1
|
Jiang J, Hu J, Li M, Luo M, Dong B, Sitti M, Yan X. NIR-II Fluorescent Thermophoretic Nanomotors for Superficial Tumor Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417440. [PMID: 39895191 PMCID: PMC11899490 DOI: 10.1002/adma.202417440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/27/2024] [Indexed: 02/04/2025]
Abstract
Peritumoral subcutaneous injection has been highly envisioned as an efficient yet low-risk administration of photothermal agents for superficial tumor photothermal therapy. However, obstructed by complex subcutaneous tissue, the delivery of injected photothermal agents to the specific tumor remains a critical issue. Herein, the study reports a polydopamine (PDA)-encapsulated spherical core/shell nanomotor with fluorescent indocyanine green (ICG) immobilized on its PDA shell. Upon the first near-infrared (NIR-I) irradiation, this motor can generate favorable photothermal heat, and meantime, emit a robust ICG fluorescence in the second near-infrared window (NIR-II). The heat turns the motor into an active photothermal agent able to perform thermophoretic propulsion along the irradiation direction in subcutaneous tissue, while the ICG fluorescence can direct the subcutaneous propulsion of motors toward specific tumor through real-time NIR-II imaging. These functions endow the motor with the ability of moving to tumor after being injected at peritumoral site, enabling an enhanced photothermal therapy (PTT). The results demonstrated herein suggest an integrated nanorobotic tool for the superficial PTT using peritumoral administration, highlighting an NIR-II imaging-directed subcutaneous propulsion.
Collapse
Affiliation(s)
- Jiwei Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Jing Hu
- State Key Laboratory of Vaccines for Infectious DiseasesCenter for Molecular Imaging and Translational MedicineXiang An Biomedicine LaboratorySchool of Public HealthXiamen UniversityXiamen361005China
| | - Mingtong Li
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical EngineeringInstitute of Biomedical Engineering and Health SciencesSchool of Medical and Health EngineeringChangzhou UniversityChangzhouJiangsu213164China
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| | - Xiaohui Yan
- State Key Laboratory of Vaccines for Infectious DiseasesCenter for Molecular Imaging and Translational MedicineXiang An Biomedicine LaboratorySchool of Public HealthXiamen UniversityXiamen361005China
| |
Collapse
|
2
|
He X, Gu H, Ma Y, Cai Y, Jiang H, Zhang Y, Xie H, Yang M, Fan X, Guo L, Yang Z, Hu C. Light patterning semiconductor nanoparticles by modulating surface charges. Nat Commun 2024; 15:9843. [PMID: 39537627 PMCID: PMC11561258 DOI: 10.1038/s41467-024-53926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Optical patterning of colloidal particles is a scalable and cost-effective approach for creating multiscale functional structures. Existing methods often use high-intensity light sources and customized optical setups, making them less feasible for large-scale microfabrication processes. Here, we report an optical patterning method for semiconductor nanoparticles by light-triggered modulation of their surface charge. Rather than using light as the primary energy source, this method utilizes UV-induced cleavage of surface ligands to modify surface charges, thereby facilitating the self-assembly of nanoparticles on a charged substrate via electrostatic interactions. By using citrate-treated ZnO nanoparticles, uniform ZnO patterns with variable thicknesses can be achieved. These multilayered ZnO patterns are fabricated into a UV detector with an on/off ratio exceeding 104. Our results demonstrate a simple yet effective way to pattern semiconductor nanoparticles, facilitating the large-scale integration of functional nanomaterials into emerging flexible and robotic microdevices.
Collapse
Affiliation(s)
- Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongri Gu
- Department of Physics, University of Konstanz, Konstanz, Germany
| | - Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yuhang Cai
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yi Zhang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hanhan Xie
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ming Yang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xinjian Fan
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Liang Guo
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, China
| | - Zhan Yang
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China.
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Kim H, Jo K, Choi H, Hahn SK. Biocompatible polymer-based micro/nanorobots for theranostic translational applications. J Control Release 2024; 374:606-626. [PMID: 39208932 DOI: 10.1016/j.jconrel.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Recently, micro/nanorobots (MNRs) with self-propulsion have emerged as a promising smart platform for diagnostic, therapeutic and theranostic applications. Especially, polymer-based MNRs have attracted huge attention due to their inherent biocompatibility and versatility, making them actively explored for various medical applications. As the translation of MNRs from laboratory to clinical settings is imperative, the use of appropriate polymers for MNRs is a key strategy, which can prompt the advancement of MNRs to the next phase. In this review, we describe the multifunctional versatile polymers in MNRs, and their biodegradability, motion control, cargo loading and release, adhesion, and other characteristics. After that, we review the theranostic applications of polymer-based MNRs to bioimaging, biosensing, drug delivery, and tissue engineering. Furthermore, we address the challenges that must be overcome to facilitate the translational development of polymeric MNRs with future perspectives. This review would provide valuable insights into the state-of-the-art technologies associated with polymeric MNRs and contribute to their progression for further clinical development.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyungjoo Jo
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
4
|
Hu N, Ding L, Wang A, Zhou W, Zhang C, Zhang B, Yin R. Comprehensive modeling of corkscrew motion in micro-/nano-robots with general helical structures. Nat Commun 2024; 15:7399. [PMID: 39191756 DOI: 10.1038/s41467-024-51518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Micro-/nano-robots (MNRs) have impressive potential in minimally invasive targeted therapeutics through blood vessels, which has disruptive impact to improving human health. However, the clinical use of MNRs has yet to happen due to intrinsic limitations, such as overcoming blood flow. These bottlenecks have not been empirically solved. To tackle them, a full understanding of MNR behaviors is necessary as the first step. The common movement principle of MNRs is corkscrew motion with a helical structure. The existing dynamic model is only applicable to standard helical MNRs. In this paper, we propose a dynamic model for general MNRs without structure limitations. Comprehensive simulations and experiments were conducted, which shows the validity and accuracy of our model. Such a model can serve as a reliable basis for the design, optimization, and control of MNRs and as a powerful tool for gaining fluid dynamic insights, thus accelerating the development of the field.
Collapse
Affiliation(s)
- Ningning Hu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Lujia Ding
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Aihui Wang
- School of Automation and Electrical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Wenju Zhou
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Chris Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bing Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
5
|
Mena-Giraldo P, Kaur M, Maurizio SL, Mandl GA, Capobianco JA. Janus Micromotors for Photophoretic Motion and Photon Upconversion Applications Using a Single Near-Infrared Wavelength. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4249-4260. [PMID: 38197400 DOI: 10.1021/acsami.3c16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
External stimuli can trigger changes in temperature, concentration, and momentum between micromotors and the medium, causing their propulsion and enabling them to perform different tasks with improved kinetic efficiencies. Light-activated micromotors are attractive systems that achieve improved motion and have the potential for high spatiotemporal control. Photophoretic swarming motion represents an attractive means to induce micromotor movement through the generation of temperature gradients in the medium, enabling the micromotors to move from cold to hot regions. The micromotors studied herein are assembled with Fe3O4 nanoparticles, and NaGdF4:Yb3+,Er3+/NaGdF4:Yb3+ and LiYF4:Yb3+,Tm3+ upconverting nanoparticles. The Fe3O4 nanoparticles were localized to one hemisphere to produce a Janus architecture that facilitates improved upconversion luminescence with the upconverting nanoparticles distributed throughout. Under 976 nm excitation, Fe3O4 nanoparticles generate the temperature gradient, while the upconverting nanoparticles produce visible light that is used for micromotor motion tracking and triggering of reactive oxygen species generation. As such, the motion and application of the micromotors are achieved using a single excitation wavelength. To demonstrate the practicality of this system, curcumin was adsorbed to the micromotor surface and degradation of Rhodamine B was achieved with kinetic rates that were over twice as fast as the static micromotors. The upconversion luminescence was also used to track the motion of the micromotors from a single image frame, providing a convenient means to understand the trajectory of these systems. Together, this system provides a versatile approach to achieving light-driven motion while taking advantage of the potential applications of upconversion luminescence such as tracking and detection, sensing, nanothermometry, particle velocimetry, photodynamic therapy, and pollutant degradation.
Collapse
Affiliation(s)
- Pedro Mena-Giraldo
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Mannu Kaur
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - John A Capobianco
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
6
|
Huang H, Yang S, Ying Y, Chen X, Puigmartí-Luis J, Zhang L, Pané S. 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305925. [PMID: 37801654 DOI: 10.1002/adma.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Indexed: 10/08/2023]
Abstract
In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Li Zhang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, Zürich, CH-8092, Switzerland
| |
Collapse
|
7
|
Lan X, Du Y, Liu F, Li G. Development of Microrobot with Optical Magnetic Dual Control for Regulation of Gut Microbiota. MICROMACHINES 2023; 14:2252. [PMID: 38138421 PMCID: PMC10745365 DOI: 10.3390/mi14122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Microrobots have emerged as a promising precision therapy approach that has been widely used in minimally invasive treatments, targeted drug delivery, and wound cleansing, and they also offer a potential new method for actively modulating gut microbiota. Here, a double-faced microrobot was designed to carry gut bacteria via covalently immobilizing the antibodies, and a corresponding integrated optical and magnetic dual-driving control system was also developed for precise control of the microrobot. The microrobot utilizes magnetic microsphere as its core, with one side coated in gold, which serves as the optical receptor surface and the interface for bacterial attachment. The specific gut bacterium, S. cerevisiae, was immobilized on the gold-coated side using the corresponding antibodies. The dual-driving control system enables the precise modulation of gut bacteria by synergistically manipulating the microrobots' movement via the optical field and magnetic field. The feasibility of independent and coordinated control using optical fields and magnetic fields was validated through experimental and numerical simulation approaches. This work introduces a novel method for the precise modulation of gut microbiota, providing a new avenue for disease treatments based on gut bacteria.
Collapse
Affiliation(s)
| | | | | | - Gongxin Li
- The Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China; (X.L.); (Y.D.); (F.L.)
| |
Collapse
|
8
|
Feng K, Chen L, Zhang X, Gong J, Qu J, Niu R. Collective Behaviors of Isotropic Micromotors: From Assembly to Reconstruction and Motion Control under External Fields. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2900. [PMID: 37947744 PMCID: PMC10650937 DOI: 10.3390/nano13212900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Swarms of self-propelled micromotors can mimic the processes of natural systems and construct artificial intelligent materials to perform complex collective behaviors. Compared to self-propelled Janus micromotors, the isotropic colloid motors, also called micromotors or microswimmers, have advantages in self-assembly to form micromotor swarms, which are efficient in resistance to external disturbance and the delivery of large quantity of cargos. In this minireview, we summarize the fundamental principles and interactions for the assembly of isotropic active particles to generate micromotor swarms. Recent discoveries based on either catalytic or external physical field-stimulated micromotor swarms are also presented. Then, the strategy for the reconstruction and motion control of micromotor swarms in complex environments, including narrow channels, maze, raised obstacles, and high steps/low gaps, is summarized. Finally, we outline the future directions of micromotor swarms and the remaining challenges and opportunities.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Ling Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Xinle Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, National Engineering Research Center of Novel Equipment for Polymer Processing, School of Mechanical and Automotive Engineering, South China University of Technology, Ministry of Education, Guangzhou 510641, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China; (K.F.); (L.C.); (X.Z.); (J.Q.)
| |
Collapse
|
9
|
Chen M, Ma E, Xing Y, Xu H, Chen L, Wang Y, Zhang Y, Li J, Wang H, Zheng S. Dual-Modal Lateral Flow Test Strip Assisted by Near-Infrared-Powered Nanomotors for Direct Quantitative Detection of Circulating MicroRNA Biomarkers from Serum. ACS Sens 2023; 8:757-766. [PMID: 36696535 DOI: 10.1021/acssensors.2c02315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Quantification of microRNA (miRNA) has attracted intense interest owing to its importance as a biomarker for the early diagnosis of multiple diseases. However, the inefficient capture of microRNAs from complex biological samples due to the passive diffusion of detection probes essentially restricts their accurate quantification. Herein, we report near-infrared (NIR)-powered Janus nanomotors composed of Au nanorods and periodic mesoporous organo-silica microspheres (AuNR/PMO JNMs) as "swimming probes" to assist a lateral flow test strip (LFTS) for direct, amplification-free, and quantitative miRNA-21 detection in serum and cell medium. The AuNR/PMO JNMs were conjugated with designed hDNA as a recognition probe for miRNA-21. Under NIR irradiation, the exposed AuNRs can generate asymmetric thermal gradients around the JNMs to achieve vigorous self-propelled thermophoretic motion. The active movement significantly accelerated the recognition of miRNA-21 targets, which greatly improved the capture efficiency from 59.39 to 86.12% in the reaction buffer. The enhanced miRNA-21 capture enabled direct quantitative miRNA-21 detection on the LFTS assay with both visual and thermal signals. Under the assistance of AuNR/PMO JNMs, a limit-of-detection of 18 fmol/L for miRNA-21 was achieved, which was 12.22-fold compared to that of LFTS assay with static probes. The constructed LFTS assay was further successfully deployed to directly sense the miRNA-21 in spiked serum samples and MDA-MB-231 medium. Overall, the AuNR/PMO JNM-assisted LFTS system unveils a concrete point-of-care testing strategy for precise miRNA detection in real biological samples, which holds great potential for early diagnosis and treatment of miRNA-related diseases.
Collapse
Affiliation(s)
- Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Enhui Ma
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yujuan Xing
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Hanbo Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Liang Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Yuxin Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Hong Wang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| |
Collapse
|
10
|
Ramos Docampo MA. On Nanomachines and Their Future Perspectives in Biomedicine. Adv Biol (Weinh) 2023; 7:e2200308. [PMID: 36690500 DOI: 10.1002/adbi.202200308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Nano/micromotors are a class of active matter that can self-propel converting different types of input energy into kinetic energy. The huge efforts that are made in this field over the last years result in remarkable advances. Specifically, a high number of publications have dealt with biomedical applications that these motors may offer. From the first attempts in 2D cell cultures, the research has evolved to tissue and in vivo experimentation, where motors show promising results. In this Perspective, an overview over the evolution of motors with focus on bio-relevant environments is provided. Then, a discussion on the advances and challenges is presented, and eventually some remarks and perspectives of the field are outlined.
Collapse
Affiliation(s)
- Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
11
|
Zhang J, Laskar A, Song J, Shklyaev OE, Mou F, Guan J, Balazs AC, Sen A. Light-Powered, Fuel-Free Oscillation, Migration, and Reversible Manipulation of Multiple Cargo Types by Micromotor Swarms. ACS NANO 2023; 17:251-262. [PMID: 36321936 DOI: 10.1021/acsnano.2c07266] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Through experiments and simulations, we show that fuel-free photoactive TiO2 microparticles can form mobile, coherent swarms in the presence of UV light, which track the subsequent movement of an irradiated spot in a fluid-filled microchamber. Multiple concurrent propulsion mechanisms (electrolyte diffusioosmotic swarming, photocatalytic expansion, and photothermal migration) control the rich collective behavior of the swarms, which provide a strategy to reversely manipulate cargo. The active swarms can autonomously pick up groups of inert particles, sort them by size, and sequentially release the sorted particles at particular locations in the microchamber. Hence, these swarms overcome three obstacles, limiting the utility of self-propelled particles. Namely, they can (1) undergo directed, long-range migration without the addition of a chemical fuel, (2) perform diverse collective behavior not possible with a single active particle, and (3) repeatedly and controllably isolate and deliver specific components of a multiparticle "cargo". Since light sources are easily fabricated, transported, and controlled, the results can facilitate the development of portable devices, providing broader access to the diagnostic and manufacturing advances enabled by microfluidics.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Abhrajit Laskar
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Oleg E Shklyaev
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Anna C Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
Fan X, Hu Q, Zhang X, Sun L, Yang Z. Solitary and Collective Motion Behaviors of TiO2 Microrobots under the Coupling of Multiple Light Fields. MICROMACHINES 2022; 14:89. [PMID: 36677151 PMCID: PMC9862000 DOI: 10.3390/mi14010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Due to their fascinating solitary and collective behavior, photochemical microrobots have attracted extensive attention from researchers and have obtained a series of outstanding research progress in recent years. However, due to the limitation of using a single light source, the realization of reconfigurable and controllable motion behaviors of the photochemical microrobot is still facing a series of challenges. To release these restrictions, we reported a multi-light-field-coupling-based method for driving the photochemical microrobot or its swarm in a regulatable manner. Here, we first designed a control system for coupling multiple light sources to realize the programmable application of four light sources in different directions. Then a TiO2-based photochemical microrobot was prepared, with its surface electric field distribution under different lighting conditions estimated by modeling-based simulation, where the feasibility of regulating the microrobot's motion behavior via the proposed setup was verified. Furthermore, our experimental results show that under the action of the compound light fields, we can not only robustly control the motion behavior of a single TiO2 microrobot but also reconfigure its collective behaviors. For example, we realized the free switching of the single TiO2 microrobots' movement direction, and the controllable diffusion, aggregation, the locomotion and merging of TiO2 microrobot swarms. Our discovery would provide potential means to realize the leap-forward control and application of photochemical microrobots from individuals to swarms, as well as the creation of active materials and intelligent synthetic systems.
Collapse
|
13
|
Arnaboldi S, Salinas G, Bonetti G, Garrigue P, Cirilli R, Benincori T, Kuhn A. Autonomous Chiral Microswimmers with Self‐mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209098. [DOI: 10.1002/anie.202209098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Serena Arnaboldi
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
- Dip. Di Chimica Univ. degli Studi di Milano 20133 Milan Italy
| | - Gerardo Salinas
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia Univ. degli Studi dell'Insubria 22100 Como Italy
| | - Patrick Garrigue
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Roberto Cirilli
- Istituto Superiore di Sanità Centro Nazionale per il Controllo e la Valutazione dei Farmaci 00161 Rome Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia Univ. degli Studi dell'Insubria 22100 Como Italy
| | - Alexander Kuhn
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| |
Collapse
|
14
|
Dai B, Zhou Y, Xiao X, Chen Y, Guo J, Gao C, Xie Y, Chen J. Fluid Field Modulation in Mass Transfer for Efficient Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203057. [PMID: 35957518 PMCID: PMC9534979 DOI: 10.1002/advs.202203057] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Indexed: 05/19/2023]
Abstract
Mass transfer is an essential factor determining photocatalytic performance, which can be modulated by fluid field via manipulating the kinetic characteristics of photocatalysts and photocatalytic intermediates. Past decades have witnessed the efforts and achievements made in manipulating mass transfer based on photocatalyst structure and composition design, and thus, a critical survey that scrutinizes the recent progress in this topic is urgently necessitated. This review examines the basic principles of how mass transfer behavior impacts photocatalytic activity accompanying with the discussion on theoretical simulation calculation including fluid flow speed and pattern. Meanwhile, newly emerged viable photocatalytic micro/nanomotors with self-thermophoresis, self-diffusiophoresis, and bubble-propulsion mechanisms as well as magnet-actuated photocatalytic artificial cilia for facilitating mass transfer will be covered. Furthermore, their applications in photocatalytic hydrogen evolution, carbon dioxide reduction, organic pollution degradation, bacteria disinfection and so forth are scrutinized. Finally, a brief summary and future outlook are presented, providing a viable guideline to those working in photocatalysis, mass transfer, and other related fields.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Yihao Zhou
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Xiao Xiao
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Yukai Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Materials Science and EngineeringNanjing Tech UniversityNanjing210009China
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Jun Chen
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
| |
Collapse
|
15
|
Arnaboldi S, Salinas G, Bonetti G, Garrigue P, Cirilli R, Benincori T, Kuhn A. Autonomous Chiral Microswimmers with Self‐mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Serena Arnaboldi
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Di Chimica ITALY
| | - Gerardo Salinas
- University of Bordeaux: Universite de Bordeaux Institute of Molecular Science FRANCE
| | - Giorgia Bonetti
- Insubria University - Como Campus: Universita degli Studi dell'Insubria - Sede di Como di Scienza e Alta Tecnologia ITALY
| | - Patrick Garrigue
- University of Bordeaux: Universite de Bordeaux Institute of Molecular Science FRANCE
| | - Roberto Cirilli
- Instituto superiore di santa Centro nazionale per il controlo e la valutazione dei Farmaci ITALY
| | - Tiziana Benincori
- Insubria University - Como Campus: Universita degli Studi dell'Insubria - Sede di Como di chimica ITALY
| | - Alexander Kuhn
- Bordeaux INP Chemistry ENSCBP 16 avenue Pey Berland 33607 Pessac FRANCE
| |
Collapse
|
16
|
Si W, Zhu Z, Wu G, Zhang Y, Chen Y, Sha J. Encoding Manipulation of DNA-Nanoparticle Assembled Nanorobot Using Independently Charged Array Nanopores. SMALL METHODS 2022; 6:e2200318. [PMID: 35656741 DOI: 10.1002/smtd.202200318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
During the past decades, scientists have developed different kinds of nanorobots based on various driving principles to realize controlled manipulation of them for potential applications like medical diagnosis and directed cargo delivery. In order to design a nanorobot with advantages of simple operation and precise control that can enrich the family of intelligent nanorobots, an encoding manipulation method is proposed to control the movement of a DNA-nanoparticle assembled nanorobot by combing electrophoresis and electroosmosis effect in independently charged array nanopores. The nanorobot is composed of one nanoparticle and one or two ssDNAs. ssDNAs act as the legs of the nanorobot. The selective ion transport through charged nanopores can induce cooperation and competition between the electroosmosis and electrophoresis, which is the main power to activate the nanorobot. Thus by simply switching the applied electric field and surface charge density of each nanopore which is defined as the encoded nanopore according to a predetermined strategy, the well-controlled encoding manipulation including capturing, releasing, jumping, and crawling of the nanorobot is realized in this work. The study is expected to realize its value in many interesting applications like drug delivery, nanosurgery, and so on in the near future.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Zhendong Zhu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| |
Collapse
|
17
|
Nano-labeled materials as detection tags for signal amplification in immunochromatographic assay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Kichatov B, Korshunov A, Sudakov V, Petrov O, Gubernov V, Korshunova E, Kolobov A, Kiverin A. Magnetic Nanomotors in Emulsions for Locomotion of Microdroplets. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10976-10986. [PMID: 35179020 DOI: 10.1021/acsami.1c23910] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The locomotion of droplets in emulsions is of practical significance for fields related to medicine and chemical engineering, which can be done with a magnetic field to move droplets containing magnetic materials. Here, we demonstrate a new method of droplet locomotion in the oil-in-water emulsion with the help of a nonuniform magnetic field in the case where magnetic nanoparticles (MNPs) are dispersed in the continuous phase of the emulsion. The paper analyses the motion of the droplets in a liquid film and in a capillary for various diameters of droplets, their number density, and viscosity of the continuous phase of the emulsion. It is established that the mechanism of droplet locomotion in the emulsion largely depends on the wettability of MNPs. Hydrophobic nanoparticles are adsorbed on the droplet surfaces, forming the agglomerates of MNPs with the droplets. Such agglomerates move at much higher velocities than passive droplets. Hydrophilic nanoparticles are not adsorbed at the surfaces of the droplets but form mobile magnetic clusters dispersed in the continuous phase of the emulsion. Mobile magnetic clusters set the surrounding liquid and droplets in motion. The results obtained in this paper can be used in drug delivery.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Oleg Petrov
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Korshunova
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrei Kolobov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Moscow State Technical University by N.E. Bauman, 105005 Moscow, Russia
| |
Collapse
|
19
|
Yue H, Chang X, Liu J, Zhou D, Li L. Wheel-like Magnetic-Driven Microswarm with a Band-Aid Imitation for Patching Up Microscale Intestinal Perforation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8743-8752. [PMID: 35133797 DOI: 10.1021/acsami.1c21352] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microscale intestinal perforation can cause considerable mortality and is very difficult to treat using conventional methods owing to the numerous challenges associated with microscale operations, which require the development of new body-friendly and effective treatment methods. Swarming micro- and nanomotors have shown great potential in biomedical applications in complex and hard-to-reach environments. Herein, we present a wheel-like magnetic-driven microswarm (WLM) with a band-aid imitation to patch microscale intestinal perforations by pasting on the perforation point in mucus-filled environments. A method called "packing under rolling" was applied to make the formed microswarms denser and rounder. Microswarms with variable aspect ratios can be fabricated by tuning the frequency and strength of the external magnetic field. Actuation and navigation in a confined complex environment, locomotion on three-dimensional surfaces, and multiple switchable motion modes have been realized by combining AC and DC magnetic fields. Moreover, we demonstrated WLM controllable navigation, movement, and microscale perforation patching in the chicken intestines ex vivo. The proposed strategy will contribute to the treatment of microscale intestinal perforation and may be applicable to novel, precise topical medication and microsurgery.
Collapse
Affiliation(s)
- Honger Yue
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Xiaocong Chang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
| | - Junmin Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Dekai Zhou
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
| | - Longqiu Li
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
| |
Collapse
|
20
|
Nano/Micromotors in Active Matter. MICROMACHINES 2022; 13:mi13020307. [PMID: 35208431 PMCID: PMC8878230 DOI: 10.3390/mi13020307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Nano/micromotors (NMMs) are tiny objects capable of converting energy into mechanical motion. Recently, a wealth of active matter including synthetic colloids, cytoskeletons, bacteria, and cells have been used to construct NMMs. The self-sustained motion of active matter drives NMMs out of equilibrium, giving rise to rich dynamics and patterns. Alongside the spontaneous dynamics, external stimuli such as geometric confinements, light, magnetic field, and chemical potential are also harnessed to control the movements of NMMs, yielding new application paradigms of active matter. Here, we review the recent advances, both experimental and theoretical, in exploring biological NMMs. The unique dynamical features of collective NMMs are focused on, along with some possible applications of these intriguing systems.
Collapse
|
21
|
Hou K, Zhang Y, Bao M, Xin C, Wei Z, Lin G, Wang Z. A Multifunctional Magnetic Red Blood Cell-Mimetic Micromotor for Drug Delivery and Image-Guided Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3825-3837. [PMID: 35025195 DOI: 10.1021/acsami.1c21331] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inspired by nature, innovative devices have been made to imitate the morphology and functions of natural red blood cells (RBCs). Here, we report a red blood cell-mimetic micromotor (RBCM), which was fabricated based on a layer-by-layer assembly method and precisely controlled by an external rotating uniform magnetic field. The main framework of the RBCM was constructed by the natural protein zein and finally camouflaged with the RBC membrane. Functional cargos such as Fe3O4 nanoparticles and the chemotherapeutic agent doxorubicin were loaded within the wall part of the RBCM for tumor therapy. Due to the massive loading of Fe3O4 nanoparticles, the RBCM can be precisely navigated by an external rotating uniform magnetic field and be used as a magnetic resonance imaging contrast agent for tumor imaging. The RBCM has been proven to be biocompatible, biodegradable, magnetically manipulated, and imageable, which are key requisites to take micromotors from the chalkboard to clinics. We expect the RBC-inspired biohybrid device to achieve wide potential applications.
Collapse
Affiliation(s)
- Kexin Hou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Yandong Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Meili Bao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Chao Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Zengyan Wei
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Guochang Lin
- School of Astronautics, Harbin Institute of Technology, 150001 Harbin, China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| |
Collapse
|
22
|
Abstract
Living things in nature have evolved with unique morphologies, structures, materials, behaviors, and functions to survive in complex natural environments. Nature has inspired the design ideas, preparation methods, and applications of versatile micro/nanomotors. This review summarizes diverse nature-inspired micro/nanomotors, which can be divided into five groups: (i) natural morphology-inspired micro/nanomotors, whose shapes are designed to imitate the morphologies of plants, animals, and objects in nature. (ii) Natural structure-inspired micro/nanomotors, which use structures from plants, red blood cells, and platelet cells as components of micro/nanomotors, or directly use sperm cells and microorganisms as the engines of micro/nanomotors. (iii) Natural behavior-inspired micro/nanomotors, which are proposed to mimic natural behaviors such as motion behavior, swarm behavior, and communication behavior between individuals. (iv) Micro/nanomotors inspired by both natural morphology and behavior. Nature makes it possible for synthetic micro/nanomotors to possess interesting morphologies, novel preparation methods, new propulsion modes, innovative functions, and broad applications. The nature-inspired micro/nanomotors could provide a promising platform for various practical fields.
Collapse
Affiliation(s)
- Xiaocong Chang
- Key Laboratory of Micro-systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, China
| | - Yiwen Feng
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Bin Guo
- Key Laboratory of Micro-systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
| | - Dekai Zhou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Longqiu Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
23
|
Liang Z, Tu Y, Peng F. Polymeric Micro/Nanomotors and Their Biomedical Applications. Adv Healthc Mater 2021; 10:e2100720. [PMID: 34110714 DOI: 10.1002/adhm.202100720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Indexed: 12/12/2022]
Abstract
Since their naissance in the 2000s, various micro or nanomotors with powerful functions have been proposed. Among them, polymer-based micro or nanomotors stand out for the easy processing and facile functionalization, holding immense potential for bioapplications. In this review, fabrication of polymer-based micro or nanomotors and their applications in biomedical areas are covered. Classic manufacturing approaches as well as cutting-edge techniques are discussed with representative works highlighted. Current challenges and future prospects are presented in the hope of pointing new research directions to facilitate practical translations of micro/nanomotors.
Collapse
Affiliation(s)
- Ziying Liang
- School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical Science Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China
| |
Collapse
|
24
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Golubkov A, Kiverin A. Superfast Active Droplets as Micromotors for Locomotion of Passive Droplets and Intensification of Mixing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38877-38885. [PMID: 34351762 DOI: 10.1021/acsami.1c09912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micromotors are fascinating objects that are able to move autonomously and perform various complex tasks related to drug delivery, chemical processes, and environmental remediation. Among the types of micromotors, droplet-based micromotors are characterized by a wide range of functional properties related to the capability of encapsulation and deformation and the possibility of using them as microreactors. Relevant problems of micromotor utilization in the chemical processes include intensification of mixing and locomotion of passive objects. In this paper, the technique for preparation of superfast active droplets, which can be used as micromotors for effective locomotion of passive droplets in the oil-in-water emulsion, is demonstrated. The possibility of passive droplet locomotion in the emulsion is determined by a relation between the diameters of active and passive droplets. If the diameter of active droplets is larger than the diameter of passive droplets, the agglomerates form spontaneously in the emulsion and move in a straight line. In the case of the opposite relation between diameters, the agglomerates consisting of active and passive droplets rotate intensively. This makes it impossible to move the passive droplets to a given distance. Such micromotors can achieve unprecedentedly high velocities of motion and can be used to intensify mixing on the microscales.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| |
Collapse
|
25
|
He X, Jiang H, Li J, Ma Y, Fu B, Hu C. Dipole-Moment Induced Phototaxis and Fuel-Free Propulsion of ZnO/Pt Janus Micromotors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101388. [PMID: 34173337 DOI: 10.1002/smll.202101388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Light-driven micromotors have stimulated considerate interests due to their potentials in biomedicine, environmental remediation, or serving as the model system for non-equilibrium physics of active matter. Simultaneous control over the motion direction and speed of micro/nanomotors is crucial for their functionality but still difficult since Brownian motion always randomizes the orientations. Here, a highly efficient light-driven ZnO/Pt Janus micromotor capable of aligning itself to illumination direction and exhibiting negative phototaxis at high speeds (up to 32 µm s-1 ) without the addition of any chemical fuels is developed. A light-triggered self-built electric field parallel to the light illumination exists due to asymmetrical surface chemical reactions induced by the limited penetration depth of light along the illumination. The phototactic motion of the motor is achieved through electrophoretic rotation induced by the asymmetrical distribution of zeta potential on the two hemispheres of the Janus micromotor, into alignment with the electric field. Notably, similar phototactic propulsion is also achieved on TiO2 /Pt and CdS/Pt micromotors, which presents explicit proof of extending the mechanism of dipole-moment induced phototactic propulsion in other light-driven Janus micromotors. Finally, active transportation of yeast cells are achieved by the motor, proving its capability in performing complex tasks.
Collapse
Affiliation(s)
- Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianjie Li
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bi Fu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
26
|
Abstract
The optical manipulation of tiny objects is significant to understand and to explore the unknown in the microworld, which has found many applications in materials science and life science. Physically speaking, these technologies arise from direct or indirect optomechanical coupling to convert incident optical energy to mechanical energy of target objects, while their efficiency and functionalities are determined by the coupling behavior. Traditional optical tweezers stem from direct light-to-matter momentum transfer, and the generation of an optical gradient force requires high optical power and rigorous optics. As a comparison, the opto-thermophoretic manipulation techniques proposed recently originate from high-efficiency opto-thermomechanical coupling and feature low optical power. Through rational design of the light-generated temperature gradient and exploring the mechanical response of diverse targets to the temperature gradient, a variety of opto-thermophoretic techniques were developed, which exhibit broad applicability to a wide range of target objects from colloid materials to biological cells to biomolecules. In this review, we will discuss the underlying mechanism of thermophoresis in different liquid environments, the cutting-edge technological innovation, and their applications in colloidal science and life science. We also provide a brief outlook on the existing challenges and anticipate their future development.
Collapse
Affiliation(s)
- Shaofeng Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
27
|
Kim H, Lee SY. A near-infrared light-responsive upconversion nanoparticle micromotor propelled by oxygen bubbles. Chem Commun (Camb) 2021; 57:512-515. [PMID: 33331840 DOI: 10.1039/d0cc05820c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Light-responsive micromotors using photosensitizer-decorated upconversion nanoparticles (UCNPs) are described. The UCNP motors converting near-infrared light into visible emission were propelled by oxygen bubble propulsion. The micromotor can be easily controlled by adjusting the light intensity, solution pH, and concentration of H2O2 and UCNPs.
Collapse
Affiliation(s)
- Hanbee Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | | |
Collapse
|
28
|
Lai X, Zhang G, Zeng L, Xiao X, Peng J, Guo P, Zhang W, Lai W. Synthesis of PDA-Mediated Magnetic Bimetallic Nanozyme and Its Application in Immunochromatographic Assay. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1413-1423. [PMID: 33346647 DOI: 10.1021/acsami.0c17957] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Immunochromatographic assay (ICA) is widely applied in various fields. However, severe matrix interference and weak signal output present major challenges in achieving accurate and ultrasensitive detection in ICA. Here, a polydopamine (PDA)-mediated magnetic bimetallic nanozyme (Fe3O4@PDA@Pd/Pt) with peroxidase-like activity was synthesized and used as a probe in ICA. The magnetic property of Fe3O4@PDA@Pd/Pt enabled effective magnetic enrichment of targets, thereby reducing the matrix interference in the sample. PDA coating on the magnetic bimetallic nanozyme was employed as a mediator and a stabilizer. It improved the catalytic ability and stability of the magnetic bimetallic nanozyme by providing more coordination sites for Pd/Pt growth and functional groups (-NH and -OH). In addition, the Pd/Pt bimetallic synergistic effect could further enhance the catalytic ability of the nanozyme. A method was developed by integrating Fe3O4, PDA, and Pd/Pt into Fe3O4@PDA@Pd/Pt as a probe in ICA. With the proposed method, human chorionic gonadotropin and Escherichia coli O157:H7 were successfully detected to be as low as 0.0094 mIU/mL in human blood serum and 9 × 101 CFU/mL in the milk sample, respectively. This method may be readily adapted for accurate and ultrasensitive detection of other biomolecules in various fields.
Collapse
Affiliation(s)
- Xiaocui Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Lifeng Zeng
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital, Nanchang 330006, China
| | - Xiaoyue Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ping Guo
- Jiangxi Institute for Food Control, Nanchang 330001, China
| | - Wei Zhang
- Jiangxi Institute for Food Control, Nanchang 330001, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
29
|
Eichler-Volf A, Huang T, Vazquez Luna F, Alsaadawi Y, Stierle S, Cuniberti G, Steinhart M, Baraban L, Erbe A. Comparative Studies of Light-Responsive Swimmers: Janus Nanorods versus Spherical Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12504-12512. [PMID: 33054235 DOI: 10.1021/acs.langmuir.0c01913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The shape of objects has a strong influence on their dynamics. Here, we present comparative studies of two different motile objects, spherical Ag/AgCl Janus particles and polystyrene Janus nanorods, that move due to an ionic self-diffusiophoretic propulsion mechanism when exposed to blue light. In this paper, we propose a method to fabricate Janus rodlike particles with high aspect ratios and hemispherical tip shapes. The inherent asymmetry due to the ratio between capped and uncapped parts of the particles as well as the shape anistropy of Janus nanorods enables imaging and quantification of rotational dynamics. The dynamics of microswimmers are compared in terms of velocities and diffusion coefficients. We observe that despite a small amount of the Ag/AgCl reagent on the surface of rodlike objects, these new Janus micromotors reveal high motility in pure water. While the velocities of spherical particles reach 4.2 μm/s, the single rodlike swimmers reach 1.1 μm/s, and clusters reach 1.6 μm/s. The effect of suppressed rotational diffusion is discussed as one of the reasons for the increased velocities. These Janus micro- and nanomotors hold the promise for application in light-controlled propulsion transport.
Collapse
Affiliation(s)
- Anna Eichler-Volf
- Institute of Materials Science and Ion Beam Research, Helmholtz Center Dresden Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Tao Huang
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, Hallwachsstr. 3, 01062 Dresden, Germany
| | - Fernando Vazquez Luna
- Institute of Chemistry of New Materials, Osnabrueck University, Barbarastr. 7, 49076 Osnabrueck, Germany
| | - Yara Alsaadawi
- Institute of Materials Science and Ion Beam Research, Helmholtz Center Dresden Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Simon Stierle
- Institute of Materials Science and Ion Beam Research, Helmholtz Center Dresden Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, Hallwachsstr. 3, 01062 Dresden, Germany
| | - Martin Steinhart
- Institute of Chemistry of New Materials, Osnabrueck University, Barbarastr. 7, 49076 Osnabrueck, Germany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Artur Erbe
- Institute of Materials Science and Ion Beam Research, Helmholtz Center Dresden Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| |
Collapse
|
30
|
Hu Y, Liu W, Sun Y. Multiwavelength Phototactic Micromotor with Controllable Swarming Motion for "Chemistry-on-the-Fly". ACS APPLIED MATERIALS & INTERFACES 2020; 12:41495-41505. [PMID: 32825803 DOI: 10.1021/acsami.0c11443] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Artificial nano/micromotors that represent the next-generation automotive microdevices hold considerable promise in various potential applications. However, it is a great challenge to design light-powered micro/nanomotors with effective propulsion that can fulfill diverse tasks. Herein, a multilight-responsive micromotor is fabricated by in situ precipitation of photothermal Fe3O4 nanoparticles (NPs) onto different microparticles. The composites exhibit phototactic swarming movement by irradiation at 320-550 nm, which can be reversibly and remotely manipulated by irradiation position, "on/off" switch, and light intensity. The micromotor made of Fe3O4@poly(glycidyl methacrylate)/polystyrene (Fe3O4@PGS) core-shell particles presents a propulsion speed as high as 270 μm/s under ultraviolet (UV) irradiation. Using an array of experimental methods and numerical simulations, thermal convection mechanism is proposed for the propulsion. Namely, under light irradiation, the photogenerated heat on Fe3O4 NPs decreases the density of the irradiated spot, leading to the swarming motion of the composite particles propelled by a "hydrodynamic drag" toward the light spot. Then, Fe3O4@PGS is exploited as a platform for performing "chemistry-on-the-fly" using both the catalytic efficiency of Fe3O4 NPs and an immobilized enzyme (lipase). It is found that the propulsion increases the catalytic efficiency of Fe3O4 NPs for rhodamine B degradation by over 10 times under sunlight. Moreover, it is proved to accelerate the enzymatic reactions of lipase on Fe3O4@PGS in both aqueous and organic systems by more than 50%. Such a multiwavelength phototactic swimmer paves the way to the design of advanced micromotors for various applications, such as drug delivery, microsurgery, and sensing.
Collapse
Affiliation(s)
- Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
31
|
Wu X, Xue X, Wang J, Liu H. Phototropic Aggregation and Light-Guided Long-Distance Collective Transport of Colloidal Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6819-6827. [PMID: 32476425 DOI: 10.1021/acs.langmuir.0c01244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phoretic swarming and collective transport of colloidal particles in response to environmental stimuli have attracted tremendous interest in a variety of fields. In this work, we investigate the light-actuated motion, aggregation, and light-guided long-distance mass transport of silica microspheres in simple spiropyran solutions under the illumination of UV spot sources. The phototactic motion is confirmed by the dependence of swarming on the illumination intensity and spiropyran concentrations, ON-OFF switching tests, pattern-masked UV sources, etc. The aggregates formed via swarming of silica spheres can chase after a moving UV source, however, relying on a critical speed of the UV source. Only when the UV source speed is below the critical value, the aggregates follow the UV spot at a constant relative speed to the light spot. Analysis on the shape of silica microsphere currents indicates that continuous illumination of the UV spot source and resultant chemical gradients are important for the formation of steady microsphere currents. Light-guided aggregation and long-distance mass transport are interesting for targeted delivery and remote-controlled enrichment of environmental hazards.
Collapse
Affiliation(s)
- Xiaoran Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026, China
| | - Xiang Xue
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026, China
| | - Jinghang Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026, China
| | - Hewen Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026, China
| |
Collapse
|
32
|
Yang RL, Zhu YJ, Qin DD, Xiong ZC. Light-Operated Dual-Mode Propulsion at the Liquid/Air Interface Using Flexible, Superhydrophobic, and Thermally Stable Photothermal Paper. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1339-1347. [PMID: 31880902 DOI: 10.1021/acsami.9b18494] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The direct transformation of external energy into mechanical work by the self-propelled motor inspires and promotes the development of miniaturized machines. Several strategies have been utilized to realize the self-driven motion, but in some cases multiple power sources are needed, and this would complicate the operation in diverse environments. In this regard, the dual-mode self-propelled system based on a single power source is highly desirable. In this work, single-light-actuated dual-mode propulsion at the liquid/air interface is realized by using flexible, superhydrophobic, and thermostable photothermal paper made from flexible ultralong hydroxyapatite nanowires, titanium sesquioxide (Ti2O3) particles, and poly(dimethylsiloxane) coating. The superhydrophobic surface enables the thermostable photothermal paper to float on the water surface spontaneously and significantly reduces the drag force. In the usual situation, the heat power produced by the photothermal effect is utilized to trigger the Marangoni propulsion. While the Marangoni effect is quenched in water containing the surfactant, the propulsion mode can be directly switched into the vapor-enabled propulsion mode by simply increasing the light power density. Particularly, the light-driven motion in a linear, curvilinear, or rotational manner can be realized by designing the self-propelled machines with appropriate shapes by using the processable photothermal paper. It is expected that the as-prepared dual-mode self-propelled, flexible, superhydrophobic, and thermostable photothermal paper-based devices have promising applications in various fields such as microrobots, biomedicine, and environmental monitoring.
Collapse
Affiliation(s)
- Ri-Long Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , P. R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , P. R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Dong-Dong Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , P. R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| |
Collapse
|