1
|
Huang G, Guo Y, Lee B, Chen H, Mao A. Research Advances and Future Perspectives of Superhydrophobic Coatings in Sports Equipment Applications. Molecules 2025; 30:644. [PMID: 39942748 PMCID: PMC11820819 DOI: 10.3390/molecules30030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
In recent years, superhydrophobic coatings have attracted much attention due to their excellent water repellency and self-cleaning properties. They have broad application prospects in improving the performance and durability of sports equipment (such as clothing, footwear, balls, and protective equipment). Recent studies have shown that these coatings can improve water repellency, reduce friction, enhance traction, and extend the service life of sports equipment by preventing water absorption and reducing dirt accumulation. Despite their potential, the practical application of superhydrophobic coatings still faces many challenges, including difficulties in coating preparation, limited long-term durability, and high production costs that prevent large-scale production. This paper begins with an analysis of the current status of superhydrophobic coatings in sports equipment, from theory to application, from the basic Young's model to the novel Contact Line Pinning Model, analyzing the advantages and disadvantages of several methods in some aspects, focusing on the most commonly used preparation methods, including the template method, the gel-gel method, the deposition method, etc., and objectively analyzing the preparation methods to match the appropriate sports equipment applications. Despite these advances, there are still significant gaps in understanding the long-term performance of these coatings under real-world conditions. The paper concludes by identifying future research directions, with a focus on improving wear resistance, improving cost-effectiveness, and assessing the environmental impact of these materials. These insights will contribute to the continued development and application of superhydrophobic coatings in the field of sports equipment.
Collapse
Affiliation(s)
- Guoyuan Huang
- Ya’an Key Laboratory of Sports Human Science and National Physical Fitness Promotion, College of Physical Education, Sichuan Agricultural University, Ya’an 625014, China;
| | - Yingqing Guo
- China Institute of Sport Science, Beijing 100061, China (A.M.)
| | - Byungchan Lee
- Department of Sport Science, Chungwoon University, Chungcheong 32244, Republic of Korea
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Aqiang Mao
- China Institute of Sport Science, Beijing 100061, China (A.M.)
| |
Collapse
|
2
|
Wang S, Xiu H, Yin D, Li J, Liu G, Qin Y, Hua F, Meng Q, Wu M, Shen M. Constructing Grape Bunch Structure Composite Film via Hollow AgNPs Coated Cellulose Nanofibers (CNF@PDA@H-AgNPs)/CNF for Efficient Electromagnetic Shielding, Thermal Conductivity, and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2304-2316. [PMID: 39723900 DOI: 10.1021/acsami.4c18237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Achieving high shielding effectiveness in electromagnetic shielding materials relies heavily on high conductivity, yet simultaneously enhancing the absorption loss remains a persistent challenge. Consequently, the study successfully creates efficient electromagnetic shielding composite films with a unique grape-like bunch structure of hollow nanosilver (HCAF) through layer-by-layer assembly. The utilization of poly(dopamine) (PDA) to anchor nanosilver granules (AgNPs) onto cellulose nanofibers (CNF) results in the formation of CNF@PDA@AgNPs. Subsequently, a surface protection etching method is employed to etch the AgNPs, resulting in hollow nanosilver (H-AgNPs) and the generation of CNF@PDA@H-AgNPs. A composite film featuring a grape bunch structure is fabricated by interweaving high aspect ratio CNF with CNF@PDA@H-AgNPs. A substantial quantity of H-AgNPs creates an abundant interface, while the grape bunch structure establishes an efficient conductive network. That enables the composite film to exhibit excellent impedance matching, excellent conductivity loss, abundant polarization loss, and multiple reflection loss. Therefore, the conductivity of the composite film with a thickness of 148.8 μm reaches 212660 S/m, with SET, SEA, and SER 89.56, 79.03, and 10.53 dB in the X band, significantly better than the 76.9, 55.55, and 21.41 dB of the solid AgNPs composite film. The composite film also exhibits remarkable thermal conductivity (The coefficients of in-plane and out-plane thermal conductivity are 4.61 and 0.17 W/(m·K), respectively), mechanical properties, and strain sensing capabilities, making it significant potential for applications in flexible electronics and other related fields.
Collapse
Affiliation(s)
- Simin Wang
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xìan, Shaanxi 710021, China
| | - Huijuan Xiu
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xìan, Shaanxi 710021, China
| | - Dingwen Yin
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xìan, Shaanxi 710021, China
| | - Jinbao Li
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xìan, Shaanxi 710021, China
| | - Gengmei Liu
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xìan, Shaanxi 710021, China
| | - Yuxin Qin
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xìan, Shaanxi 710021, China
| | - Feiguo Hua
- Zhejiang Jinjiahao Green Nanomaterial Co., Ltd., Quzhou City, Zhejiang 324404, China
| | - Qingjun Meng
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xìan, Shaanxi 710021, China
| | - Minzhe Wu
- Jianfeng Pharmaceutical Macutical Holdings, Jinhua, Zhejiang 321000, China
| | - Mengxia Shen
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xìan, Shaanxi 710021, China
| |
Collapse
|
3
|
Shigrekar M, Amdoskar V. A review on recent progress and techniques used for fabricating superhydrophobic coatings derived from biobased materials. RSC Adv 2024; 14:32668-32699. [PMID: 39421684 PMCID: PMC11483902 DOI: 10.1039/d4ra04767b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
Superhydrophobic coatings with remarkable water repellence have emerged as an increasingly prominent field of research with the growth of the material engineering and coating industries. Superhydrophobic coatings address the requirements of several application areas with characteristics including corrosion resistance, drag reduction, anti-icing, anti-fogging, and self-cleaning properties. Furthermore, the range of applications for superhydrophobic coatings has been substantially broadened by the inclusion of key performance features such as flame retardancy, thermal insulation, resistance to water penetration, UV resistance, transparency, anti-reflection, and many more. Numerous research endeavours have been focused on biomimetic superhydrophobic materials because of their distinct surface wettability. To develop superhydrophobic coatings with a long lifespan, scientists have refined the processes of material preparation and selection. To accomplish water repellency, superhydrophobic coatings are usually fabricated using harmful fluorinated chemicals or synthetic polymers. Utilising materials derived from biomass offers a sustainable alternative that uses renewable resources in order to eliminate the consumption of these hazardous substances. This paper provides an insight of several researches reported on the construction of superhydrophobic coatings using biomass materials such as lignin, cellulose, chitosan and starch along with the techniques used for the constructing superhydrophobic coatings. This study is a useful resource that offers guidance on the selection of various biobased polymers for superhydrophobic coatings tailored to specific applications. The further part of the paper put a light on different application of superhydrophobic coatings employed in various disciplines and the future perspectives of the superhydrophobic coatings.
Collapse
Affiliation(s)
- Mugdha Shigrekar
- SK Somaiya College, Somaiya Vidyavihar University Vidyavihar Mumbai Maharashtra 400077 India
| | - Vaijayanti Amdoskar
- SK Somaiya College, Somaiya Vidyavihar University Vidyavihar Mumbai Maharashtra 400077 India
| |
Collapse
|
4
|
Lu Z, Wang J, He L, Song J, Yang Z, Hammad FA. High-Performance Multidirectional Flexible Strain Sensor for Human Motion and Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39074313 DOI: 10.1021/acsami.4c04583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Multidirectional strain sensors are pivotal for wearable electronic devices and human-computer interaction. In this investigation, we translocate carbon/graphene (CB/Gr) conductive nanocomposites onto an Ecoflex flexible substrate via a facile technique encompassing reverse molding and spraying, culminating in the fabrication of a 45° strain rosette-shaped multidirectional flexible strain sensor. The sensor distinguishes itself with extraordinary performance characteristics, including high sensitivity (boasting a gauge factor of 35), an extensive strain range from 0 to 100%, exceptional linearity, a rapid response time of merely 200 ms, remarkable stability, and outstanding durability, effortlessly withstanding over 5000 stretch-release cycles. The sensor exhibits its exceptional capability to discern intricate movements, particularly in detecting human hand and neck motions. The sensor's remarkable comprehensive performance and strain direction recognition ability underscore its significant potential for diverse applications, notably in human-computer interaction, human motion monitoring, and health monitoring.
Collapse
Affiliation(s)
- Zhilai Lu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jiang Wang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Lei He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jianan Song
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zhen Yang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300054, China
| | - Farid A Hammad
- Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta 31521, Egypt
| |
Collapse
|
5
|
Qu M, Zhu M, Lv Y, Liu Q, Li J, Gao Y, Sun CL, He J. Hydrophobic TPU/CNTs-ILs Ionogel as a Reliable Multimode and Flexible Wearable Sensor for Motion Monitoring, Information Transfer, and Underwater Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35626-35638. [PMID: 38943621 DOI: 10.1021/acsami.4c08196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Ionogel-based sensors have gained widespread attention in recent years due to their excellent flexibility, biocompatibility, and multifunctionality. However, the adaptation of ionogel-based sensors in extreme environments (such as humid, acidic, alkaline, and salt environments) has rarely been studied. Here, thermoplastic polyurethane/carbon nanotubes-ionic liquids (TPU/CNTs-ILs) ionogels with a complementary sandpaper morphology on the surface were prepared by a solution-casting method with a simple sandpaper as the template, and the hydrophobic flexible TPU/CNTs-ILs ionogel-based sensor was obtained by modification using nanoparticles modified with cetyltrimethoxysilane. The hydrophobicity improves the environmental resistance of the sensor. The ionogel-based sensor exhibits multimode sensing performance and can accurately detect response signals from strain (0-150%), pressure (0.1-1 kPa), and temperature (30-100 °C) stimuli. Most importantly, the hydrophobic TPU/CNTs-ILs ionogel-based sensors can be used not only as wearable strain sensors to monitor human motion signals but also for information transfer, writing recognition systems, and underwater activity monitoring. Thus, the hydrophobic TPU/CNTs-ILs ionogel-based sensor offers a new strategy for wearable electronics, especially for applications in extreme environments.
Collapse
Affiliation(s)
- Mengnan Qu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Menglin Zhu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yanqing Lv
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Qinghua Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
- College of Energy, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiehui Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
- College of Energy, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yuhang Gao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Cai-Li Sun
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jinmei He
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
6
|
Nguyen QD, Choi CG. Recent advances in multifunctional electromagnetic interference shielding materials. Heliyon 2024; 10:e31118. [PMID: 38770332 PMCID: PMC11103537 DOI: 10.1016/j.heliyon.2024.e31118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Electromagnetic interference (EMI) shielding material is the most effective solution to protect electronic devices and human health from the harmful effects of electromagnetic radiation. The study of EMI shielding materials is intensifying in the constantly developing picture of the fourth industrial revolution. Many EMI shielding materials based on metal, carbon, emerging MXene materials, and their composites have been discovered to utilize the EMI shielding performance. However, a huge demand for compact and multi-functional devices requires the integration of new functions into EMI shielding materials. Multifunctional EMI shielding materials perform multiple functions beyond their main function of EMI shielding in a system due to their specific properties. The additional functions can either naturally exist or be specially engineered. This review summarizes the recent progress of cutting-edge multifunctional EMI shielding materials. The possibility of combining multifunction EMI shielding materials, such as strain sensing, humidity sensing, temperature sensing, thermal management, etc., and the difficulties in balancing EMI shielding performance with other functions are also discussed. Lastly, we point out challenges and propose future directions to develop research on multifunctional EMI shielding materials.
Collapse
Affiliation(s)
- Quy-Dat Nguyen
- Graphene Research Team, Materials and Components Research Division, Superintelligence Creative Research Laboratory, Electronics and Telecommunication Research Institute (ETRI), Daejeon, 34129, Republic of Korea
- Semiconductor and Advanced Device Engineering, ETRI School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Choon-Gi Choi
- Graphene Research Team, Materials and Components Research Division, Superintelligence Creative Research Laboratory, Electronics and Telecommunication Research Institute (ETRI), Daejeon, 34129, Republic of Korea
- Semiconductor and Advanced Device Engineering, ETRI School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
7
|
Ye C, Zhao L, Yang S, Li X. Recent Research on Preparation and Application of Smart Joule Heating Fabrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309027. [PMID: 38072784 DOI: 10.1002/smll.202309027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Multifunctional wearable heaters have attracted much attention for their effective applications in personal thermal management and medical therapy. Compared to passive heating, Joule heating offers significant advantages in terms of reusability, reliable temperature control, and versatile coupling. Joule-heated fabrics make wearable electronics smarter. This review critically discusses recent advances in Joule-heated smart fabrics, focusing on various fabrication strategies based on material-structure synergy. Specifically, various applicable conductive materials with Joule heating effect are first summarized. Subsequently, different preparation methods for Joule heating fabrics are compared, and then their various applications in smart clothing, healthcare, and visual indication are discussed. Finally, the challenges faced in developing these smart Joule heating fabrics and their possible solutions are discussed.
Collapse
Affiliation(s)
- Chunfa Ye
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Longqi Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Sihui Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
8
|
Zhao Z, Song X, Zhang Y, Zeng B, Wu H, Guo S. Biomineralization-Inspired Copper Sulfide Decorated Aramid Textiles via In Situ Anchoring toward Versatile Wearable Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307873. [PMID: 37853209 DOI: 10.1002/smll.202307873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Designing smart textiles for personal thermal management (PTM) is an effective strategy for thermoregulation and energy saving. However, the manufacture of versatile high-performance thermal management textiles for complex real-world environments remains a challenge due to the limitations of functional integration, material properties, and preparation procedures. In this study, an aramid fabric based on in situ anchored copper sulfide nanostructure is developed. The textile with excellent solar and Joule heating properties can effectively keep the body warm even at low energy inputs. Meanwhile, the reduced infrared emissivity of the textile decreases the thermal radiation losses and helps to maintain a constant body temperature. Impressively, the textile integrates superb electromagnetic shielding, near-complete UV protection properties, and ideal resistance to fire and bacteria. This work provides a simple strategy for fabricating multi-functional integrated wearable devices with flexibility and breathability, which is highly promising in versatile PTM applications.
Collapse
Affiliation(s)
- Zhiheng Zhao
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xudong Song
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yang Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Bingbing Zeng
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
9
|
Navitski I, Ramanaviciute A, Ramanavicius S, Pogorielov M, Ramanavicius A. MXene-Based Chemo-Sensors and Other Sensing Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:447. [PMID: 38470777 DOI: 10.3390/nano14050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
MXenes have received worldwide attention across various scientific and technological fields since the first report of the synthesis of Ti3C2 nanostructures in 2011. The unique characteristics of MXenes, such as superior mechanical strength and flexibility, liquid-phase processability, tunable surface functionality, high electrical conductivity, and the ability to customize their properties, have led to the widespread development and exploration of their applications in energy storage, electronics, biomedicine, catalysis, and environmental technologies. The significant growth in publications related to MXenes over the past decade highlights the extensive research interest in this material. One area that has a great potential for improvement through the integration of MXenes is sensor design. Strain sensors, temperature sensors, pressure sensors, biosensors (both optical and electrochemical), gas sensors, and environmental pollution sensors targeted at volatile organic compounds (VOCs) could all gain numerous improvements from the inclusion of MXenes. This report delves into the current research landscape, exploring the advancements in MXene-based chemo-sensor technologies and examining potential future applications across diverse sensor types.
Collapse
Affiliation(s)
- Ilya Navitski
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Agne Ramanaviciute
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, 2, Kharkivska Str., 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
10
|
Zhou X, Zang H, Guan Y, Li S, Liu M. Superhydrophobic Flexible Strain Sensors Constructed Using Nanomaterials: Their Fabrications and Sustainable Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2639. [PMID: 37836280 PMCID: PMC10574333 DOI: 10.3390/nano13192639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Superhydrophobic flexible strain sensors, which combine superhydrophobic coatings with highly sensitive flexible sensors, significantly enhance sensor performance and expand applications in human motion monitoring. Superhydrophobic coatings provide water repellency, surface self-cleaning, anti-corrosion, and anti-fouling properties for the sensors. Additionally, they enhance equipment durability. At present, many studies on superhydrophobic flexible sensors are still in the early research stage; the wear resistance and stability of sensors are far from reaching the level of industrial application. This paper discusses fundamental theories such as the wetting mechanism, tunneling effect, and percolation theory of superhydrophobic flexible sensors. Additionally, it reviews commonly used construction materials and principles of these sensors. This paper discusses the common preparation methods for superhydrophobic flexible sensors and summarizes the advantages and disadvantages of each method to identify the most suitable approach. Additionally, this paper summarizes the wide-ranging applications of the superhydrophobic flexible sensor in medical health, human motion monitoring, anti-electromagnetic interference, and de-icing/anti-icing, offering insights into these fields.
Collapse
Affiliation(s)
- Xiaodong Zhou
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China; (X.Z.); (H.Z.)
| | - Hongxin Zang
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China; (X.Z.); (H.Z.)
| | - Yong Guan
- Shandong Inov Polyurethane Co., Ltd., Zibo 255000, China
| | - Shuangjian Li
- National Engineering Laboratory of Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Mingming Liu
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China; (X.Z.); (H.Z.)
| |
Collapse
|
11
|
Yan J, Wu Y, Guo Z, Su Q, Xing W, Wen J, Tang L, Zha J, Gao J. Green fabrication of durable foam composites with asymmetric wettability by an emulsion spray-coating method for photothermally induced crude oil cleanup. J Colloid Interface Sci 2023; 648:798-808. [PMID: 37327623 DOI: 10.1016/j.jcis.2023.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Chemical spills, especially oil spills, are becoming an increasingly serious environmental issue. It remains a challenge to develop green techniques to prepare mechanically robust oil-water separation materials, especially those capable of separating high-viscosity crude oils. Herein, we propose an environmentally friendly emulsion spray-coating method to fabricate durable foam composites with asymmetric wettability for oil-water separation. After the emulsion, composed of acidified carbon nanotubes (ACNTs), polydimethylsiloxane (PDMS) and its curing agent, is sprayed onto melamine foam (MF), water in the emulsion is first evaporated, while PDMS and ACNTs are finally deposited on the foam skeleton. The foam composite exhibits gradient wettability and turns from superhydrophobicity of the top surface (the water contact angle reaches as high as 155.2°) to hydrophilicity of the interior region. The foam composite can be used for the separation of oils with different densities and has a 97% separation efficiency for chloroform. In particular, the photothermal conversion-induced temperature rise can reduce the oil viscosity and complete the high-efficiency cleanup of crude oil. This emulsion spray-coating technique and asymmetric wettability show promise for the green and low-cost fabrication of high-performance oil/water separation materials.
Collapse
Affiliation(s)
- Jun Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yongchuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Zheng Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qin Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Wenqian Xing
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jing Wen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Longcheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou 311121, China
| | - Junwei Zha
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
12
|
Liu C, Ma Y, Xie Y, Zou J, Wu H, Peng S, Qian W, He D, Zhang X, Li BW, Nan CW. Enhanced Electromagnetic Shielding and Thermal Management Properties in MXene/Aramid Nanofiber Films Fabricated by Intermittent Filtration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4516-4526. [PMID: 36637395 DOI: 10.1021/acsami.2c20101] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High-efficiency electromagnetic interference (EMI) shielding and heat dissipation synergy materials with flexible, robust, and environmental stability are urgently demanded in next-generation integration electronic devices. In this work, we report the lamellar MXene/Aramid nanofiber (ANF) composite films, which establish a nacre-like structure for EMI shielding and heat dissipation by using the intermittent filtration strategy. The MXene/ANF composite film filled with 50 wt % MXene demonstrates enhanced mechanical properties with a strength of 230.5 MPa, an elongation at break of 6.2%, and a toughness of 11.8 MJ·m3 (50 wt % MXene). These remarkable properties are attributed to the hydrogen bonding and highly oriented structure. Furthermore, due to the formation of the MXene conductive network, the MXene/ANF composite film shows an outstanding conductivity of 624.6 S/cm, an EMI shielding effectiveness (EMI SE) of 44.0 dB, and a superior specific SE value (SSE/t) of 18847.6 dB·cm2/g, which is better than the vacuum filtration film. Moreover, the MXene/ANF composite film also shows a great thermal conductivity of 0.43 W/m·K. The multifunctional MXene/ANF composite films with high-performance EMI shielding, heat dissipation, and joule heating show great potential in the field of aerospace, military, microelectronics, microcircuit, and smart wearable electronics.
Collapse
Affiliation(s)
- Chenxu Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Yanan Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Yimei Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Junjie Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Han Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Shaohui Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Wei Qian
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan430070, China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan430070, China
| | - Xin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Bao-Wen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
13
|
Zhang Y, Wu H, Guo S. Sandwich-Structured Surface Coating of a Silver-Decorated Electrospun Thermoplastic Polyurethane Fibrous Film for Excellent Electromagnetic Interference Shielding with Low Reflectivity and Favorable Durability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40351-40360. [PMID: 36017596 DOI: 10.1021/acsami.2c11971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nowadays, high efficiency and low reflection electromagnetic interference (EMI) shielding materials have a wide potential application of electronic fields. However, it is still challenging to achieve long-term durability under external mechanical deformations or other harsh conditions. Herein, sandwich-structured surface coatings with a mixture of polydimethylsiloxane (PDMS)/carboxylated multiwalled carbon nanotube and magnetic ferriferous oxide nanoparticle hybrid fillers (MWCNTs-COOH/Fe3O4, MFs) are introduced onto a silver-decorated electrospun thermoplastic polyurethane (TPU) fibrous film to achieve both outstanding low reflective EMI shielding and favorable durability. The surface coatings not only act as an effective absorbing layer but also provide a micro-nano hierarchical superhydrophobic surface. The resultant film shows a remarkable conductivity (361.0 S/cm), an excellent EMI shielding effectiveness (SE) approaching 85.4 dB, and a low reflection coefficient value of 0.61. Interestingly, the obtained film still maintains an excellent EMI SE even after mechanical deformations or being immersed in strong acidic solution, alkaline solution, and organic solvents for 6 h. This work opens a new avenue for the design of low reflective EMI shielding films under harsh environments.
Collapse
Affiliation(s)
- Yang Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Xu X, Qing Y, Liu N, Long C, Ma J, Cui M, Yao Y, Yao W, Liu C. Microskeleton Magnetic Nanofiller Composite with Highly Reliable Superhydrophobic Protection for Long-Lived Electromagnetic Interface Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37039-37050. [PMID: 35920846 DOI: 10.1021/acsami.2c09215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Superhydrophobic/electromagnetic interference (EMI) shielding materials have received a great deal of attention, attributing to their excellent water repellence characteristic. However, it is really challenging to simultaneously achieve materials with superhydrophobicity, high EMI shielding performance, and long-term stability of these materials that can operate around the clock in harsh service conditions. Herein, a novel strategy to create an integrated microskeleton magnetic nanofiller composite (IMMNC) with exceptional liquid repellency, enhanced EMI shielding effectiveness, and extreme environment reliability is reported. The superhydrophobicity of the IMMNC was maintained after extreme mechanical and chemical damage due to the synergistic enhancement between epoxy-silicone oligomers/polymerized rosin and microskeleton. Consecutively hierarchical micro/nanoarchitectures and conductive pathways endow the IMMNC with a high EMI shielding effectiveness up to 80.7 dB and a satisfactory antifouling capacity for solid and water-based contaminants. More interestingly, this composite still maintains a superior EMI shielding performance after being subjected to ultrasonic vibration, low (-20 °C) or high temperature (300 °C), and even strong acid (1 M), demonstrating its great potential and reliability as a high-performance EMI shielding material resistant to harsh operating conditions. This work provides an efficient and practical solution for developing next-generation EMI shielding materials with high reliability in an all-weather complex and changeable environment.
Collapse
Affiliation(s)
- Xinyu Xu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Yongquan Qing
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
- State Key Laboratory of Light Alloy Casting Technology for High-End Equipment, Shenyang 110022, China
| | - Niu Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Cai Long
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Junchi Ma
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Miao Cui
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Yuxuan Yao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Wenbo Yao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Changsheng Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| |
Collapse
|
15
|
Xu L, Wang W, Zhang L, Wang D, Zhang A. Ultrasensitive and Recyclable Multifunctional Superhydrophobic Sensor Membrane for Underwater Applications, Weather Monitoring, and Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21623-21635. [PMID: 35471018 DOI: 10.1021/acsami.2c01345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although flexible sensors have attracted considerable attention in emerging fields, including wearable electronics and soft robotics, their stability must be considered in practical applications, especially the effects of external factors on the sensing performance. Herein, a recyclable flexible sensor with superhydrophobicity and a highly sensitive strain response was developed by combining electrospinning and ultrasonication anchoring techniques. The constructed hierarchical network structure is composed of the fluorine-free superhydrophobic multiwalled carbon nanotubes and a porous elastomer membrane substrate reinforced by nanoparticles. The obtained sensor exhibited exceptional strain-sensing performance in terms of ultrahigh sensitivity (maximum gauge factor of 12 172.46), a fast response time of 80 ms, and excellent durability (10 000 cycles). Based on these outstanding merits, the strain sensor can detect various human motions without being interfered with by harsh environments. Moreover, superhydrophobic membranes can be combined with electronic devices for weather monitoring and underwater sensing. Noteworthily, damaged sensors can be quickly dissolved by a small amount of cyclohexane, enabling material recovery. The recyclable multifunctional membranes could reduce the potential pollution to the environment and show highly promising applications in complex environments.
Collapse
Affiliation(s)
- Liqiang Xu
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Weiwen Wang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Lun Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Dong Wang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Aimin Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
16
|
Fu C, Yi Y, Lin J, Kong F, Chen L, Ni Y, Huang L. Lignin reinforced hydrogels with fast self-recovery, multi-functionalities via calcium ion bridging for flexible smart sensing applications. Int J Biol Macromol 2022; 200:226-233. [PMID: 34999036 DOI: 10.1016/j.ijbiomac.2021.12.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
Hydrogels have found applications in many different fields. However, poor mechanical properties, such as low elasticity and lack of rapid recovery under large deformation, can severely limit their applications. In this study, we developed lignin reinforced hydrogels made of calcium ion containing ternary polymers (lignosulfonate (LS), alginate (Alg), and polyacrylic acid (PAA)). The resultant hydrogel has excellent elasticity, rapid self-recovery, and multi-functionalities. The covalent PAA network acts as the elastic scaffold of hydrogel, while calcium bridging networks of LS, Alg, and PAA, as well as the strong hydrogen bonding network in the system, function as sacrifice bonds to dissipate energy and transfer stress. The PAA/LS/Alg/Ca hydrogels exhibit rapid and durable elastic recovery ability under large deformation with the highest compressive stress of 835 kPa (95% strain), highest tensile fracture stress of 357 kPa, and highest tensile strain of 1144%. In addition, these tough hydrogels show UV resistance, self-healing, antifreeze, and excellent electro-conductivity. When assembled into a strain sensor, stable and reliable electrical responses with 375 ms response time are demonstrated. The PAA/LS/Alg/Ca hydrogel strain sensors can monitor human movements with responsive and accurate physiological signals. These results support the conclusion that the PAA/LS/Alg/Ca hydrogel strain sensors have great application potential in flexible wearable electronics and smart devices.
Collapse
Affiliation(s)
- Chenglong Fu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yanbin Yi
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Junkang Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yonghao Ni
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton NBE3B 5A3, Canada.
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
17
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
18
|
Li J, Xin M, Ma Z, Shi Y, Pan L. Nanomaterials and their applications on bio-inspired wearable electronics. NANOTECHNOLOGY 2021; 32:472002. [PMID: 33592596 DOI: 10.1088/1361-6528/abe6c7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Wearable electronics featuring conformal attachment, sensitive perception and intellectual signal processing have made significant progress in recent years. However, when compared with living organisms, artificial sensory devices showed undeniable bulky shape, poor adaptability, and large energy consumption. To make up for the deficiencies, biological examples provide inspirations of novel designs and practical applications. In the field of biomimetics, nanomaterials from nanoparticles to layered two-dimensional materials are actively involved due to their outstanding physicochemical properties and nanoscale configurability. This review focuses on nanomaterials related to wearable electronics through bioinspired approaches on three different levels, interfacial packaging, sensory structure, and signal processing, which comprehensively guided recent progress of wearable devices in leveraging both nanomaterial superiorities and biorealistic functionalities. In addition, opinions on potential development trend are proposed aiming at implementing bioinspired electronics in multifunctional portable sensors, health monitoring, and intelligent prosthetics.
Collapse
Affiliation(s)
- Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ming Xin
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
19
|
Song X, Huang X, Luo J, Long B, Zhang W, Wang L, Gao J, Xue H. Flexible, superhydrophobic and multifunctional carbon nanofiber hybrid membranes for high performance light driven actuators. NANOSCALE 2021; 13:12017-12027. [PMID: 34231636 DOI: 10.1039/d1nr02254g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, a series of super-hydrophobic materials have been prepared and efforts have been made to further expand their applications, especially in electronics and smart actuators. However, it remains challenging to develop light weight, flexible and super-hydrophobic materials integrating multifunctionalities such as superior photothermal conversion, corrosion resistance, and controllable actuation. Herein, a superhydrophobic and multi-responsive carbon nanofiber (CNF) hybrid membrane with an outstanding photo-thermal effect is fabricated by electrospinning the mixture of polyacrylonitrile and nickel acetylacetonate, followed by two step heat treatment and subsequent fluorination. The superhydrophobic CNF hybrid membrane with outstanding anti-corrosion and self-cleaning performance can float on the water surface spontaneously, thus effectively reducing the motion resistance. The light driven actuation with controllable movement can be achieved by adjusting the laser irradiated location, in which the localized absorption of light is transformed into thermal energy, and hence an imbalanced surface tension is created. The multifunctional hybrid membrane also opens up an arena of applications such as freestanding flexible electronics, drug delivery, and environmental protection.
Collapse
Affiliation(s)
- Xin Song
- Guangling College, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu H, Luo J, Huang X, Wang L, Guo Z, Liang J, Zhang S, Xue H, Gao J. Superhydrophobic, mechanically durable coatings for controllable light and magnetism driven actuators. J Colloid Interface Sci 2021; 603:282-290. [PMID: 34186405 DOI: 10.1016/j.jcis.2021.06.106] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Abstract
Although some groundbreaking work has proved the feasibility of non-contact Marangoni propulsion generated by combination of the superhydrophobicity and photothermal effect, there are still challenges including the strong interfacial adhesion, multifunctional structural design and superior durability. In this paper, a simple two-step spraying method is used to prepare superhydrophobic and multi-functional fluorinated acidified carbon nanotubes (F-ACNTs)/Fe3O4 nanoparticles/polydimethylsiloxane (PDMS) coatings. The introduction of Fe3O4 nanoparticles and F-ACNTs not merely improve the surface roughness but also endow the coating with the outstanding magnetic property and photothermal conversion performance. The PDMS can reduce the surface energy and also improve the interfacial adhesion between the nanofillers and the substrate (the filter paper). The superhydrophobicity can be maintained when the material experiences abrasion, near-infrared (NIR) light irradiation and acid treatment, exhibiting outstanding durability. The highly stable superhydrophobic coating introduces a thin layer of air to decrease the drag force between the filter paper and the water surface, and can be used for controlled self-propelled light-driven motion and magnetic-driven motion. The movement can be manipulated by adjusting the direction of the incident NIR light and magnetic field. In particular, the superhydrophobic and superoleophilic coating based actuators can be easily driven to the oil-contaminated area on the water surface by using a magnet for high efficiency oil removal. This work provides a simple and universal strategy for developing intelligent and multi-responsive actuators possessing promising applications in various fields such as environmental protection, micro-robots and biomedicine.
Collapse
Affiliation(s)
- Haipeng Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Junchen Luo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Xuewu Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Ling Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Zheng Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Jiayi Liang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Shu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China; Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
21
|
Goharshenas Moghadam S, Parsimehr H, Ehsani A. Multifunctional superhydrophobic surfaces. Adv Colloid Interface Sci 2021; 290:102397. [PMID: 33706199 DOI: 10.1016/j.cis.2021.102397] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
Surface wetting has a significant influence on the performance and applications of the materials. The superhydrophobic surfaces have water repellency due to low surface energy chemistry and micro/nanostructure roughness. The amazing applications of superhydrophobic surfaces (SHSs) lead to increase attention to superhydrophobicity in recent decades. The SHSs have been fabricated through chemical and physical methods. The further properties of SHSs as functions such as self-healing, anti-bacterial, anti-fouling, and stimuli-responsiveness are considered as the functions of the SHSs. The Multifunctional SHSs (MSHSs) that contained superhydrophobicity and at least two other properties as the next generation of the SHSs are swiftly developed in recent years. The multiple applications of the MSHSs are originated from specific morphology and functional groups of the MSHSs. The functions (properties) of the MSHSs are categorized into three groups including self-cleaning properties, restrictive properties, and smart properties. Designing and keeping surface structure plays a significant role in fabricating durable MSHSs. However, there is a big challenge to design and also scale up mechanochemical durable MSHSs. Based on state-of-the-art investigations, establishing a self-healing function can improve the durability of SHSs. The durable self-healing MSHSs can enhance the performance of the other functions and lifespan of the surface. In this review, all surface structures and superhydrophobic agents in MSHSs are investigated. The perspective of the MSHSs determined the next generation of the MSHSs have several significant parameters including durability, stability, more functions, more responsiveness, and environmentally friendly features for fabricating the large-scale MSHSs and enhancing their applications.
Collapse
|
22
|
Critical Aspects in Fabricating Multifunctional Super-Nonwettable Coatings Exhibiting Icephobic and Anti-Biofouling Properties. COATINGS 2021. [DOI: 10.3390/coatings11030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The water is a vital compound for all known forms of life, but it can also cause detrimental consequences to our daily routine if by natural means becomes pathogenic bacterial carrier or transforms into ice. Imaginative by necessity, the surrounding environment has stimulated the mankind to emulate natural-design solutions and invent the so-called super-nonwettable coatings. Undisputedly, these coatings have revolutionized the modern industry by providing “a vehicle” for potential eco-friendly water purification, passive icing protection, suppression of the solid surface-associated spreading of bacterial infections and enhanced cryopreservation of living matter. Regrettably, the wide domestic use of liquid impermeable coatings (surfaces) is yet limited, since the current market trends impose the possession of fabrication scalability and multifunctionality, which is not covered by most of the available non-wettable products. This viewpoint article intends to outline the most significant scientific achievements within the past five years related to the release of anti-wetting coatings with multiple applications. Design and performance efficiencies in light of the physical chemistry of the surface are demonstrated, emphasizing on the likelihood of integrating icephobicity and anti-biofouling capacity within a single interfacial nanostructure.
Collapse
|
23
|
Wu B, Cui X, Jiang H, Wu N, Peng C, Hu Z, Liang X, Yan Y, Huang J, Li D. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances. J Colloid Interface Sci 2021; 590:301-310. [PMID: 33548613 DOI: 10.1016/j.jcis.2021.01.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS Ice accretion is a challenging issue for various residential activities and industrial facilities. However, most of the current anti/de-icing coatings fail to maintain their properties when subject to frequent mechanical wear, and their limited functionality (either anti-icing or de-icing individually) cannot meet the requirement of all-weather utilization. EXPERIMENTS Herein, a multifunctional superhydrophobic coating is prepared by compositing ferroferric oxide nanoparticles (Fe3O4 NPs) with fluorinated epoxy resin via an inverse infiltration process. The surface composition, morphology and wettability are systematically characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), laser scanning microscopy and contact angle tensiometer. The anti-icing and de-icing performances are evaluated by investigating the freezing delay and photothermal effect, respectively. FINDINGS This coating shows outstanding water repellency (water contact angle up to 161.0°, sliding angle down to 1.4°) and can maintain superhydrophobicity within 400 cycles of tape peeling, 260 cycles of sandpaper abrasion or 25 cycles of sand impact. Besides, because the hydrophobic nano/micro hierarchical structures tremendously retard the heat transfer, the freezing process of water droplet on this coating can be apparently delayed by up to 35 min as compared to the uncoated substrate. Moreover, owing to the photothermal effect of the Fe3O4 NPs, the coating's surface temperature can be rapidly increased above 0 °C under infrared irradiation, which facilitates the ice melting on cold surfaces. Our work offers a versatile approach to address the icing problems in diverse weather conditions, which exhibits great prospects in various engineering applications.
Collapse
Affiliation(s)
- Binrui Wu
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, PR China.
| | - Huayang Jiang
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Nan Wu
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, PR China.
| | - Chaoyi Peng
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Zhenfeng Hu
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, PR China
| | - Xiubing Liang
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, PR China
| | - Yonggan Yan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Diansen Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology (Ministry of Education), School of Chemistry, Beihang University, Beijing 100191, PR China
| |
Collapse
|
24
|
Philipps K, Junkers T, Michels JJ. The block copolymer shuffle in size exclusion chromatography: the intrinsic problem with using elugrams to determine chain extension success. Polym Chem 2021. [DOI: 10.1039/d1py00210d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Is an increase in hydrodynamic volume always expected in block copolymer synthesis? Why SEC is sometimes not the last word.
Collapse
Affiliation(s)
- Kai Philipps
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Tanja Junkers
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton
- Australia
| | | |
Collapse
|
25
|
Mei X, Lu L, Xie Y, Yu YX, Tang Y, Teh KS. Preparation of Flexible Carbon Fiber Fabrics with Adjustable Surface Wettability for High-Efficiency Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49030-49041. [PMID: 33073568 DOI: 10.1021/acsami.0c08868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the 5G era, for portable electronics to operate at high performance and low power levels, the incorporation of superior electromagnetic interference (EMI) shielding materials within the packages is of critical importance. A desirable wearable EMI shielding material is one that is lightweight, structurally flexible, air-permeable, and able to self-clean. To this end, a bioinspired electroless silver plating strategy and a one-step electrodeposition method are utilized to prepare an EMI shielding fabric (CEF-NF/PDA/Ag/50-30) that possesses these desirable properties. Porous CEF-NF mats with a spatially distributed silver coating create efficient pathways for electron movement and enable a remarkable conductivity of 370 S mm-1. When tested within a frequency range of 8.2-12.4 GHz, this highly conductive fabric not only achieves an EMI shielding effectiveness (EMI SE of 101.27 dB at 5028 dB cm2 g-1) comparable to a very thin and light metal but also retains the unique properties of fabrics-being light, structurally flexible, and breathable. In addition, it exhibits a high contact angle (CA) of 156.4° with reversible surface wettability. After having been subjected to 1000 cycles of bending, the performance of the fabric only decreases minimally. This strategy potentially provides a novel way to design and manufacture an easily integrated EMI shielding fabric for flexible wearable devices.
Collapse
Affiliation(s)
- Xiaokang Mei
- School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| | - Longsheng Lu
- School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| | - Yingxi Xie
- School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| | - Yu-Xiang Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| | - Yong Tang
- School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| | - Kwok Siong Teh
- School of Engineering, San Francisco State University, San Francisco, California 94132, United States
| |
Collapse
|
26
|
Zhang H, Wang B, Wang G, Shen C, Chen J, Reiter G, Zhang B. Dewetting-Induced Alignment and Ordering of Cylindrical Mesophases in Thin Block Copolymer Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Heng Zhang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Binghua Wang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Gang Wang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Changyu Shen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingbo Chen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Günter Reiter
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Bin Zhang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
27
|
Zhou Y, Sun Z, Jiang L, Chen S, Ma J, Zhou F. Highly Conductive Silver Nanoparticle-Functionalized Aramid Fiber Paper for Electrical Heaters with Rapid Response and Chemical Stability. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yanfen Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao 266071, P. R. China
| | - Zhenhua Sun
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Liang Jiang
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Shaojuan Chen
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Eco-Textile Collaborative Innovation Center, Qingdao University, Qingdao 266071, P. R. China
| | - Jianwei Ma
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao 266071, P. R. China
| | - Fenglei Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, U.K
| |
Collapse
|
28
|
Li W, Ni X, Zhang X, Lei Y, Guo J, Jin J, You B. UV-NIR Dual-Responsive Nanocomposite Coatings with Healable, Superhydrophobic, and Contaminant-Resistant Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48101-48108. [PMID: 32935971 DOI: 10.1021/acsami.0c12266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-healing superhydrophobic coatings are attracting interest, but it still remains a great challenge to develop facile and fast self-healing strategies for superhydrophobic coatings. In this work, a novel environmentally friendly self-healing superhydrophobic coating based on an ultraviolet (UV)/near-infrared light (NIR) dual-responsive action was fabricated by blending UV-responsive microcapsules with NIR-responsive carbon nanoparticles (NPs), hydrophobic silica NPs, and waterborne silicone latex. The UV-responsive microcapsules were simply prepared through the electrostatic adsorption of negatively charged TiO2 NPs onto a positively charged microcapsule surface. The UV-NIR dual-responsive properties were mainly reflected in the healing of the superhydrophobic property for coatings through NIR or UV light irradiation. The self-healing process could be repeated many times, which can be attributed to the continued release of fluorine silane (FAS-13) loaded in the UV-responsive microcapsules to the coating surface. The combinations of NIR and UV responses endow the coating with the characteristics of fast healing and large-area healing when damaged by the external environment. In addition, the self-healing superhydrophobic coating film has excellent oil, corrosion, and wear resistance, satisfying the requirements for realistic outdoor applications.
Collapse
Affiliation(s)
- Wei Li
- Department of Materials Science and the Advanced Films Research Center of the China Educational Ministry, Fudan University, Shanghai 200433, P. R. China
| | - Xingxing Ni
- Department of Materials Science and the Advanced Films Research Center of the China Educational Ministry, Fudan University, Shanghai 200433, P. R. China
| | - Xinhai Zhang
- Department of Materials Science and the Advanced Films Research Center of the China Educational Ministry, Fudan University, Shanghai 200433, P. R. China
| | - Yang Lei
- Department of Materials Science and the Advanced Films Research Center of the China Educational Ministry, Fudan University, Shanghai 200433, P. R. China
| | - Jie Guo
- Shanghai Certificate Engineering Technology Research Center, Shanghai Banknote Printing Co. Ltd., Shanghai 20063, P. R. China
| | - Jie Jin
- Shanghai Certificate Engineering Technology Research Center, Shanghai Banknote Printing Co. Ltd., Shanghai 20063, P. R. China
| | - Bo You
- Department of Materials Science and the Advanced Films Research Center of the China Educational Ministry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
29
|
Huo L, Luo J, Huang X, Zhang S, Gao S, Long B, Gao J. Superhydrophobic and anti-ultraviolet polymer nanofiber composite with excellent stretchability and durability for efficient oil/water separation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Shan Y, Zhou Z, Bai H, Wang T, Liu L, Zhao X, Huang Y. Recovery of the self-cleaning property of silicon elastomers utilizing the concept of reversible coordination bonds. SOFT MATTER 2020; 16:8473-8481. [PMID: 32820790 DOI: 10.1039/d0sm01264e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stretchable elastomers with superhydrophobic surfaces and self-cleaning abilities are fabricated for use in wearable electronics. However, scratches or ruptures are inevitable on these elastomers, thus deteriorating their self-cleaning ability. To solve this problem, in this work, we explored the ability of a self-healing silicon elastomer to recover its self-cleaning property. A cross-linked silicon elastomer (Zn-IC-PDMS) was fabricated by incorporating imidazole-zinc coordination bonds. The superhydrophobic Zn-IC-PDMS surface was synthesized by sequentially spraying polystyrene (PS) and silica particles on it to form a micro/nano complex structure. Our study shows that the surface of the elastomer exhibited a high water-contact angle (CA) (155°), low sliding angle (SA) (∼3°), and self-cleaning ability. In addition, the surface rapidly recovered its self-cleaning ability at room temperature after ruptures had been formed across the elastomer. SEM images and photographs revealed that the recovery of the self-cleaning ability was attributed to the self-healing behavior of the Zn-IC-PDMS.
Collapse
Affiliation(s)
- Yuxing Shan
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Zhi Zhou
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Haoming Bai
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Ting Wang
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Lili Liu
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Xiuli Zhao
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yawen Huang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
31
|
Wei W, Liu Z, Wei R, Han GC, Liang C. Synthesis of MOFs/GO composite for corrosion resistance application on carbon steel. RSC Adv 2020; 10:29923-29934. [PMID: 35518252 PMCID: PMC9056312 DOI: 10.1039/d0ra05690a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Two unreported metal-organic frameworks [Cu(6-Me-2,3-pydc)(1,10-phen)·7H2O] n (namely Cu-MOF) and [Mn2(2,2'-bca)2(H2O)2] n (namely Mn-MOF) were synthesized by a solvothermal method and their structures were characterized and confirmed by elemental analysis, X-ray single crystal diffraction, Fourier infrared spectroscopy and thermogravimetric analysis. Cu-MOF/graphene (Cu-MOF/GR), Cu-MOF/graphene oxide (Cu-MOF/GO), Mn-MOF/graphene (Mn-MOF/GR) and Mn-MOF/graphene oxide (Mn-MOF/GO) composite materials were successfully synthesized by a solvothermal method and characterized and analyzed by PXRD, SEM and TEM. In order to study the corrosion inhibition properties of the Cu-MOF/GR, Cu-MOF/GO, Mn-MOF/GR and Mn-MOF/GO composite materials on carbon steel, they were mixed with waterborne acrylic varnish to prepare a series of composite coatings to explore in 3.5 wt% NaCl solution by electrochemical measurements and results showed that the total polarization resistance of the 3% Cu-MOF/GO and 3% Mn-MOF/GO composite coatings on the carbon steel surface were relatively large, and were 55 097 and 55 729 Ω cm2, respectively, which could effectively protect the carbon steel from corrosion. After immersion for 30 days, the 3% Mn-MOF/GO composite still maintained high corrosion resistance, the |Z| values were still as high as 23 804 Ω cm2. Therefore, MOFs compounded with GO can produce a synergistic corrosion inhibition effect and improve the corrosion resistance of the coating; this conclusion is well confirmed by the adhesion capability test.
Collapse
Affiliation(s)
- Wenchang Wei
- College of Chemical and Biological Engineering, Guilin University of Technology, Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004 P.R. China
| | - Zheng Liu
- College of Chemical and Biological Engineering, Guilin University of Technology, Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004 P.R. China
| | - Runzhi Wei
- College of Chemical and Biological Engineering, Guilin University of Technology, Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004 P.R. China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P.R. China
| | - Chuxin Liang
- College of Chemical and Biological Engineering, Guilin University of Technology, Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004 P.R. China
| |
Collapse
|
32
|
Ma Z, Kang S, Ma J, Shao L, Zhang Y, Liu C, Wei A, Xiang X, Wei L, Gu J. Ultraflexible and Mechanically Strong Double-Layered Aramid Nanofiber-Ti 3C 2T x MXene/Silver Nanowire Nanocomposite Papers for High-Performance Electromagnetic Interference Shielding. ACS NANO 2020; 14:8368-8382. [PMID: 32628835 DOI: 10.1021/acsnano.0c02401] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
High-performance electromagnetic interference (EMI) shielding materials with ultraflexibility, outstanding mechanical properties, and superior EMI shielding performances are highly desirable for modern integrated electronic and telecommunication systems in areas such as aerospace, military, artificial intelligence, and smart and wearable electronics. Herein, ultraflexible and mechanically strong aramid nanofiber-Ti3C2Tx MXene/silver nanowire (ANF-MXene/AgNW) nanocomposite papers with double-layered structures are fabricated via the facile two-step vacuum-assisted filtration followed by hot-pressing approach. The resultant double-layered nanocomposite papers with a low MXene/AgNW content of 20 wt % exhibit an excellent electrical conductivity of 922.0 S·cm-1, outstanding mechanical properties with a tensile strength of 235.9 MPa and fracture strain of 24.8%, superior EMI shielding effectiveness (EMI SE) of 48.1 dB, and high EMI SE/t of 10 688.9 dB·cm-1, benefiting from the highly efficient double-layered structures, high-performance ANF substrate, and extensive hydrogen-bonding interactions. Particularly, the nanocomposite papers show a maximum electrical conductivity of 3725.6 S·cm-1 and EMI SE of ∼80 dB at a MXene/AgNW content of 80 wt % with an absorption-dominant shielding mechanism owing to the massive ohmic losses in the highly conductive MXene/AgNW layer, multiple internal reflections between Ti3C2Tx MXene nanosheets and polarization relaxation of localized defects, and abundant terminal groups. Compared with the homogeneously blended ones, the double-layered nanocomposite papers possess greater advantages in electrical, mechanical, and EMI shielding performances. Moreover, the multifunctional double-layered nanocomposite papers exhibit excellent thermal management performances such as high Joule heating temperature at low supplied voltages, rapid response time, sufficient heating stability, and reliability. The results indicate that the double-layered nanocomposite papers have excellent potential for high-performance EMI shielding and thermal management applications in aerospace, military, artificial intelligence, and smart and wearable electronics.
Collapse
Affiliation(s)
- Zhonglei Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Songlei Kang
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Liang Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yali Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Ajing Wei
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Xiaolian Xiang
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Linfeng Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Junwei Gu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
33
|
Liang C, Ruan K, Zhang Y, Gu J. Multifunctional Flexible Electromagnetic Interference Shielding Silver Nanowires/Cellulose Films with Excellent Thermal Management and Joule Heating Performances. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18023-18031. [PMID: 32208670 DOI: 10.1021/acsami.0c04482] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Flexible electromagnetic interference (EMI) shielding materials with excellent thermal conductivities and Joule heating performances are of urgent demand in the communication industry, artificial intelligence, and wearable electronics. In this work, highly conductive silver nanowires (AgNWs) were prepared using the polyol method. Cellulose sheets were then prepared by dissolving natural cotton in a green and efficient NaOH/urea aqueous solution. Finally, multifunctional flexible EMI shielding AgNWs/cellulose films were fabricated based on vacuum-assisted filtration and hot-pressing. AgNWs are evenly embedded in the inner cellulose matrix and overlap with each other to form a 3D network. AgNWs/cellulose films, with a thickness of 44.5 μm, obtain the superior EMI shielding effectiveness of 101 dB, which is the highest value ever reported for shielding materials with the same thickness. In addition, AgNWs/cellulose films present excellent tensile strength (60.7 MPa) and tensile modulus (3.35 GPa), ultrahigh electrical conductivity (σ, 5571 S/cm), and excellent in-plane thermal conductivity coefficient (λ∥, 10.55 W/mK), which can effectively dissipate the heat accumulation. Interestingly, AgNWs/cellulose films also show outstanding Joule heating performances, good stability, and sensitive temperature response at driving voltages, absolutely safe for the human body. Therefore, our fabricated multifunctional flexible AgNWs/cellulose films have broad prospects in the fields of EMI shielding and protection of outdoor large-scale power transformers and wearable electronics.
Collapse
Affiliation(s)
- Chaobo Liang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
34
|
Wang L, Wang D, Wu Z, Luo J, Huang X, Gao Q, Lai X, Tang LC, Xue H, Gao J. Self-Derived Superhydrophobic and Multifunctional Polymer Sponge Composite with Excellent Joule Heating and Photothermal Performance for Strain/Pressure Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13316-13326. [PMID: 32125146 DOI: 10.1021/acsami.0c00150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flexible strain or pressure sensors have potential applications in electronic skin, healthcare, etc. It remains a challenge to explore multifunctional strain or pressure sensors that possess excellent water repellent and heating performance and hence can be used in harsh environments such as high moisture and low-temperature conditions. Here, a self-derived superhydrophobic and multifunctional polymer composite foam is prepared by adsorption of the Ag precursor in tetrahydrofuran (THF) onto the rubber sponge followed by reduction of Ag+ to Ag nanoparticles (AgNPs). During the Ag+ reduction in hydrazine solution, the swollen rubber sponge by THF is partially precipitated based on the nonsolvent-induced phase separation (NIPS). The NIPS creates a porous structure on the sponge surface and thus a high surface roughness, contributing to the material superhydrophobicity. The precipitated polymer wrapping the AgNPs could enhance the interaction between the individual AgNPs. The obtained conductive sponge composite possesses excellent Joule heating and photothermal performance and can be used as both a strain and pressure sensor. The conductive sponge composite sensor possesses good reliability and durability and can be applied to real-time monitoring of human body movements.
Collapse
Affiliation(s)
- Ling Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou Jiangsu 225002, China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou Jiangsu 225002, China
| | - Zefeng Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou Jiangsu 225002, China
| | - Junchen Luo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou Jiangsu 225002, China
| | - Xuewu Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou Jiangsu 225002, China
| | - Qiang Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou Jiangsu 225002, China
| | - Xuejun Lai
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long-Cheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou Jiangsu 225002, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou Jiangsu 225002, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|