 M. A facile detection approach was developed using a fluorescent Tet-IgG-AuNC-based immunochromatography test strip. By utilizing the high-brightness fluorescent Tet-IgG-AuNCs, this immunosensor showed favorable sensitivity with a detection limit at the level of 0.03 μg/mL. Further results demonstrated that this assay can reliably detect tetanus toxoid and therefore might provide a novel method to replace animal tests for the quantification of tetanus toxicity. Moreover, the antibody-AuNC-based immunochromatography test strip platform serves as a promising candidate to develop new approaches for detecting targeted antigens and biological events of interest.
Collapse
Affiliation(s)
- Quan-Quan Zhuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China; Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Rui-Ting Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Yi-Jing Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Zhen Lin
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
24
|
Liu Z, Wang X, Ren X, Li W, Sun J, Wang X, Huang Y, Guo Y, Zeng H. Novel fluorescence immunoassay for the detection of zearalenone using HRP-mediated fluorescence quenching of gold-silver bimetallic nanoclusters. Food Chem 2021; 355:129633. [PMID: 33819808 DOI: 10.1016/j.foodchem.2021.129633] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 12/28/2022]
Abstract
In the presented study, a horseradish peroxidase (HRP)-mediated ratiometric fluorescence enzyme-linked immunosorbent assay (ELISA) for zearalenone (ZEN) was reported based on fluorescence quenching of gold-silver bimetallic nanoclusters (Au-Ag NCs). HRP-antibody was used as a bridge in this immunoassay, linking the ratiometric fluorescence signal to the ZEN concentration. HRP catalyzed the oxidization of o-phenylenediamine in the presence of H2O2, leading to the formation of 2,3-diaminophenazine, which not only delivered a new peak at 580 nm but also quenched Au-Ag NCs fluorescence at 690 nm. Under optimal conditions, the detection limit for the proposed ELISA was 0.017 ng/mL, which was approximately 6.6-fold lower than conventional ELISA. Moreover, analytical performances were evaluated fully including specificity, accuracy, precision, and practicability, and showed that this method provides a potential platform for sensitive and reliable detection of ZEN.
Collapse
Affiliation(s)
- Zhenjiang Liu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyan Wang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuexiang Ren
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Weibin Li
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, China.
| | - Xinwei Wang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqian Huang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanguo Guo
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huawei Zeng
- College of Life Sciences, Huaibei Normal University, Huaibei 235099, China.
| |
Collapse
|
25
|
Kailasa SK, Kateshiya MR, Malek NI. Introduction of cellulose-cysteine Schiff base as a new ligand for the fabrication of blue fluorescent gold nanoclusters for the detection of indapamide drug. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Zhuang QQ, He SB, Huang KY, Peng HP, Chen CM, Deng HH, Xia XH, Chen W, Hong GL. Decisive role of pH in synthesis of high purity fluorescent BSA-Au 20 nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118520. [PMID: 32480270 DOI: 10.1016/j.saa.2020.118520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Various types of bovine serum albumin (BSA)-protected fluorescent gold nanoclusters (BSA-AuNCs) have been fabricated and applied in various fields. However, the conventional synthesis methods for BSA-AuNCs usually yield a low photoluminescence quantum yield (PLQY) in solution. In this study, we systematically examined the influences of incubation time, temperature, and pH on the formation process of BSA-AuNCs and then developed a novel strategy to synthesize BSA-AuNCs with PLQY (26%), far exceeding that of existing counterparts. Of the three important factors, pH, temperature, and time, pH plays a key role in the formation of BSA-AuNCs with different compositions and fluorescence properties. The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) results showed that BSA-Au20NCs with high purity can be produced at a pH value of 10 and the correct combination of incubation temperature and reaction time. The advantages of the obtained BSA-Au20NCs, including small size, high PLQY, long lifetime, high purity, as well as facile modification, make them ideal candidates for luminescent probes in imaging and sensing applications.
Collapse
Affiliation(s)
- Quan-Quan Zhuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Shao-Bin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Chang-Mai Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Guo-Lin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| |
Collapse
|
27
|
Hu J, Gao M, Wang Z, Chen Y, Song Z, Xu H. Direct imaging of antigen-antibody binding by atomic force microscopy. APPLIED NANOSCIENCE 2020; 11:293-300. [PMID: 32989412 PMCID: PMC7511526 DOI: 10.1007/s13204-020-01558-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 11/06/2022]
Abstract
Direct observation of antigen–antibody binding at the nanoscale has always been a considerable challenging problem, and researchers have made tremendous efforts on it. In this study, the morphology of biotinylated antibody-specific Immunoglobulin E (IgE) immune complexes has been successfully imaged by atomic force microscopy (AFM) in the tapping-mode. The AFM images indicated that the individual immune complex was composed of an IgE and a biotinylated antibody. Excitingly, it is the first time that we have actually seen the IgE binding to biotinylated antibody. Alternatively, information on the length of IgE, biotinylated antibodies and biotinylated antibody-specific IgE immune complexes were also obtained, respectively. These results indicate the versatility of AFM technology in the identification of antigen–antibody binding. This work not only lays the basis for the direct imaging of the biotinylated antibody-IgE by AFM, but also offers valuable information for studying the targeted therapy and vaccine development in the future.
Collapse
Affiliation(s)
- Jing Hu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022 China.,International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022 China
| | - Mingyan Gao
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022 China.,International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022 China
| | - Zuobin Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022 China.,International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022 China.,JR3CN and IRAC, University of Bedfordshire, Luton, LU1 3JU UK
| | - Yujuan Chen
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022 China.,International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022 China.,School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022 China
| | - Zhengxun Song
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022 China.,International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022 China
| | - Hongmei Xu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022 China.,International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022 China
| |
Collapse
|
28
|
El-Sayed N, Schneider M. Advances in biomedical and pharmaceutical applications of protein-stabilized gold nanoclusters. J Mater Chem B 2020; 8:8952-8971. [PMID: 32901648 DOI: 10.1039/d0tb01610a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The interest in using gold nanoclusters (AuNCs) as imaging probes is growing, covering wide ranges of applications. The stabilization of AuNCs with protein ligands enhances their biomedical and pharmaceutical applications. This is due to the biocompatibility, water solubility and bioactivity of proteins. Different factors can control the optical properties of AuNCs such as protein size, amino acids content and conformational structure. Controlling the synthesis conditions can result in tuning the AuNCs excitation, emission, fluorescence intensity and physicochemical properties to fulfill different applications. NIR-emitting protein-stabilized AuNCs are promising as imaging agents for targeting and visualization of cancer in vitro and in vivo. They are promising to be included as an important part of multifunctional theranostic nanosystems, due to their potential dual functions as imaging and photosensitizing agent for photodynamic therapy. Additionally, the protein around AuNCs represents a rich environment of active functional groups that are susceptible for conjugation with various biomolecules. Protein-AuNCs can act as fluorescent probes for rapid and selective analysis of different analytes in solution, cells or biological fluids. In conclusion, the variability of protein-AuNC applications can advance research in different biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Nesma El-Sayed
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, D-66123 Saarbrücken, Germany. and Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, D-66123 Saarbrücken, Germany.
| |
Collapse
|
29
|
Yu Z, Cai G, Liu X, Tang D. Platinum Nanozyme-Triggered Pressure-Based Immunoassay Using a Three-Dimensional Polypyrrole Foam-Based Flexible Pressure Sensor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40133-40140. [PMID: 32815707 DOI: 10.1021/acsami.0c12074] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work describes a novel and portable pressure-based point-of-care (POC) testing strategy for the sensitive and rapid detection of carcinoembryonic antigen (CEA) via a flexible pressure sensor constructed by three-dimensional (3D) polypyrrole (PPy) foam. Initially, platinum nanoparticles (PtNPs) were conjugated to the detection antibodies, which were used to form sandwich-type immunocomplexes with targets and capture antibodies in the reaction cell. Then, the carried PtNPs catalyzed the dissociation of hydrogen peroxide (H2O2) for the generation of oxygen (O2) in a sealed device, translating the biomolecule recognition event into gas pressure. With the increase of pressure, a flexible pressure sensor with 3D polypyrrole foam as the sensing layer was used to sensitively monitor the pressure variations in this system. Thus, the concentration of the target could be quantitatively determined by the pressure response. Under optimal conditions, the pressure-based immunosensor showed good sensing performance for CEA in the dynamic working range from 0.2 to 60 ng/mL with a detection limit of 0.13 ng/mL. The reproducibility, specificity, and accuracy compared with commercial enzyme-linked immunosorbent assay (ELISA) kit were also acceptable. Therefore, this work provides a promising approach for developing portable and sensitive POC testing in the future.
Collapse
Affiliation(s)
- Zhenzhong Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Guoneng Cai
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
30
|
Guo Y, Amunyela HTNN, Cheng Y, Xie Y, Yu H, Yao W, Li HW, Qian H. Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications. Food Chem 2020; 335:127657. [PMID: 32738539 DOI: 10.1016/j.foodchem.2020.127657] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
For the past decades, the synthesis of metal nanoclusters has been a great interest for research, for their unique physicochemical properties and great contributions to the catalytic, electrical and biomedical applications. Protein-templated gold nanoclusters (AuNCs) is a kind of fluorescent nanomaterials with good solubility, excellent stability, biocompatibility, decent quantum yields and active groups (-COOH, -NH2) for facilitating modifications. Natural proteins are easily available, commercially affordable, diverse and multitudinous in animals, plants and foods, which provide a template pool for the exploration of AuNCs. This is one of the few reviews of specifically focusing on the natural protein-templated fluorescent AuNCs. The syntheses, properties and applications of different AuNCs were enumerated. Prospects were given on utilizing structure-modified proteins, bioactive enzymes, antibodies which should endow the AuNCs more favourable fluorescence performances and functional characteristics. The applications of AuNCs in analytical, biomedical and food sciences would be further heightened.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Helena T N N Amunyela
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
31
|
Li Y, Cao Y, Wei L, Wang J, Zhang M, Yang X, Wang W, Yang G. The assembly of protein-templated gold nanoclusters for enhanced fluorescence emission and multifunctional applications. Acta Biomater 2020; 101:436-443. [PMID: 31672583 DOI: 10.1016/j.actbio.2019.10.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
Protein-templated gold nanoclusters have attracted attention in fluorescence imaging due to their simple synthesis and good biocompatibility. However, limitations still exist such as poor colloid stability and undesirable fluorescence intensity. Here we describe the self-assembly of keratin-templated gold nanoclusters via a simple and mild preparation process, including keratin-templated synthesis of gold nanoclusters (AuNCs@Keratin), silver ions modification of AuNCs@Keratin (AuNCs-Ag@Keratin), and gadolinium ions-induced aggregation of AuNCs-Ag@Keratin (AuNCs-Ag@Keratin-Gd). It was demonstrated that the AuNCs-Ag@Keratin-Gd obtained an enhanced fluorescence intensity (6.5 times that of AuNCs@Keratin), high colloid stability for more than 4 months, and good biocompatibility. Moreover, the AuNCs-Ag@Keratin-Gd holds promise in multifunctional applications such as near-infrared (NIR) fluorescence imaging, magnetic resonance (MR) imaging, and redox-responsive drug delivery, extending the applicability of fluorescent gold nanoclusters, especially in biomedical fields. STATEMENT OF SIGNIFICANCE: Assembly-induced fluorescence enhancement has been rarely reported on as it relates to the protein-templated gold nanoclusters (AuNCs). In this work, self-assembly of protein-templated AuNCs was developed for enhanced fluorescence intensity and multifunctional applications, including bioimaging and responsive drug delivery. A cysteine-rich protein, keratin, was utilized as the template to synthesize AuNCs, which underwent silver ion modification and gadolinium ion-induced aggregation. The silver modification of the keratin-templated AuNCs facilitated the formation of a dense aggregate after gadolinium ion-induced assembly, thus generating an enhanced fluorescence intensity. Such a mechanism was confirmed by fluorescence correlation spectroscopy analysis. We believe that this work will extend the applicability of the fluorescent gold nanoclusters, especially in biomedical fields, and provided an effective approach for the mechanism analysis of the assembly-induced fluorescence enhancement via fluorescence correlation spectroscopy.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Yu Cao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Lai Wei
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinjie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Xuexia Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Wenshuo Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Guang Yang
- Key Laboratory of Science & Technology of Eco-Textile, Donghua University, Ministry of Education, Shanghai 201620, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China.
| |
Collapse
|
32
|
Kim MW, Park HJ, Park CY, Kim JH, Cho CH, Phan LMT, Park JP, Kailasa SK, Lee CH, Park TJ. Fabrication of a paper strip for facile and rapid detection of bovine viral diarrhea virus via signal enhancement by copper polyhedral nanoshells. RSC Adv 2020; 10:29759-29764. [PMID: 35518256 PMCID: PMC9056175 DOI: 10.1039/d0ra03677c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/03/2020] [Indexed: 11/27/2022] Open
Abstract
The detection of bovine viral diarrhea virus (BVDV), which is a pathogen inducing fatal gastrointestinal disease in cattle, is becoming a momentous issue in the livestock farm. In that, BVDV is related to inapparent infection and various diseases with high transmissibility; it has also led to considerable economic losses. In this study, a simple dot-blotting method was devised to construct a rapid screening system for BVDV. Based on the BVDV-specific bioreceptors, it was anchored on the gold nanoparticles (AuNPs) to generate the seeding sites for signaling; then the signals were amplified by adopting the overgrowth of copper nano-polyhedral shells on AuNPs. The developed detection system shows a low detection limit of 4.4 copies per mL, and even this could be distinguished with naked eyes. These results indicate that the designed nanobiosensor possesses not only high sensitivity and selectivity but also potential usage on a point-of-care testing platform for BVDV. A rapid and simple affinity dot-blotting scheme via signal enhancement by copper nano-polyhedral shells on the surface of gold nanoparticles.![]()
Collapse
Affiliation(s)
- Min Woo Kim
- Department of Chemistry
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Hong-Je Park
- R&D Center
- Medexx Co., Ltd
- Seongnam-si
- Republic of Korea
- Department of Food Science and Biotechnology of Animal Resources
| | - Chan Yeong Park
- Department of Chemistry
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Ji Hong Kim
- Department of Food Science and Biotechnology
- Chung-Ang University
- Ansung 17546
- Republic of Korea
| | - Chae Hwan Cho
- Department of Food Science and Biotechnology
- Chung-Ang University
- Ansung 17546
- Republic of Korea
| | - Le Minh Tu Phan
- Department of Chemistry
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Biotechnology
- Chung-Ang University
- Ansung 17546
- Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry
- Sardar Vallabhbhai National Institute of Technology
- Surat-395007
- India
| | - Chi-Ho Lee
- Department of Food Science and Biotechnology of Animal Resources
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Tae Jung Park
- Department of Chemistry
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| |
Collapse
|