1
|
Cui L, Wang J, Liu M, Fan W, Sui K. In Situ Growth of Multiresponsive Structural Color Patterns within Hydrogels for Multiple Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2250-2260. [PMID: 39692293 DOI: 10.1021/acsami.4c17805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Mimicking natural organisms to directly fabricate multiresponsive structural color patterns from small molecules is of great significance for information encryption but remains challenging. Herein, we present a bionic entanglement-interlocking microphase separation strategy for in situ growth of multiresponsive structural color patterns within hydrogel matrixes. The precursor solutions of common polymerization-induced phase-separated materials are used as small-molecule nutrients. The newly generated polymer networks can thus spontaneously collapse into phase-separated microspheres within hydrogels during polymerization. In particular, the dense internetwork entanglements form between the microspheres and hydrogel networks during phase separation, anchoring the microspheres firmly onto hydrogel networks to hinder their gathering. Consequently, these newly grown microspheres can be maintained at the desired nanoscale for yielding the structural blue color by light scattering. Multiresponsive schemochrome patterns can be readily created by growing different microspheres within hydrogel matrixes for multiple information encryptions. We demonstrate that this facile self-growth strategy is applicable to different polymerization-induced phase-separated materials and hydrogel matrixes, regardless of cross-linking modes and geometries.
Collapse
Affiliation(s)
- Lu Cui
- College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological textile technology Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Juan Wang
- College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological textile technology Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Menglin Liu
- College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological textile technology Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Wenxin Fan
- College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological textile technology Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Kunyan Sui
- College of Materials Science and Engineering, State Key Laboratory of Bio-Fiber and Eco-textiles, Collaborative Innovation Center for Marine Biobased Fibers and Ecological textile technology Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
2
|
Liu J, Tan J, Liu H, Wang C. Shape-stabilized flexible thermochromic films with one-sided adhesion via gradient crosslinking strategy for temperature indicating. J Colloid Interface Sci 2025; 677:120-129. [PMID: 39137561 DOI: 10.1016/j.jcis.2024.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/21/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Thermochromic dyes (TCDs) based on a three-component color change system suffer from solid rigidity and liquid leakage issues because of the intrinsic solid-liquid phase change performance, resulting in difficulty in temperature visualization applications for smart wearable fields. Despite considerable efforts in microencapsulation of thermochromic dyes, designing and fabricating essentially flexible thermochromic phase change films still need to be explored. Herein, a one-sided adhesive gradient-crosslinked thermochromic film is reported to address these issues to make a trade-off between stability and flexibility, excellent thermochromic performance, and temperature visualization. The thermochromic wearable films have been fabricated exploiting tea polyphenol thermochromic dyes, vinyl dimethylsiloxane, and hydrosilicone oil via the salt-template-assisted method and gradient crosslinking strategy, which have porous structures with an average pore size of 12.8 μm and a porosity of 28 %. Due to the spatial limiting threshold effect of the porosity structure, interconnected 3D polysiloxane porous networks can provide ample support for tea polyphenol thermochromic dyes and effectively prevent liquid leakage. Upon heating, the thermochromic film changes from blue to white with the K/S value decreasing from 7.69 to 0.78 and the ΔE* increasing from 2.7 to 16.1 at 610 nm, and the color-changing temperature is 42 °C. Gradient crosslinked thermochromic films exhibit excellent temperature-responsive color change properties, desirable one-side adhesion, and thermal energy storage, enabling multicolor temperature displays and temperature-controlled multilevel information transfer.
Collapse
Affiliation(s)
- Jiayin Liu
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, China
| | - Jialing Tan
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, China
| | - Hao Liu
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, China
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, China.
| |
Collapse
|
3
|
Zhang W, Hu Y, Feng P, Li Z, Zhang H, Zhang B, Xu D, Qi J, Wang H, Xu L, Li Z, Xia M, Li J, Chai R, Tian L. Structural Color Colloidal Photonic Crystals for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403173. [PMID: 39083316 PMCID: PMC11423208 DOI: 10.1002/advs.202403173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/10/2024] [Indexed: 09/26/2024]
Abstract
Photonic crystals are a new class of optical microstructure materials characterized by a dielectric constant that varies periodically with space and features a photonic bandgap. Inspired by natural photonic crystals such as butterfly scales, a series of artificial photonic crystals are developed for use in integrated photonic platforms, biosensing, communication, and other fields. Among them, colloidal photonic crystals (CPCs) have gained widespread attention due to their excellent optical properties and advantages, such as ease of preparation and functionalization. This work reviews the classification and self-assembly principles of CPCs, details some of the latest biomedical applications of large-area, high-quality CPCs prepared using advanced self-assembly methods, summarizes the existing challenges in CPC construction and application, and anticipates future development directions and optimization strategy. With further advancements, CPCs are expected to play a more critical role in biosensors, drug delivery, cell research, and other fields, bringing significant benefits to biomedical research and clinical practice.
Collapse
Affiliation(s)
- Wenhui Zhang
- School of Design and Arts, Beijing Institute of Technology, Beijing, 100081, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Pan Feng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zhe Li
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hui Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Dongyu Xu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jilai Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100049, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| |
Collapse
|
4
|
Tan J, Sun J, Ye T, Liu H, Liu J, Wang C. Bioinspired Low-Angle-Dependent Photonic Crystal Elastomer for Highly Sensitive Visual Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39074378 DOI: 10.1021/acsami.4c06292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Photonic crystals (PCs) possess unique photonic band gap properties that can be used in the field of sensors and smart displays if modulated on the micronano structure. Both nonclose-packed (NCP) structure and high refractive index (RI) contrast of PC play important roles in response sensitivity during stretching. Herein, we constructed an NCP-structured PC strain sensor with high RI by a novel coating-etching strategy. Stretch-induced changes in structural color correspond to the strength of the force, enabling the detection of the strength of the acting force by the naked eye. The flexible 3D cross-linked network constructed by poly(ethylene glycol) phenyl ether acrylate and pentaerythritol tetrakis(3-mercaptopropionate) endows the sensor with excellent elasticity and robustness. The designed PC strain sensor achieves high mechanochromic sensitivity (∼8.3 nm/%, 0.02 to 4.21 MPa) and a substantial reflection peak shift (Δλ = 249 nm). More importantly, the high RI contrast (Δn = 0.43) between CdS and polymers imparts isotropic optical properties, ensuring a broad viewing angle while avoiding misleading signals. The research provides a novel fabrication strategy to construct sensitive PC strain sensors, expanding the prospective applicability to human movement monitoring and secure message encryption.
Collapse
Affiliation(s)
- Jialing Tan
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Juanjuan Sun
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Ting Ye
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Liu
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiayin Liu
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Hu Y, Qi C, Ma D, Yang D, Huang S. Multicolor recordable and erasable photonic crystals based on on-off thermoswitchable mechanochromism toward inkless rewritable paper. Nat Commun 2024; 15:5643. [PMID: 38969630 PMCID: PMC11226673 DOI: 10.1038/s41467-024-49860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Mechanochromic photonic crystals are attractive due to their force-dependent structural colors; however, showing unrecordable color and unsatisfied performances, which significantly limits their development and expansion toward advanced applications. Here, a thermal-responsive mechanochromic photonic crystal with a multicolor recordability-erasability was fabricated by combining non-close-packing mechanochromic photonic crystals and phase-change materials. Multicolor recordability is realized by pressing thermal-responsive mechanochromic photonic crystals to obtain target colors over the phase-change temperature followed by fixing the target colors and deformed configuration at room temperature. The stable recorded color can be erased and reconfigured by simply heating and similar color-recording procedures respectively due to the thermoswitchable on-off mechanochromism of thermal-responsive mechanochromic photonic crystals along with solid-gel phase transition. These thermal-responsive mechanochromic photonic crystals are ideal rewritable papers for ink-freely achieving multicolor patterns with high resolution, difficult for conventional photonic papers. This work offers a perspective for designing color-recordable/erasable and other stimulus-switchable materials with advanced applications.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Dongpeng Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Shaoming Huang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
6
|
Zhou S, Zhang C, Fu Z, Zhu Q, Zhou Z, Gong J, Zhu N, Wang X, Wei X, Xia L, Xu W. Color construction of multi-colored carbon fibers using glucose. Nat Commun 2024; 15:1979. [PMID: 38438379 PMCID: PMC10912437 DOI: 10.1038/s41467-024-46395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Carbon fibers (CFs) have attracted attention in the automotive, aviation, and aerospace industries. However, the coloration of CFs is challenging due to their brittleness, inertness, complexity, and time/energy-intensive processes. Herein, inspired by the naturally grown protrusive nanostructures on the green central surface of peacock back feathers, we report an in-situ self-growing strategy for developing carbon spheres (CSs) on the CFs surface to achieve color tuning. This is achieved via the dynamic growth of CSs using glucose as the feeding material. Combined with the coloration process, the interaction between CSs and CFs promotes stable interfacial forces in integrated molding. This strategy allows the coloring system to continuously vary its color in a designated manner, thereby, endowing it with satisfactory mechanical robustness, acid durability, and light fastness. We anticipate this developed approach can be potentially competitive in the color construction of CFs with multi-colors due to its low-cost manufacturing.
Collapse
Affiliation(s)
- Sijie Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Chunhua Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Zhuan Fu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qimeng Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Zhaozixuan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Junyao Gong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Na Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaofeng Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Xinjie Wei
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Liangjun Xia
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
7
|
Wang Z, Meng F, Kong M, Guo X, Zhang S, Zhang Y, Tang B. 2D Information Security System Based on Polyurethane Inverse Photonic Glass Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305825. [PMID: 37699756 DOI: 10.1002/smll.202305825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Indexed: 09/14/2023]
Abstract
Information security has become a major global problem in recent years. Thus, people continue to exert much effort in developing new information security technologies based on encryption and storage. In this study, a 2D information security technology based on polyurethane optical devices with inverse photonic glass structure (PU-IPG) is introduced. Based on 1) the swelling and plasticizing effects of various solvents on PU-IPG and 2) the capillary force that can produce geometric deformation on micro/nanostructures when solvents evaporate, a 2D information security system with two modules of decryption (structural color information display) and anticounterfeiting (structural color transformation) is successfully constructed. The spraying method adopted can be simple and fast and can provide a large area to build photonic glass templates, which greatly improves the capacity and category of information in the encryption system. The prepared PU-IPG optical devices can produce large-area multicolor output capability of information. These devices also have excellent mechanical properties, strong cycle stability, environmental friendliness, and low price. Therefore, the preparation strategy has great reference value and application prospects in the field of information security.
Collapse
Affiliation(s)
- Zhenzhi Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fantao Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Miao Kong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiaoyu Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
8
|
Zhang X, Yin T, Ge J. Thermochromic Photonic Crystal Paper with Integrated Multilayer Structure and Fast Thermal Response: A Waterproof and Mechanically Stable Material for Structural-Colored Thermal Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309344. [PMID: 37906731 DOI: 10.1002/adma.202309344] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Thermochromic photonic crystals are promising materials for thermal printing due to their unfaded colors under chemical/illuminated environments and the absence of toxic chemicals. However, the slow thermochromic response, the multistep printing procedures, the use of inks or developing liquids, and the requirement of expensive parts in printers limit their applications. Here, a thermochromic polyurethane/hydrophobic-SiO2 photonic crystal/paraffin (PU/HPO-SiO2 -PC/Para) film with an integrated multilayer structure is fabricated for all-solid-state and single-step thermal printing that is fully compatible with commercial printers. The fast thermochromic response in milliseconds enables high-resolution and grayscale printing as the paraffin infiltration and the color change can be finely controlled in a microscale range. The integrated and hydrophobic multilayer structure renders the thermochromic film good stability in daily liquids, which addresses the long-existing concern of print fading. Meanwhile, the integrated multilayer structure also enhances the mechanical stability when it is deposited on fibrous paper so that people can fold, cut, or staple the thermal papers, and make notes confidently in practical usage.
Collapse
Affiliation(s)
- Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, China
| | - Tian Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083, China
| | - Jianping Ge
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| |
Collapse
|
9
|
Song L, Qi Y, Zhang S. Permanent irreversible structural color based on core-shell chemically bonded SiO 2@P(St-BA) particles. Chem Commun (Camb) 2023. [PMID: 37464889 DOI: 10.1039/d3cc02375c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Novel core-shell chemically bonded SiO2@P(St-BA) particles were designed and self-assembled to prepare photonic crystals. Due to the irreversible collapse of polymer shells during hot-pressing, SiO2@P(St-BA) particles could provide new ideas for high-stability and bright red-shifted structural color patterns.
Collapse
Affiliation(s)
- Liujun Song
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
10
|
Jiang H, Li Y, Liu F, Sheng L, Tao CA, Wang J. An Angle-Independent Multi-Color Display Electro-Responsive Hydrogel Film. Gels 2023; 9:568. [PMID: 37504447 PMCID: PMC10379048 DOI: 10.3390/gels9070568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
In nature, some organisms have the ability to camouflage to adapt to environmental changes; they blend with the environment by changing their skin colors. Such a phenomenon is of great significance for the research of adaptive camouflage materials. In this study, we propose a novel design scheme for the study of angle-independent photonic materials and successfully prepare an electrically tunable multi-color display angle-independent inverse opal photonic gel (IOPG). After photopolymerization of hydroxyethyl methacrylate with ionizable monomer acrylic acid (AA) in a long-range disordered opal template and etching, the angle-independent inverse opal photonic gel is obtained, presenting a single structural color. The electrically responsive color changes can be achieved at different angles. The color of the disordered AA-IOPG changes from green to blue-green when applying +4 V bias voltage and from green to orange when applying -4 V bias voltage. The electrochromism of the disordered AA-IOPG is mainly due to the local pH change caused by water electrolysis under bias voltage, which leads to a change of the swelling ratio. The disordered AA-IOPG shows high color tunability and durability through repeated opposite bias voltage tests, indicating that it is a promising conductive photonic material.
Collapse
Affiliation(s)
- Huan Jiang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Yujiao Li
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Fangfang Liu
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Liping Sheng
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
11
|
Pan LC, Hsieh SY, Chen WC, Lin FT, Lu CH, Cheng YL, Chien HW, Yang H. Self-Assembly of Shark Scale-Patterned Tunable Superhydrophobic/Antifouling Structures with Visual Color Response. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37436935 DOI: 10.1021/acsami.3c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The stacked riblet-like shark scales, also known as dermal denticles, allow them to control the boundary layer flow over the skin and to reduce interactions with any biomaterial attached, which guide the design of antifouling coatings. Interestingly, shark scales are with a wide variation in geometry both across species and body locations, thereby displaying diversified antifouling capabilities. Inspired by the multifarious denticles, a stretchable shark scale-patterned silica hollow sphere colloidal crystal/polyperfluoroether acrylate-polyurethane acrylate composite film is engineered through a scalable self-assembly approach. Upon stretching, the patterned photonic crystals feature different short-term antibacterial and long-term anti-biofilm performances with a distinguished color response under varied elongation ratios. To gain a better understanding, the dependence of elongation ratio on antiwetting behaviors, antifouling performances, and structural color changes has also been investigated in this research.
Collapse
Affiliation(s)
- Liang-Cheng Pan
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Shang-Yu Hsieh
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Wei-Cheng Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82444, Taiwan
| | - Fang-Tzu Lin
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Chieh-Hsuan Lu
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Ya-Lien Cheng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82444, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 402202, Taiwan
| |
Collapse
|
12
|
Zhou J, Chen R, Wu J, Tang Z, Pan G, Fang Z, Zhu Y, Lin W, Lin X, Yi G. Portable Comestible-Liquid Quality Test Enabled by Stretchable and Reusable Ion-Detection Photonic Papers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36884009 DOI: 10.1021/acsami.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Currently, there have been widespread investigation conducted into responsive photonic crystal hydrogels (RPCHs) characterized by high selectivity and sensitivity for colorimetric indicators and physical/chemical sensors. In spite of this, it remains challenging to use RPCHs for sensing due to their limited mechanical property and molding capability. In the present study, a double-network structure is proposed to design highly stretchable, sensitive, and reusable ion-detection photonic papers (IDPPs) for assessing the quality of visual and portable comestible liquids (e.g., soy sauce). It is constructed by integrating polyacrylamide and poly-methacryloxyethyl trimethyl ammonium chloride with highly ordered polystyrene microspheres. The double-network structure improves the mechanical properties of IDPPs with their elongation at break increasing from 110 to 1600%. Meanwhile, the optical properties of photonic crystals are retained. The IDPPs achieve a fast ion response by applying control on the swelling behavior of the hydration radius of the counter ions through ion exchange. Given a certain concentration range (0.01-0.10 M), chloride ions can be detected fast (3-30 s) by exchanging ions with a small hydration radius through an IDPP, which is clearly observable. Due to the improvement of mechanical properties and the reversible exchange of ions derived from IDPPs, their reusability is significantly enhanced (>30 times). Characterized by a simple operation, high durability, and excellent sustainability, these IDPPs are promising for practical application in food security and human health assessment.
Collapse
Affiliation(s)
- Jie Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Ruilian Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jianyu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Zilun Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Guoyi Pan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Ziquan Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Yongxiang Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
13
|
Recent advances in photonic crystal-based sensors. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Dual Responsive Dependent Background Color Based on Thermochromic 1D Photonic Crystal Multilayer Films. Polymers (Basel) 2022; 14:polym14235330. [PMID: 36501724 PMCID: PMC9735666 DOI: 10.3390/polym14235330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
In this paper, we present dual responsive one-dimensional (1D) photonic crystal (PC) multilayer films that utilize a high-humidity environment and temperature. Dual responsive 1D PC multilayer films are fabricated on precoated thermochromic film by sequential alternate layer deposition of photo-crosslinkable poly(2-vinylnaphthalene-co-benzophenone acrylate) (P(2VN-co-BPA)) as a high refractive index polymer, and poly(4-vinylpyrollidone-co-benzophenone acrylate) P(4VP-co-BPA) as a low refractive index polymer. The thermochromic film shows a vivid color transition from black to white at 28 °C. Three different colors of thermochromic 1D PC multilayer films are prepared by thickness modulation of P(4VP-co-BPA) layers, and the films on a black background exhibit visible spectrum color only in a high-humidity environment (over 90% relative humidity (RH)). For the three films placed on a hands display, three different composite colors are synthesized by the reflection of light, including yellow, magenta, and cyan, due to the changing of backgrounds from black to white with temperature. Additionally, the films show remarkable color transitions with reliable reversibility. The films can be applied as anti-counterfeiting labels and can be used for smart decoration films. To the best of our knowledge, this is the first report of dual response colorimetric films that change color in various ways depending on temperature and humidity changes, and we believe that it can be applied to various applications.
Collapse
|
15
|
Li M, Lyu Q, Peng B, Chen X, Zhang L, Zhu J. Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110488. [PMID: 35263465 DOI: 10.1002/adma.202110488] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Organisms in nature have evolved unique structural colors and stimuli-responsive functions for camouflage, warning, and communication over millions of years, which are essential to their survival in harsh conditions. Inspired by these characteristics, colloidal photonic composites (CPCs) composed of colloidal photonic crystals embedded in the polymeric matrix are artificially prepared and show great promise in applications. This review focuses on the summary of building blocks, i.e., colloidal particles and polymeric matrices, and constructive strategies from the perspective of designing CPCs with robust performance and specific functionality. Furthermore, their state-of-the-art applications are also discussed, including colorful coatings, anti-counterfeiting, and regulation of photoluminescence, especially in the field of visualized sensing. Finally, current challenges and potential for future developments in this field are discussed. The purpose of this review is not only to clarify the design principle for artificial CPCs but also to serve as a roadmap for the exploration of next-generation photonic materials.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bolun Peng
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
16
|
Xu M, Liang S, Zhang W, Feng L, Chen K, Deng X, Zhang D, Cai J. Biomimetic color‐changing skin based on temperature‐responsive hydrogel microspheres with the photonic crystal structure. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Minghao Xu
- College of Engineering China Agricultural University Beijing China
| | - Shuzhang Liang
- School of Mechanical Engineering & Automation Beihang University Beijing China
| | - Wenqiang Zhang
- College of Engineering China Agricultural University Beijing China
| | - Lin Feng
- School of Mechanical Engineering & Automation Beihang University Beijing China
| | - Kehan Chen
- College of Engineering China Agricultural University Beijing China
| | - Xue Deng
- College of Engineering China Agricultural University Beijing China
| | - Deyuan Zhang
- School of Mechanical Engineering & Automation Beihang University Beijing China
| | - Jun Cai
- School of Mechanical Engineering & Automation Beihang University Beijing China
| |
Collapse
|
17
|
Shin JH, Park JY, Han SH, Lee YH, Sun J, Choi SS. Color-Tuning Mechanism of Electrically Stretchable Photonic Organogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202897. [PMID: 35798315 PMCID: PMC9443443 DOI: 10.1002/advs.202202897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In contrast to nano-processed rigid photonic crystals with fixed structures, soft photonic organic hydrogel beads with dielectric nanostructures possess advanced capabilities, such as stimuli-responsive deformation and photonic wavelength color changes. Recenlty, advanced from well-investigated mechanochromic method, an electromechanical stress approach is used to demonstrate electrically induced mechanical color shifts in soft organic photonic hydrogel beads. To better understand the electrically stretchable color change functionality in such soft organic photonic hydrogel systems, the electromechanical wavelength-tuning mechanism is comprehensively investigated in this study. By employing controllable electroactive dielectric elastomeric actuators, the discoloration wavelength-tuning process of an electrically stretchable photonic organogel is carefully examined. Based on the experimental in-situ response of electrically stretchable nano-spherical polystyrene hydrogel beads, the color change mechanism is meticulously analyzed. Further, changes in the nanostructure of the symmetrically and electrically stretchable organogel are analytically investigated through simulations of its hexagonal close-packed (HCP) lattice model. Detailed photonic wavelength control factors, such as the refractive index of dielectric materials, lattice diffraction, and bead distance in an organogel lattice, are theoretically studied. Herein, the switcing mechanism of electrically stretchable mechanochromic photonic organogels with photonic stopband-tuning features are suggested for the first time.
Collapse
Affiliation(s)
- Jun Hyuk Shin
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Ji Yoon Park
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Sang Hyun Han
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Yun Hyeok Lee
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong‐Yun Sun
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced MaterialsSeoul National UniversitySeoul08826Korea
| | - Su Seok Choi
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
18
|
Xiao X, Yang Z, Yu Q, Shi D, Dong W, Zhang H, Chen M. Regulating the wetting behaviors of hollow silica photonic crystals in detection and encryption applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109055. [PMID: 35258117 DOI: 10.1002/adma.202109055] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Advances in wearable epidermal sensors have revolutionized the way that physiological signals are captured and measured for health monitoring. One major challenge is to convert physiological signals to easily readable signals in a convenient way. One possibility for wearable epidermal sensors is based on visible readouts. There are a range of materials whose optical properties can be tuned by parameters such as temperature, pH, light, and electric fields. Herein, this review covers and highlights a set of materials with tunable optical properties and their integration into wearable epidermal sensors for health monitoring. Specifically, the recent progress, fabrication, and applications of these materials for wearable epidermal sensors are summarized and discussed. Finally, the challenges and perspectives for the next generation wearable devices are proposed.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiansong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
20
|
Dual-Responsive Photonic Crystal Sensors Based on Physical Crossing-Linking SF-PNIPAM Dual-Crosslinked Hydrogel. Gels 2022; 8:gels8060339. [PMID: 35735683 PMCID: PMC9223110 DOI: 10.3390/gels8060339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 12/26/2022] Open
Abstract
Flexible wearable materials have frequently been used in drug delivery, healthcare monitoring, and wearable sensors for decades. As a novel type of artificially designed functional material, photonic crystals (PCs) are sensitive to the changes in the external environment and stimuli signals. However, the rigidity of the PCs limits their application in the field of biometric and optical sensors. This study selects silk fibroin (SF) and poly-N-isopropylacrylamide (PNIPAM) as principal components to prepare the hydrogel with the physical crosslinking agent lithium silicate (LMSH) and is then integrated with PCs to obtain the SF-PNIPAM dual-crosslinked nanocomposite for temperature and strain sensing. The structural colors of the PCs change from blue to orange-red by the variation in temperature or strain. The visual temperature-sensing and adhesion properties enable the SF-PNIPAM dual-crosslinked nanocomposite to be directly attached to the skin in order to monitor the real-time dynamic of human temperature. Based on its excellent optical properties and biocompatibility, the SF-PNIPAM dual-crosslinked nanocomposite can be applied to the field of visual biosensing, wearable display devices, and wound dressing materials.
Collapse
|
21
|
Zhang X, Ran Y, Fu Q, Ge J. Ultrafast and Irreversibly Thermochromic SiO 2 -PC/PEG Double Layer for Green Thermal Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106533. [PMID: 35246927 DOI: 10.1002/smll.202106533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Traditional thermochromic photonic crystal (PC) usually has a slow and reversible thermal response, which limits its application in thermal printing. Here, the authors develop a thermochromic "SiO2 -PC/PEG" double layer structure with a responding time of milliseconds for fast thermal printing. Controlled by the print-head, the polyethylene glycol (PEG) melts, infiltrates, and solidifies within the interparticle voids, which instantly and irreversibly changes the refractive index and produces the PC pattern. Multicolor printing can be realized by tuning the size and type of colloidal particles. Resolution as high as 300 DPI is achieved to print the high-resolution patterns and then the grayscale patterns based on the control of pixel densities. Different from fiber thermal paper, the "SiO2 -PC/PEG" film has no toxic bisphenol A and possesses superior light stability for keeping the images longer. It is fully compatible with the commercial printer, which provides a mature solution for fast and convenient preparation of PC patterns.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Yumei Ran
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Qianqian Fu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Jianping Ge
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
22
|
Li H, Zhao G, Zhu M, Guo J, Wang C. Robust Large-Sized Photochromic Photonic Crystal Film for Smart Decoration and Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14618-14629. [PMID: 35297599 DOI: 10.1021/acsami.2c01211] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photochromic materials are widely investigated due to their vivid color transformation for many real applications. In this work, a new kind of multiangle photochromic photonic crystal (PC) material with high robustness and long durability for smart phone decoration and anticounterfeiting features is fabricated. After thermal mixing of spiropyran powder and monodisperse core-interlayer-shell (CIS) particles, a large-area and high-quality photochromic PC film has been prepared by the self-designed bending-induced ordering technique (BIOT). The spiropyran powder can be well dispersed in the order-structured PC system, so the perfect synergistic combination of photochromism and angle-dependent structure colors can be achieved. The color-switching test for the as-prepared photochromic PC film proved its excellent reversibility and stability. Because of the excellent flexibility of the photo-cross-linked PC films, they can be designed and cut into various shapes with high robustness and long durability. Interestingly, a temperature-controlled photochromic effect was found in this photochromic PC system. Therefore, the as-prepared photochromic PC films can play a significant role in the fields of smart decoration and anticounterfeiting by their unique color switching effects under different stimuli. More importantly, our work verified the feasibility of this route to prepare a series of large-sized advanced smart PC devices by adding versatile functional materials.
Collapse
Affiliation(s)
- Huateng Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Guowei Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Mengjing Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
23
|
Meng Z, Wu Y, Ren J, Li X, Zhang S, Wu S. Upconversion Nanoparticle-Integrated Bilayer Inverse Opal Photonic Crystal Film for the Triple Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12562-12570. [PMID: 35230796 DOI: 10.1021/acsami.1c25059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical anticounterfeiting plays a vital role in information security because it can be recognized by the naked eye and is difficult to imitate. Herein, a hydrophilic modified upconversion nanoparticle (M-UCNP)-integrated bilayer inverse opal photonic crystal (IOPC) film was designed in which the luminescent M-UCNPs were deposited on the surface of the optimized bilayer structure with double photonic stop bands. The structure which can modulate light to produce structural colors can also enhance the upconversion luminescence (UCL) to improve the anticounterfeiting effect synergistically. On the one hand, the reflection colors from green to blue were observed in the specular angles on the front (540-layer) of the film. Meanwhile, the scattering colors under nonspecular angles from red to blue on the back (808-layer) appeared in the natural light. On the other hand, the bilayer structure in which the 808-layer functions as a "secondary excitation source" to improve the intensity of the excitation light on M-UCNPs and the 540-layer reflects the emission light of the M-UCNPs to enhance the UCL intensity endows the film with good night vision ability. Finally, the dual-mode structural colors and enhanced UCL of the patterned film work together to realize triple anticounterfeiting in banknotes.
Collapse
Affiliation(s)
- Zhipeng Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yue Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jie Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
24
|
Xu B, Ma X, Dai A, Pan X, Pan X, Li N, Zhu J. Fabrication of multi-responsive photonic crystals based on selenium-containing copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00654e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Responsive photonic crystals (PCs) have attracted great interest due to their adjustable structure color.
Collapse
Affiliation(s)
- Bin Xu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Xiaoliang Ma
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Anqi Dai
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Xiaofeng Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Na Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Suzhou, 215123, Peoples Republic of China
| |
Collapse
|
25
|
Dong Y, Combs JD, Cao C, Weeks ER, Bazrafshan A, Rashid SA, Salaita K. Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution. NANO LETTERS 2021; 21:9958-9965. [PMID: 34797077 DOI: 10.1021/acs.nanolett.1c03399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogels embedded with periodic arrays of nanoparticles display a striking photonic crystal coloration that may be useful for applications such as camouflage, anticounterfeiting, and chemical sensing. Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. Magnetic nanoparticles entrapped within these DNA gels generate a structural color only when the gel is heated and a magnetic field is applied. A spatially controlled photonic crystal coloration was achieved by photopatterning with a near-infrared illumination. Color was "erased" by illuminating or heating the gel in the absence of an external magnetic field. The on-demand assembly technology demonstrated here may be beneficial for the development of a new generation of smart materials with potential applications in erasable lithography, encryption, and sensing.
Collapse
Affiliation(s)
- Yixiao Dong
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - J Dale Combs
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Cong Cao
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States
| | - Eric R Weeks
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States
| | - Alisina Bazrafshan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Sk Aysha Rashid
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
26
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
27
|
Ji C, Zeng J, Qin S, Chen M, Wu L. Angle-independent responsive organogel retroreflective structural color film for colorimetric sensing of humidity and organic vapors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Wang JW, Wu X, Yu XQ, Guo M, Zhao J, Zhu L, Chen S. Armored colloidal photonic crystals for solar evaporation. NANOSCALE 2021; 13:16189-16196. [PMID: 34545905 DOI: 10.1039/d1nr03953a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal photonic crystals (CPCs) with a highly ordered crystal structure have attracted great attention in displays, colorimetric sensors and solar energy utilization fields. However, the easily cracking microstructure, inferior assembly efficiency and low refractive index contrast result in poor structural colors. Herein, we develop core-shell poly(styrene-acrylic)@polypyrrole (P(St-AA)@PPy) colloidal nanoparticles by the in situ chemical coupling reaction via droplet microfluidic technology. By membrane separation-assisted assembly (MSAA) and electrostatic spraying strategies, the P(St-AA)@PPy colloidal nanoparticles are assembled into the CPC film, which presents high assembly efficiency and saturated angle-independent structural colors, due to the light-absorbing PPy shell and hydrogen-bond interaction between nanoparticles. Benefitting from these outstanding performances, the P(St-AA)@PPy film shows excellent photothermal properties, which can realize a solar vaporization rate of 1.5825 kg m-2 h-1, corresponding to a light-to-vapor efficiency of 94.20%, under 1.0 sun solar irradiance conditions. Our findings open a path for the design of functional CPCs and new-generation photothermal applications.
Collapse
Affiliation(s)
- Jia-Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P.R. China.
| | - Xingjiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P.R. China.
| | - Xiao-Qing Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P.R. China.
| | - Min Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P.R. China.
| | - Jin Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P.R. China.
| | - Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P.R. China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P.R. China.
| |
Collapse
|
29
|
Minh NH, Kim K, Kang DH, Yoo YE, Yoon JS. Fabrication of robust and reusable mold with nanostructures and its application to anti-counterfeiting surfaces based on structural colors. NANOTECHNOLOGY 2021; 32:495302. [PMID: 34380119 DOI: 10.1088/1361-6528/ac1cbf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, we report a method to fabricate molds and flexible stamps with 2D photonic crystal structures. This includes self-assembly of polystyrene particles into monolayer, oxygen reactive ion etching, thin film (chromium (Cr)) deposition, and polydimethylsiloxane replication. By tuning the thickness of Cr layer, reusable master molds with nano bumps or nano concaves could be prepared selectively. We showed that the replicated flexible stamps out of these molds exhibited structural colors. Characteristics of the colors depended on viewing angle, brightness of background and light source. And the colors even faded out when the background is white or when the stamp was bent. By using this feature, possible strategies for anti-counterfeiting applications have been suggested in this study. Since the molds are reusable and the fabrication method is simple and cost-effective, this study is expected to contribute to nano devices for industries in future.
Collapse
Affiliation(s)
- Nguyen Hoang Minh
- Dept. Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Republic of Korea
- Dept. Nano Mechatronics, Korea University of Science and Technology (UST), Republic of Korea
| | - Kwanoh Kim
- Dept. Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Republic of Korea
| | - Do Hyun Kang
- Dept. Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Republic of Korea
| | - Yeong-Eun Yoo
- Dept. Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Republic of Korea
- Dept. Nano Mechatronics, Korea University of Science and Technology (UST), Republic of Korea
| | - Jae Sung Yoon
- Dept. Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Republic of Korea
- Dept. Nano Mechatronics, Korea University of Science and Technology (UST), Republic of Korea
| |
Collapse
|
30
|
Fang Y, Fei W, Shen X, Guo J, Wang C. Magneto-sensitive photonic crystal ink for quick printing of smart devices with structural colors. MATERIALS HORIZONS 2021; 8:2079-2087. [PMID: 34846485 DOI: 10.1039/d1mh00577d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, we report a facile strategy to combine magneto-responsive photonic crystal (MRPC) ink with 3D printing technology. The building blocks of MRPC are based on Fe3O4 magnetic nanoparticle clusters (MNCs) with uniform and tunable size. The MNC dispersion is able to change its photonic band gap from red to blue as the external magnetic field strength is increased. The magneto-responsive photonic crystal ink can be readily obtained by taking advantage of an ethylene glycol (EG)-in-oil emulsion with a reinforced silicone rubber prepolymer as the outer phase. Using the well-designed formula, the MNC dispersion can be well-preserved inside the emulsion droplets of the ink, maintaining its original contactless magnetic field response. As a proof of concept, custom quick response code and butterfly patterns were successfully printed and showed vivid and tunable color as a function of the external magnetic field strength with good repeatability.
Collapse
Affiliation(s)
- Yiquan Fang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | | | | | | | | |
Collapse
|
31
|
Chen Q, Wei Z, Wang S, Zhou J, Wu Z. A self-healing smart photonic crystal hydrogel sensor for glucose and related saccharides. Mikrochim Acta 2021; 188:210. [PMID: 34047843 DOI: 10.1007/s00604-021-04849-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
A self-healing smart PhC hydrogel sensor that combines the optical property of photonic crystal and the dynamic regeneration property of boronate ester bond has been prepared for determination of glucose and related saccharides using Debye diffraction ring detection. The boronate ester bond formed through phenylboronic acid and dopamine endows the hydrogel network self-healing ability, and the tensile stress of the healing hydrogel can recover to 94.4%; this excellent self-healing property can effectively improve the reliability and lifetime of the hydrogel. Due to the high bonding capacity between 1,2- and 1,3-diol and phenylboronic acid, the hydrogel sensor has a good recognition ability for glucose and related saccharides. The reaction between the monosaccharides and the phenylboronic acid group makes the sensor swell and the diameter of the Debye diffraction ring decrease. The sensor shows good reuse and responsive ability for saccharides; the RSD of the recoverability assays is 4.3%. The determination range of the sensor to glucose is 0.5 to 12 mM. The sensor also has good response to glucose in urine, exhibiting potential application value in the preliminary screening of diabetes. Although the sensor has poor selectivity for specific monosaccharides, the process of measuring the Debye ring makes the determination no longer rely on expensive and complicated equipment and greatly simplifies the determining process and reduces the cost of determination, which shows a broad application prospect. The boronate ester bond formed through phenylboronic acid and dopamine results in the self-healing property of hydrogel network, which can effectively improve the reliability and lifetime of hydrogel. And due to the high bonding capacity between 1,2- and 1,3-diol and phenylboronic acid, the smart hydrogel sensor has a good recognition ability for glucose and related saccharides. The reaction between the monosaccharides and the phenylboronic acid group breaks the original boronate ester bond; this will lead to a decrease in cross-linking density of the PhC hydrogel sensor and further makes the sensor swell and the diameter of the Debye diffraction ring decrease.
Collapse
Affiliation(s)
- Qianshan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Zufeng Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Shihong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jun Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
32
|
Zhang S, Zhang S, Yin N, Huang Z, Xu W, Yue K, Li X, Li D. Exploring Reversible Thermochromic Behavior in a Rare Ni(II)-MOF System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6430-6441. [PMID: 33525879 DOI: 10.1021/acsami.0c21116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermochromic metal-organic frameworks (MOFs) are promising functional materials for a wide range of applications due to their ability to exhibit color variation under external temperature stimuli, yet the development of them with high cyclability and efficient regeneration processes remains challenging. Here, presented is a rare example of an ultrastable Ni(II)-MOF exhibiting an unprecedented reversible four-step color change between two complementary colors in a wide temperature range, which could be repeated for at least 500 cycles without losing crystallinity and thermochromic performance. Notably, the regeneration can be achieved within 1 min by simply letting the crystals cool naturally in the air, facilitated by the unique nature of the channels' inner surface. The reversible thermochromic behavior is owing to a series of reversible crystal structure changes with temperature, including the stepwise dehydration/rehydration process, and structural changes. This work facilitates the future development of more MOF-based reversible thermochromic materials with excellent performance and improved practical applicability.
Collapse
Affiliation(s)
- Shihui Zhang
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Shuyu Zhang
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Nan Yin
- Thermochemistry Laboratory, Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenqi Huang
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Wenhua Xu
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Kefen Yue
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Xiuyuan Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, China
| | - Dongsheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang 443002, China
| |
Collapse
|
33
|
Wang C, Xiao F, Chen Q, Wang S, Zhou J, Wu Z. A two-dimensional photonic crystal hydrogel biosensor for colorimetric detection of penicillin G and penicillinase inhibitors. Analyst 2021; 146:502-508. [PMID: 33210667 DOI: 10.1039/d0an01946a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple penicillinase functionalized two-dimensional photonic crystal hydrogel (2DPPCH) biosensor was developed for colorimetric detection of penicillin G and penicillinase inhibitors. The penicillinase can specifically recognize penicillin G and catalyze it to produce penicilloic acid, which decreases the pH of the hydrogel microenvironment and shrinks the pH-sensitive hydrogel. The particle spacing decrease of the 2D photonic crystal array induced by the hydrogel shrinkage further causes a blue-shift in the diffraction wavelength. While the hydrolysis reaction is repressed upon treatment with clavulanate potassium (a kind of penicillinase inhibitor), no significant change in the diffraction wavelength is found. The detection of targets can be achieved by measuring the Debye diffraction ring diameter or observing the structural color change in the visible region. The lowest detectable concentrations for penicillin G and clavulanate potassium are 1 μM and 0.1 μM, respectively. Moreover, the 2DPPCH is proved to exhibit high selectivity and an excellent regeneration property, and it shows satisfactory performance for penicillin G analysis in real water samples.
Collapse
Affiliation(s)
- Changping Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | | | | | | | | | | |
Collapse
|
34
|
Simple and efficient fabrication of multi-stage color-changeable photonic prints as anti-counterfeit labels. J Colloid Interface Sci 2021; 590:134-143. [PMID: 33524714 DOI: 10.1016/j.jcis.2021.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/23/2022]
Abstract
Color changeable photonic prints (CCPPs) show their potential applications in high-level information storage and anti-counterfeiting, but usually suffer from the complex fabrication process and limited color variation. Here, a simple and efficient method is developed to generate CCPPs with multilevel tunable color contrasts by packing the solvent responsive photonic crystals with diverse cross-linking degrees and desired way. The key to the successful fabrication is to create and control over the optical response of each part of the CCPPs through altering the cross-linking degree of PCs and thus the affinity between the CCPPs and solvents. A CCPPs based anti-fake label with the encrypted information functionality which originates from reversible color change between dried state and swelling with the mixture of acetic acid and ethanol is investigated. Compared with conventional CCPPs, the as-prepared CCPPs can reveal multistage information depending on the volume fraction of ethanol. This work provides a new insight for the simple fabrication of CCPPs and will facilitate their applications in the information protection and high-level anti-counterfeiting.
Collapse
|
35
|
Li J, Lu X, Zhang Y, Cheng F, Li Y, Wen X, Yang S. Transmittance Tunable Smart Window Based on Magnetically Responsive 1D Nanochains. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31637-31644. [PMID: 32559372 DOI: 10.1021/acsami.0c08402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Smart optical materials are drawing more and more attention because of their wide application in energy conservation, wearable sensors, optical tuning, and medical devices. However, current smart optical materials, including electroresponsive, thermoresponsive, and mechanoresponsive materials, are greatly restricted in practical applications because of their long response time, complicated preparation, and high cost. This study develops a novel, magnetically tunable, smart optical material with swift and high-contrast optical switching based on one-dimensional (1D) Fe3O4@SiO2 nanochains (NCs), which have the large shape anisotropy of the 1D structure and the superparamagnetic properties of Fe3O4 particles. The material exhibited a clear transparent state when NCs were arranged parallel to the viewing direction under an applied magnetic field, whereas it showed good shielding effect when the NCs were randomly oriented upon removal of the field. The light transmittance could be dynamically adjusted over the wide range of 20-80% through a small applied magnetic field of 50-100 Oe, which is superior to most of the currently reported systems. This swift, sensitive, and reversible response is attributed to the good responsivity of magnetic NCs. Also, an effective model was proposed to explain the transmittance modulation scheme and forecast its optical potential. The large tunable range and the low triggered field make Fe3O4@SiO2 NCs an advantageous candidate for application in smart windows, optical switchers, and other fields.
Collapse
Affiliation(s)
- Jianing Li
- Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuegang Lu
- Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yin Zhang
- Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Cheng
- Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanlin Li
- Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoxiang Wen
- Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sen Yang
- Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
36
|
Zhao P, Xu B, Zhang Y, Li B, Chen H. Study on the Twisted and Coiled Polymer Actuator with Strain Self-Sensing Ability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15716-15725. [PMID: 32141730 DOI: 10.1021/acsami.0c01179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Twisted and coiled polymer actuators (TCAs) are a kind of efficient artificial muscles, which have good prospects for application in soft robots, bionic devices, and biological, medical, and other high-tech fields. However, the inability to dynamically sense and adjust the strain of the actuator will lead to uncertainty in the accuracy of deformation and strain, resulting in imprecise target action. Herein, TCAs with strain self-sensing ability (TCASA) are prepared by integrating the stretchable optomechanical film (SOMF) sensors into TCAs, which provides a simple strategy for dynamical strain sensing. These SOMFs have a wide range of color changes during deformation of TCAs, and the strain is perceived by observing the color change according to the corresponding relationship between color change and strain. Furthermore, the proposed TCASA maintain excellent cycling stability of strain self-sensing during cyclic tests (200 cycles) and excellent strain self-sensing performance to perform strain control compared to TCAs without SOMFs. The results indicate that the proposed structure is a promising soft actuator with excellent strain self-sensing ability, which is well suited for soft robots, bionic devices, biological and medical fields, smart wearable technologies, and so forth, especially when controlled, repetitive deformations are required.
Collapse
Affiliation(s)
- Pengfei Zhao
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Shaanxi Key Laboratory of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Department of Mechanical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, P. R. China
| | - Bo Xu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Shaanxi Key Laboratory of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yakun Zhang
- Shaanxi Key Laboratory of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bo Li
- Shaanxi Key Laboratory of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hualing Chen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Shaanxi Key Laboratory of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
37
|
Zhang Y, Ge J. Liquid photonic crystal detection reagent for reliable sensing of Cu 2+ in water. RSC Adv 2020; 10:10972-10979. [PMID: 35492937 PMCID: PMC9050449 DOI: 10.1039/d0ra01014f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
A traditional hydrogel photonic crystal sensor is prepared by multiple steps, including colloidal assembly, polymerization, and recognition group modification, and its measurement repeatability is a challenge due to the inevitable deviations in sensor fabrication and application. In this work, a salicylic acid-containing “SiO2/propylene carbonate” liquid photonic crystal (Sal-LPC), as a new photonic sensing material, was developed to demonstrate reliable measurement of Cu2+ in water. When the Sal-LPC reagent was mixed with the test sample, the Cu2+ promoted the release of H+ from Sal and shrank the photonic crystal lattice, so that the Cu2+ concentration could be determined by the reflection blueshift of liquid PC. The Sal-LPC reagent showed a stronger response to Cu2+ than to other cations, and its sensitivity and measurement range could be optimized by the particle fraction and Sal dosage. Compared to traditional PC hydrogel sensors, the liquid PC reagent was composed of colloidal particles and responsive species, which required no strict control in synthesis. More importantly, the optical response of the liquid PC reagent was scarcely affected by changes in synthesis, storage, or application, and it could interact with the analyte quickly and quantitatively, which ensured accurate and repeatable measurement in either chemical analysis or environmental monitoring. A salicylic acid-containing liquid photonic crystal can detect Cu2+ through its reflection blueshift due to the release of H+.![]()
Collapse
Affiliation(s)
- Yixin Zhang
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- East China Normal University
- Shanghai 200062
- China
| | - Jianping Ge
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
38
|
Zhang J, Meng Z, Liu J, Chen S, Yu Z. Spherical Colloidal Photonic Crystals with Selected Lattice Plane Exposure and Enhanced Color Saturation for Dynamic Optical Displays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42629-42634. [PMID: 31623433 DOI: 10.1021/acsami.9b15352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
While structural color materials have nonfading properties and contribute significantly to the sustainable development of pigments or dyes, they are plagued by low color saturation and limited color tunability. Here, we describe a new type of spherical colloidal photonic crystals (CPCs) prepared by a droplet-based microfluidic strategy, featuring enhanced color saturation and tunable structural colors. Methyl viologen (MV) functionalized SiO2 colloids were synthesized and used for the preparation of CPCs in microdroplets. Because of the absorption of incoherently scattered light by MV, the ratio of peak-to-background amplitude in the reflectance spectra of CPCs is increased, leading to brilliant structural color with enhanced saturation. The lattice plane exposure of spherical CPCs depends on the refractive index contrast between the filling medium and SiO2 building blocks, and this offers an alternative way to tune the structural color in a spherical CPC. Accordingly, a dynamic optical display was constructed, providing valuable insights to the future development of structural color-based sensors, surface coatings, or displays.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211816 , P. R. China
| | - Zhijun Meng
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Ji Liu
- Department of Mechanical and Energy Engineering , Southern University of Science and Technology , Shenzhen 518055 , P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211816 , P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211816 , P. R. China
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
39
|
Influence of Thermochromic Pigment Powder on Properties of Waterborne Primer Film for Chinese Fir. COATINGS 2019. [DOI: 10.3390/coatings9110742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study chose organic thermochromic pigment powder and waterborne wood primer as the paint base, and Chinese fir board as the substrate to prepare thermochromic waterborne coatings with different concentrations of thermochromic pigment powder. The best concentration of thermochromic pigment powder for waterborne primer film on Chinese fir surface was explored. The experimental results showed that the color-changing property of the primer film was the best when the concentration of pigment powder in primer film was 5.0%–10%. There was a negative correlation between the gloss of the primer and the concentration of pigment powder. The gloss of the primer film was the highest when the concentration of pigment powder was 5%. When the concentration of pigment powder is 0%–20% and 25.0%–30%, the adhesion of the coating is grade 0 and grade 1, respectively. The resistance to the impact of primer film increased with the increase of concentration of pigment powder, but the resistance to the impact of primer film with 0%–30% of thermochromic pigment powder concentration was similar. Scanning electron microscopy showed that the higher the concentration of thermochromic pigment powder, the more particles and agglomeration. When the concentration of pigment powder was 5%, the distribution of particles was uniform and no agglomeration, and the microstructure of primer film was the best. Infrared spectroscopy showed that there was no difference in the composition of the paint film from 0% to 30%. The results showed that the comprehensive property of waterborne primer film on Chinese fir was better when the pigment concentration was 5%. Waterborne thermochromic primer film provides a potential application for the development of intelligent furniture in different temperature ranges.
Collapse
|