1
|
Wang R, Jin B, Li J, Li J, Xie J, Zhang P, Fu Z. Bio-Inspired Synthesis of Injectable, Self-Healing PAA-Zn-Silk Fibroin-MXene Hydrogel for Multifunctional Wearable Capacitive Strain Sensor. Gels 2025; 11:377. [PMID: 40422396 DOI: 10.3390/gels11050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2025] [Revised: 05/18/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025] Open
Abstract
Conductive hydrogels have important application prospects in the field of wearable sensing, which can identify various biological signals for human motion monitoring. However, the preparation of flexible conductive hydrogels with high sensitivity and stability to achieve reliable signal recording remains a challenge. Herein, we prepared a conductive hydrogel by introducing conductive Ti3C2Tx MXene nanosheets into a dual network structure formed by Zn2+ crosslinked polyacrylic acid and silk fibroin for use as a wearable capacitive strain sensor. The prepared injectable hydrogel has a uniform porous structure and good flexibility, and the elongation at break can reach 1750%. A large number of ionic coordination bonds and hydrogen bond interactions make the hydrogel exhibit good structural stability and a fast self-healing property (30 s). In addition, the introduction of Ti3C2Tx MXene as a conductive medium in hydrogel improves the conductivity. Due to the high conductivity of 0.16 S/m, the capacitive strain sensor assembled from this hydrogel presents a high gauge factor of 1.78 over a wide strain range of 0-200%, a fast response time of 0.2 s, and good cycling stability. As a wearable sensor, the hydrogel can accurately monitor the activities of different joints in real-time. This work is expected to provide a new approach for wearable hydrogel electronic devices.
Collapse
Affiliation(s)
- Rongjie Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Xiangyang 441022, China
| | - Boming Jin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jiaxin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Xiangyang 441022, China
| | - Jing Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Xiangyang 441022, China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Xiangyang 441022, China
| | - Pengchao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Xiangyang 441022, China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Xiangyang 441022, China
| |
Collapse
|
2
|
Xue L, An R, Zhao J, Qiu M, Wang Z, Ren H, Yu D, Zhu X. Self-Healing Hydrogels: Mechanisms and Biomedical Applications. MedComm (Beijing) 2025; 6:e70181. [PMID: 40276645 PMCID: PMC12018771 DOI: 10.1002/mco2.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogels have emerged as dependable candidates for tissue repair because of their exceptional biocompatibility and tunable mechanical properties. However, conventional hydrogels are vulnerable to damage owing to mechanical stress and environmental factors that compromise their structural integrity and reduce their lifespan. In contrast, self-healing hydrogels with their inherent ability to restore structure and function autonomously offer prolonged efficacy and enhanced appeal. These hydrogels can be engineered into innovative forms including stimulus-responsive, self-degradable, injectable, and drug-loaded variants, thereby enhancing their applicability in wound healing, drug delivery, and tissue engineering. This review summarizes the categories and mechanisms of self-healing hydrogels, along with their biomedical applications, including tissue repair, drug delivery, and biosensing. Tissue repair includes wound healing, bone-related repair, nerve repair, and cardiac repair. Additionally, we explored the challenges that self-healing hydrogels continue to face in tissue repair and presented a forward-looking perspective on their development. Consequently, it is anticipated that self-healing hydrogels will be progressively designed and developed for applications that extend beyond tissue repair to a broader range of biomedical applications.
Collapse
Affiliation(s)
- Lingling Xue
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Ran An
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Junqi Zhao
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Mengdi Qiu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Zhongxia Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Decai Yu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Xinhua Zhu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
3
|
Liu Y, Wang L, Wen D, Deng Z, Wu Z, Li S, Li Y. Preparation and characterization of nano-silver/graphene oxide antibacterial skin dressing. Sci Rep 2025; 15:12490. [PMID: 40216795 PMCID: PMC11992206 DOI: 10.1038/s41598-025-93310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/05/2025] [Indexed: 04/14/2025] Open
Abstract
This study aims to develop a composite hydrogel consisting of nano silver (Ag) and graphene oxide (GO) for use as a skin wound dressing. We prepared nanosilver/graphene oxide composite hydrogels by incorporating nanosilver and graphene oxide into kaolin-reinforced, gelatin-based hydrogels. Tests were conducted on the hydrogel's water vapor permeability, mechanical properties, infrared warming performance and bacteriostatic properties under infrared light. The results indicated that kaolin enhanced the water vapor permeability and mechanical properties of the gelatin-based hydrogels. Moreover, the maximum fracture stress and strain of the hydrogel were elevated to 51.16 kPa and 1152.78% by GO, respectively. Furthermore, the modified Ag/GO hydrogels exhibited superior photothermal conversion and infrared bacteriostatic properties. This research offers valuable insights for the clinical repair of wounds and the design of new skin wound dressings, making these materials promising for such applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Liu Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dawei Wen
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhonghua Deng
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yongfeng Li
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
4
|
Yin J, Jia P, Ren Z, Zhang Q, Lu W, Yao Q, Deng M, Zhou X, Gao Y, Liu N. Recent Advances in Self-Powered Sensors Based on Ionic Hydrogels. RESEARCH (WASHINGTON, D.C.) 2025; 8:0571. [PMID: 39810855 PMCID: PMC11729273 DOI: 10.34133/research.0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025]
Abstract
After years of research and development, flexible sensors are gradually evolving from the traditional "electronic" paradigm to the "ionic" dimension. Smart flexible sensors derived from the concept of ion transport are gradually emerging in the flexible electronics. In particular, ionic hydrogels have increasingly become the focus of research on flexible sensors as a result of their tunable conductivity, flexibility, biocompatibility, and self-healable capabilities. Nevertheless, the majority of existing sensors based on ionic hydrogels still mainly rely on external power sources, which greatly restrict the dexterity and convenience of their applications. Advances in energy harvesting technologies offer substantial potential toward engineering self-powered sensors. This article reviews in detail the self-powered mechanisms of ionic hydrogel self-powered sensors (IHSSs), including piezoelectric, triboelectric, ionic diode, moist-electric, thermoelectric, potentiometric transduction, and hybrid modes. At the same time, structural engineering related to device and material characteristics is discussed. Additionally, the relevant applications of IHSS toward wearable electronics, human-machine interaction, environmental monitoring, and medical diagnostics are further reviewed. Lastly, the challenges and prospective advancement of IHSS are outlined.
Collapse
Affiliation(s)
- Jianyu Yin
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Peixue Jia
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ziqi Ren
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qixiang Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Wenzhong Lu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qianqian Yao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Mingfang Deng
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xubin Zhou
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yihua Gao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Nishuang Liu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
5
|
Su CY, Li D, Wang LJ. From micropores to mechanical strength: Fabrication and characterization of edible corn starch-sodium alginate double network hydrogels with Ca2+ cross-linking. Food Chem 2024; 467:142276. [PMID: 39631354 DOI: 10.1016/j.foodchem.2024.142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
This study explores the fabrication and characterization of corn starch‑sodium alginate double network hydrogels using two distinct calcium ion cross-linking methods: the gluconolactone immersed method (GIM) and the calcium chloride immersed method (CCIM). We investigated the ionic cross-linking mechanism of these hydrogels and compared their microstructure and mechanical properties. Our results highlight significant differences between GIM and CCIM hydrogels, with the CCIM method producing a more uniform and compact network. At the same calcium ion concentration, CCIM hydrogel exhibited higher mechanical strength and viscoelasticity properties compared to GIM hydrogel. The rapid release of Ca2+ in CCIM allowed for complete cross-linking with sodium alginate, forming a uniform 3D network structure. In contrast, the slow released Ca2+ in GIM resulted in a heterogeneous structure with a tough outer shell and incomplete internal cross-linking. Specifically, the CCIM hydrogel showed a compact network structure and the highest mechanical strength at a calcium chloride concentration of 1.6% (w/v). This study demonstrates that the Ca2+ release rate significantly impacts the microstructure and mechanical properties of double network hydrogels prepared by the immersion method. With this preparation strategy, corn starch‑sodium alginate edible gels that provided higher strength could be fabricated.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Kang M, Liang H, Hu Y, Wei Y, Huang D. Gelatin-based hydrogels with tunable network structure and mechanical property for promoting osteogenic differentiation. Int J Biol Macromol 2024; 281:136312. [PMID: 39370072 DOI: 10.1016/j.ijbiomac.2024.136312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Osteoarthritis (OA) is a joint disease involving all joint components, including cartilage, calcified cartilage, and subchondral bone. The repair of osteochondral defects remains a significant challenge in orthopedics. Development of new strategies is essential for effective osteochondral injury repair. In this study, gelatin (Gel), polyethylene glycol diglycidyl ether (PEGDGE), hydroxyethyl cellulose (HEC) and chitosan (CS) were used to prepare semi-IPNs and IPNs hydrogels. Mechanical properties of Gel based hydrogels significantly improved with the semi-IPN and IPN structures. Tensile strength ranges from 238.7 KPa to 479.5 KPa, and its compressive strength ranges from 35.6 KPa to 112.7 KPa. Additionally, the stress relaxation rate increased with higher CS concentrations, ranging from 25 % to 35 %. The network structure of Gel-based hydrogels was a key factor in regulating stress relaxation. Viscoelasticity was adjusted by its network structures. Swelling and degradation behaviors of Gel based hydrogels were systematically investigated. Gel based hydrogels had good cytocompatibility. Both semi-IPN and IPN structures Gel based hydrogels could promote cell spreading and osteogenic differentiation. G10HEC1 and G10CS1 hydrogels show promise as candidates for osteochondral tissue regeneration, offering a new strategy for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Min Kang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Haijiao Liang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yinchun Hu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
7
|
Wei Z, Zuo Y, Wu E, Huang L, Qian Y, Wang J, Chen Z. Highly biocompatible, antioxidant and antibacterial gelatin methacrylate/alginate - Tannin hydrogels for wound healing. Int J Biol Macromol 2024; 279:135417. [PMID: 39265900 DOI: 10.1016/j.ijbiomac.2024.135417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Gelatin (Gel) hydrogels are widely utilized in various aspects of tissue engineering, such as wound repair, due to their abundance and biocompatibility. However, their low strength and limited functionality have constrained their development and scope of application. Tannic acid (TA), a naturally occurring polyphenol found in plants and fruits, has recently garnered interest as a crosslinking, anti-inflammatory, and antioxidant agent. In this study, we fabricated novel multifunctional gelatin methacrylate/alginate-tannin (GelMA/Alg-TA) hydrogels using chemical and physical crosslinking strategies with gelatin methacrylate (GelMA), alginate (Alg), and TA as the base materials. The GelMA/Alg-TA hydrogels maintained a stable three-dimensional porous structure with appropriate water content and exhibited excellent biocompatibility. Additionally, these hydrogels demonstrated significant antioxidant and antibacterial properties and substantially promoted wound healing in a mouse model of full-thickness skin defects by modulating inflammatory responses and enhancing granulation formation. Therefore, our study offers valuable insights into the design principles of novel multifunctional GelMA/Alg-TA hydrogels, highlighting their exceptional biocompatibility, antioxidant, and antibacterial properties. GelMA/Alg-TA hydrogels are promising candidates for wound healing applications.
Collapse
Affiliation(s)
- Zongyi Wei
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yu Zuo
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Enguang Wu
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Lianghui Huang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yu Qian
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
8
|
Swapnil SI, Shoudho MTH, Rahman A, Ahmed T, Arafat MT. DOTAGEL: a hydrogen and amide bonded, gelatin based, tunable, antibacterial, and high strength adhesive synthesized in an unoxidized environment. J Mater Chem B 2024; 12:11025-11041. [PMID: 39355893 DOI: 10.1039/d4tb00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The development of bioadhesives that concurrently exhibit high adhesion strength, biocompatibility, and tunable properties and involve simple fabrication processes continues to be a significant challenge. In this study, a novel bioadhesive named DOTAGEL is synthesized by crosslinking gelatin (GA), dopamine (DA), and tannic acid (TA) in an unoxidized environment due to the advantage of controlling the degree of protonation in GA and TA, as well as controlling the degree of intermolecular amide and hydrogen bonding in the acidic medium. DOTAGEL (DA + TA + GA) shows superior adhesion strengths of 104.6 ± 46 kPa on dry skin and 35.6 ± 4.5 kPa on wet skin, up to 13 attachment-detachment cycles, retains adhesion strength under water for up to 10 days and is capable of joining two cut parts of internal organs of mice. Moreover, DOTAGEL shows strong antibacterial properties, self-healing, and biocompatibility since it contains TA, a natural and antibacterial cross-linker with abundant hydroxyl groups and the capability of forming non-covalent bonds in an unoxidized environment, and dopamine hydrochloride, a mussel inspired biomaterial containing both the amine and catechol groups for amide bonding and hydrogen bonding with TA and GA. The cross-linking among 20% (w/v) GA, 0.2% (w/v) DA, and 20% (w/v) TA is done by the centrifugation process at room temperature. Two different acids, hydrochloric acid and acetic acid, were used for tuning the pH of the medium, which led to two different samples named DOTAGEL/AA and DOTAGEL/HCL. The degree of cross-linking and mechanical and biochemical properties, like adhesion strength, degradation rate, antibacterial properties, stickiness, etc., are tuned by adjusting the pH of the medium. DOTAGEL/HCL showed 6.5 times faster degradation in 10 days, a faster release rate in the antibacterial study, 2 times adhesion strength in a dry medium, and more stickiness. The novelty lies not only in increased adhesion strength but also in the single-step fabrication process of the adhesive in the acidic medium. This research proposes the formation of a tunable antibacterial adhesive that is capable of working on wet surfaces within the body and that has the potential to become a successful tissue adhesive with a wide range of possibilities in controlled drug delivery at wound sites and other biomedical applications.
Collapse
Affiliation(s)
- Soham Irtiza Swapnil
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Md Tashdid Hossain Shoudho
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Abdur Rahman
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Tahmed Ahmed
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| |
Collapse
|
9
|
Su CY, Li D, Wang LJ, Wang Y. Eco-friendly electronic food labels: Development and application of Ion-SSPB double network hydrogel. J Colloid Interface Sci 2024; 671:154-164. [PMID: 38797141 DOI: 10.1016/j.jcis.2024.05.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Although various conductive hydrogels have been developed for sensing, ideal materials for meeting the safety and toughness requirements of food detection are still lacking. This study introduces Ion-SSPB, a conductive hydrogel fabricated from eco-friendly, food-grade materials such as corn starch (CS), sodium alginate (SA), polyvinyl alcohol (PVA) and bentonite (BT). It leverages a green manufacturing approach designed for application in electronic food sensors. The hydrogel is achieved through a double network strategy and salt immersion method, which endows it with tunable mechanical and rheological properties. A key innovation of Ion-SSPB is the incorporation of bentonite, which enhances its performance, including low swelling, freezing resistance, and minimal residual adhesion. The hydrogel with 4% (w/v) BT concentration (Ion-SSPB4%) is an effective medium for detecting impedance changes in mangoes, correlating with their ripening stages. The Ion-SSPB hydrogel represents a significant advancement in the field of electronic food labels, combining environmental sustainability with technical efficacy.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50 17 Qinghua Donglu Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50 17 Qinghua Donglu Beijing, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China.
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
10
|
Oz Y, Roy A, Jain S, Zheng Y, Mahmood E, Baidya A, Annabi N. Designing a Naturally Inspired Conductive Copolymer to Engineer Wearable Bioadhesives for Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36002-36016. [PMID: 38954606 DOI: 10.1021/acsami.4c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The design of adhesive and conductive soft hydrogels using biopolymers with tunable mechanical properties has received significant interest in the field of wearable sensors for detecting human motions. These hydrogels are primarily fabricated through the modification of biopolymers to introduce cross-linking sites, the conjugation of adhesive components, and the incorporation of conductive materials into the hydrogel network. The development of a multifunctional copolymer that integrates adhesive and conductive properties within a single polymer chain with suitable cross-linking sites eliminates the need for biopolymer modification and the addition of extra conductive and adhesive components. In this study, we synthesized a copolymer based on poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride-co-dopamine methacrylamide) (p(METAC-DMA)) using a controlled radical polymerization, allowing for the efficient conjugation of both adhesive and conductive units within a single polymer chain. Subsequently, our multifunctional hydrogel named Gel-MD was fabricated by mixing the p(METAC-DMA) copolymer with non-modified gelatin in which cross-linking took place in an oxidative environment. We confirmed the biocompatibility of the Gel-MD hydrogel through in vitro studies using NIH 3T3 cells as well as in vivo subcutaneous implantation in rats. Furthermore, the Gel-MD hydrogel was effective and sensitive in detecting various human motions, making it a promising wearable sensor for health monitoring and diagnosis.
Collapse
Affiliation(s)
- Yavuz Oz
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Edrees Mahmood
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Yin H, Song P, Zhou C, Huang H. Electric-field-sensitive hydrogel based on pineapple peel oxidized hydroxyethyl cellulose/gelatin/Hericium erinaceus residues chitosan and its study in curcumin delivery. Int J Biol Macromol 2024; 271:132591. [PMID: 38788873 DOI: 10.1016/j.ijbiomac.2024.132591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
This study focused on synthesis of innovative hydrogels with electric field response from modified pineapple peel cellulose and hericium erinaceus chitosan and gelatin based on Schiff base reaction. A series of hydrogels were prepared by oxidized hydroxyethyl cellulose, gelatin and chitosan at different deacetylation degree via mild Schiff base reaction. Subsequently experiments towards the characterization of oxidized hydroxyethyl cellulose/gelatin/chitosan (OHGCS) hydrogel polymers were carried out by FTIR/XRD/XPS, swelling performances and electric response properties. The prepared hydrogels exhibited stable and reversible bending behaviors under repeated on-off switching of electric fields, affected by ionic strength, electric voltage and pH changes. The swelling ratio of OHGCS hydrogels was found reduced as deacetylation degree increasing and reached the maximum ratio ∼ 2250 % for OHGCS-1. In vitro drug releasing study showed the both curcumin loading capacity and release amount of Cur-OHGCS hydrogels arrived about 90 % during 6 h. Antioxidation assessments showed that the curcumin-loaded hydrogels had good antioxidation activities, in which, 10 mg Cur-OHGCS-1 hydrogel could reach to the maximum of about 90 % DPPH scavenging ratio. These results indicate the OHGCS hydrogels have potentials in sensor and drug delivery system.
Collapse
Affiliation(s)
- Huishuang Yin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Peiqin Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Chunhui Zhou
- Guangdong Industry Polytechnic, Guangzhou 510300, PR China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
12
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
Meng X, Zhou J, Jin X, Xia C, Ma S, Hong S, Aladejana JT, Dong A, Luo Y, Li J, Zhan X, Yang R. High-Strength, High-Swelling-Resistant, High-Sensitivity Hydrogel Sensor Prepared with Wood That Retains Lignin. Biomacromolecules 2024; 25:1696-1708. [PMID: 38381837 DOI: 10.1021/acs.biomac.3c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Wood-derived hydrogels possess satisfactory longitudinal strength but lack excellent swelling resistance and dry shrinkage resistance when achieving high anisotropy. In this study, we displayed the preparation of highly dimensional stable wood/polyacrylamide hydrogels (wood/PAM-Al3+). The alkali-treated wood retains lignin as the skeleton of the hydrogel. Second, Al ions were added to the metal coordination with lignin. Finally, by employing free radical polymerization, we construct a conductive electronic network using polyaniline within the wood/PAM-Al3+ matrix to create the flexible sensor. This approach leverages lignin's integrated structure within the middle lamella to provide enhanced swelling resistance and stronger binding strength in the transverse direction. Furthermore, coordination between lignin and Al ions improves the mechanical strength of the wood hydrogel. Polyaniline provides stable linear pressure and temperature responses. The wood/PAM-Al3+ exhibits a transverse swelling ratio of 3.90% while achieving a longitudinal tensile strength of 20.5 MPa. This high-strength and high-stability sensor is capable of monitoring macroscale human behavior. Therefore, this study presents a simple yet innovative strategy for constructing tough hydrogels while also establishing an alternative pathway for exploring lignin networks in new functional materials development.
Collapse
Affiliation(s)
- Xiangzhen Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
| | - Shanyu Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shu Hong
- Hollingsworth & Vose (Suzhou) Co., Ltd., Suzhou Industrial Park, Suzhou 215126, China
| | - John Tosin Aladejana
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Anran Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yujia Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianzhang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xianxu Zhan
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, China
| | - Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, China
| |
Collapse
|
14
|
Liao H, Su J, Han J, Xiao T, Sun X, Cui G, Duan X, Shi P. An Intrinsic Self-Healable, Anti-Freezable and Ionically Conductive Hydrogel for Soft Ionotronics Induced by Imidazolyl Cross-Linker Molecules Anchored with Dynamic Disulfide Bonds. Macromol Rapid Commun 2024; 45:e2300613. [PMID: 38157222 DOI: 10.1002/marc.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Hydrogels are ideal materials for flexible electronic devices based on their smooth ion channels and considerable mechanical flexibility. A substantial volume of aqueous solution is required to enable the smooth flow of ions, resulting in the agony of low-temperature freezing; besides, long-term exposure to bending/tensile tress triggers fatigue issues. Therefore, it is a great challenge to prepare hydrogels with both freeze-resistance and long-term durability. Herein, a polyacrylic acid-based hydrogel with both hydrophobic interaction and dynamic reversible covalent bonding cross-linking networks is preparing (DC-hydrogel) by polymerizing a bi-functional imidazole-type ionic liquid monomer with integrated disulfide and alkene bonds (DS/DB-IL) and an octadecyl methacrylate, achieving self-healing. The DS/DB-IL anchored into the polymer backbone has a high affinity with water, reducing the freezing point of water, while the DS/DB-IL with free ions provides superior ionic conductivity to the DC-hydrogel. The polyacrylic acid with abundant carboxyl gives hydrogel good self-adhesiveness to different substrates. Ionotronics with resistance-type sensors with stable output performance are fabricated and explored its application to joint motion and health information. Moreover, hydrogel-based sensing arrays with high resolution and accuracy are fabricated to identify 2D distribution of stress. The hydrogels have great promise for various ionotronics in many fields.
Collapse
Affiliation(s)
- Haiyang Liao
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
- China Textile Academy (Zhejiang) Technology Research Institute Co., Ltd, Shaoxing, Zhejiang, 312071, China
| | - Jiayi Su
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Jieling Han
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Tieming Xiao
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Xiao Sun
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Guixin Cui
- China Textile Academy (Zhejiang) Technology Research Institute Co., Ltd, Shaoxing, Zhejiang, 312071, China
| | - Xiaofei Duan
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Pu Shi
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| |
Collapse
|
15
|
Li R, Ren J, Zhang M, Li M, Li Y, Yang W. Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels. Biomacromolecules 2024; 25:614-625. [PMID: 38241010 DOI: 10.1021/acs.biomac.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Conductive hydrogels integrate the conductive performance and soft nature, which is like that of human skin. Thus, they are more suitable for the preparation of wearable human-motion sensors. Nevertheless, the integration of outstanding multiple functionalities, such as stretchability, toughness, biocompatibility, self-healing, adhesion, strain sensitivity, and durability, by a simple way is still a huge challenge. Herein, we have developed a multifunctional chitosan/oxidized hyaluronic acid/hydroxypropyl methylcellulose/poly(acrylic acid)/tannic acid/Al3+ hydrogel (CS/OHA/HPMC/PAA/TA/Al3+) by using a two-step method with hydroxypropyl methylcellulose (HPMC), acrylic acid (AA), tannic acid (TA), chitosan (CS), oxidized hyaluronic acid (OHA), and aluminum chloride hexahydrate (AlCl3·6H2O). Due to the synergistic effect of dynamic imine bonds between CS and OHA, dynamic metal coordination bonds between Al3+ and -COOH and/or TA as well as reversible hydrogen, the hydrogel showed excellent tensile property (elongation at break of 3168%) and desirable toughness (0.79 MJ/m3). The mechanical self-healing efficiency can reach 95.5% at 30 min, and the conductivity can recover in 5.2 s at room temperature without stimulation. The favorable attribute of high transparency (98.5% transmittance) facilitates the transmission of the optical signal and enables visualization of the sensor. It also shows good adhesiveness to various materials and is easy to peel off without residue. The resistance of the hydrogel-based sensors shows good electrical conductivity (2.33 S m-1), good durability, high sensing sensitivity (GF value of 4.12 under 1600% strain), low detection limit (less than 1%), and short response/recovery time (0.54/0.31 s). It adhered to human skin and monitored human movements such as the bending movements of joints, swallowing, and speaking successfully. Therefore, the obtained multifunctional conductive hydrogel has great potential applications in wearable strain sensors.
Collapse
Affiliation(s)
- Ruirui Li
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| | - Jie Ren
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| | - Minmin Zhang
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| | - Meng Li
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| | - Yan Li
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| | - Wu Yang
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| |
Collapse
|
16
|
Landi G, Pagano S, Granata V, Avallone G, La Notte L, Palma AL, Sdringola P, Puglisi G, Barone C. Regeneration and Long-Term Stability of a Low-Power Eco-Friendly Temperature Sensor Based on a Hydrogel Nanocomposite. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:283. [PMID: 38334553 PMCID: PMC10856540 DOI: 10.3390/nano14030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
A water-processable and low-cost nanocomposite material, based on gelatin and graphene, has been used to fabricate an environmentally friendly temperature sensor. Demonstrating a temperature-dependent open-circuit voltage between 260 and 310 K, the sensor effectively detects subzero ice formation. Notably, it maintains a constant temperature sensitivity of approximately -19 mV/K over two years, showcasing long-term stability. Experimental evidence demonstrates the efficient regeneration of aged sensors by injecting a few drops of water at a temperature higher than the gelation point of the hydrogel nanocomposite. The real-time monitoring of the electrical characteristics during the hydration reveals the initiation of the regeneration process at the gelation point (~306 K), resulting in a more conductive nanocomposite. These findings, together with a fast response and low power consumption in the range of microwatts, underscore the potential of the eco-friendly sensor for diverse practical applications in temperature monitoring and environmental sensing. Furthermore, the successful regeneration process significantly enhances its sustainability and reusability, making a valuable contribution to environmentally conscious technologies.
Collapse
Affiliation(s)
- Giovanni Landi
- ENEA, Portici Research Center, Piazzale Enrico Fermi, Località Granatello, 80055 Portici, Italy;
| | - Sergio Pagano
- Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, 84084 Fisciano, Italy; (V.G.); (G.A.)
- INFN Gruppo Collegato di Salerno, Università degli Studi di Salerno, 84084 Fisciano, Italy
- CNR-SPIN, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Veronica Granata
- Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, 84084 Fisciano, Italy; (V.G.); (G.A.)
- INFN Gruppo Collegato di Salerno, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Guerino Avallone
- Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, 84084 Fisciano, Italy; (V.G.); (G.A.)
- INFN Gruppo Collegato di Salerno, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Luca La Notte
- ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (L.L.N.); (A.L.P.); (P.S.); (G.P.)
| | - Alessandro Lorenzo Palma
- ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (L.L.N.); (A.L.P.); (P.S.); (G.P.)
| | - Paolo Sdringola
- ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (L.L.N.); (A.L.P.); (P.S.); (G.P.)
| | - Giovanni Puglisi
- ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (L.L.N.); (A.L.P.); (P.S.); (G.P.)
| | - Carlo Barone
- Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, 84084 Fisciano, Italy; (V.G.); (G.A.)
- INFN Gruppo Collegato di Salerno, Università degli Studi di Salerno, 84084 Fisciano, Italy
- CNR-SPIN, Università degli Studi di Salerno, 84084 Fisciano, Italy
| |
Collapse
|
17
|
Zhang Y, Tang Q, Zhou J, Zhao C, Li J, Wang H. Conductive and Eco-friendly Biomaterials-based Hydrogels for Noninvasive Epidermal Sensors: A Review. ACS Biomater Sci Eng 2024; 10:191-218. [PMID: 38052003 DOI: 10.1021/acsbiomaterials.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As noninvasive wearable electronic devices, epidermal sensors enable continuous, real-time, and remote monitoring of various human physiological parameters. Conductive biomaterials-based hydrogels as sensor matrix materials have good biocompatibility, biodegradability, and efficient stimulus response capabilities and are widely applied in motion monitoring, healthcare, and human-machine interaction. However, biomass hydrogel-based epidermal sensing devices still need excellent mechanical properties, prolonged stability, multifunctionality, and extensive practicality. Therefore, this paper reviews the common biomass hydrogel materials for epidermal sensing (proteins, polysaccharides, polyphenols, etc.) and the various types of noninvasive sensing devices (strain/pressure sensors, temperature sensors, glucose sensors, electrocardiograms, etc.). Moreover, this review focuses on the strategies of scholars to enhance sensor properties, such as strength, conductivity, stability, adhesion, and self-healing ability. This work will guide the preparation and optimization of high-performance biomaterials-based hydrogel epidermal sensors.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Qianhui Tang
- School of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, Liaoning 116023, P. R. China
| | - Junyang Zhou
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenghao Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Jingpeng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Haiting Wang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
18
|
Zhuo S, Liang Y, Wu Z, Zhao X, Han Y, Guo B. Supramolecular hydrogels for wound repair and hemostasis. MATERIALS HORIZONS 2024; 11:37-101. [PMID: 38018225 DOI: 10.1039/d3mh01403g] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The unique network characteristics and stimuli responsiveness of supramolecular hydrogels have rendered them highly advantageous in the field of wound dressings, showcasing unprecedented potential. However, there are few reports on a comprehensive review of supramolecular hydrogel dressings for wound repair and hemostasis. This review first introduces the major cross-linking methods for supramolecular hydrogels, which includes hydrogen bonding, electrostatic interactions, hydrophobic interactions, host-guest interactions, metal ligand coordination and some other interactions. Then, we review the advanced materials reported in recent years and then summarize the basic principles of each cross-linking method. Next, we classify the network structures of supramolecular hydrogels before outlining their forming process and propose their potential future directions. Furthermore, we also discuss the raw materials, structural design principles, and material characteristics used to achieve the advanced functions of supramolecular hydrogels, such as antibacterial function, tissue adhesion, substance delivery, anti-inflammatory and antioxidant functions, cell behavior regulation, angiogenesis promotion, hemostasis and other innovative functions in recent years. Finally, the existing problems as well as future development directions of the cross-linking strategy, network design, and functions in wound repair and hemostasis of supramolecular hydrogels are discussed. This review is proposed to stimulate further exploration of supramolecular hydrogels on wound repair and hemostasis by researchers in the future.
Collapse
Affiliation(s)
- Shaowen Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhengying Wu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
19
|
Zhang X, Jia C, Zhang J, Zhang L, Liu X. Smart Aqueous Zinc Ion Battery: Operation Principles and Design Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305201. [PMID: 37949674 PMCID: PMC10787087 DOI: 10.1002/advs.202305201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Indexed: 11/12/2023]
Abstract
The zinc ion battery (ZIB) as a promising energy storage device has attracted great attention due to its high safety, low cost, high capacity, and the integrated smart functions. Herein, the working principles of smart responses, smart self-charging, smart electrochromic as well as smart integration of the battery are summarized. Thus, this review enables to inspire researchers to design the novel functional battery devices for extending their application prospects. In addition, the critical factors associated with the performance of the smart ZIBs are comprehensively collected and discussed from the viewpoint of the intellectualized design. A profound understanding for correlating the design philosophy in cathode materials and electrolytes with the electrode interface is provided. To address the current challenging issues and the development of smart ZIB systems, a wide variety of emerging strategies regarding the integrated battery system is finally prospected.
Collapse
Affiliation(s)
- Xiaosheng Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Caoer Jia
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jinyu Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Linlin Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
20
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
21
|
Jaroenthai N, Srikhao N, Kasemsiri P, Okhawilai M, Theerakulpisut S, Uyama H, Chindaprasirt P. Optimization of rapid self-healing and self-adhesive gluten/guar gum crosslinked gel for strain sensors and electronic devices. Int J Biol Macromol 2023; 253:127401. [PMID: 37827400 DOI: 10.1016/j.ijbiomac.2023.127401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In this study, a smart strain sensor based on gluten/guar gum (GG) copolymer containing a combination of additives was developed. The mix proportions of strain sensors were designed using Taguchi method coupled with Grey relational analysis. L16 orthogonal array with three factors, viz. tannic acid (TA), glycerol and sodium chloride (NaCl) at four-levels each was optimized. The addition of TA substantially enhanced tensile strength, self-adhesion ability and conductivity. The self-adhesion ability could also be improved by adding NaCl in range of 0-5 wt%. The presence of glycerol in strain sensors could reduce the self-healing time which was found in the range of 28.75-150 s. In addition, the incorporation of glycerol into gel also improved stretchability of strain sensors. The best mix proportion of strain sensor was found to be 3.75 wt% TA, 30 vol% glycerol and 5 wt% NaCl. The best mixture of stain sensor showed the highest gauge factor (GF) of 0.61 % at a stretchability of 665 % and rapid self-healing at 70 s. This strain sensor could be applied to monitor human limb movements in a wide temperature range from -20 °C to 50 °C. Furthermore, the obtained gel was successfully used as electronic devices and self-powered sensors.
Collapse
Affiliation(s)
- Nattakan Jaroenthai
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natwat Srikhao
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornnapa Kasemsiri
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Prinya Chindaprasirt
- Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
22
|
Li W, Yang N, Tan X, Liu Z, Huang Y, Yuan R, Liu L, Ge L. Layer-by-layer microneedle patch with antibacterial and antioxidant dual activities for accelerating bacterial-infected wound healing. Colloids Surf B Biointerfaces 2023; 231:113569. [PMID: 37826964 DOI: 10.1016/j.colsurfb.2023.113569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Bacterial-infected wound healing has always been a huge challenge to humans. Owing to the appearance of antibiotic resistance, there is an emergency need to design antibiotic-free wound dressings to treat such wounds. Herein, a novel antibiotic-free microneedle patch was designed, which its backing layer with antioxidant effect was coated with sodium carboxymethyl cellulose, 2-O-α-D-glucopyranosyl-L-ascorbic acid (GLAA), and 2-hydroxypropyltrimethyl ammonium chloride chitosan through electrostatic interaction based on layer-by-layer self-assembly technique, and its tips consisted of gelatin and tannic acid (TA) via hydrogen bonding interaction (CGH/GTA MN patch). The obtained CGH/GTA MN patch could effectively puncture the skin, and exhibit properties of pH-responsive TA and GLAA release. In vitro experiments showed that the obtained CGH/GTA MN patch has excellent antioxidative (scavenging DPPH efficacy is above 80 %, and scavenging ABTS efficiency reaches about 100 %), antibacterial (antibacterial rates of nearly 100 % for both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), biodegradable, and biocompatible properties. In the S. aureus-infected rat wounds, the CGH/GTA MN patch could efficiently accelerate infected-wound healing by eliminating S. aureus infection, inhibiting inflammation, promoting angiogenesis, and accelerating epidermal regeneration. Thus, this study will provide a promising strategy to heal bacterial-infected wounds.
Collapse
Affiliation(s)
- Weikun Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Ning Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xin Tan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Zonghao Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yueru Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009 PR China
| | - Renqiang Yuan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023 PR China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009 PR China.
| | - Liqin Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
23
|
Khan MUA, Stojanović GM, Rehman RA, Moradi AR, Rizwan M, Ashammakhi N, Hasan A. Graphene Oxide-Functionalized Bacterial Cellulose-Gelatin Hydrogel with Curcumin Release and Kinetics: In Vitro Biological Evaluation. ACS OMEGA 2023; 8:40024-40035. [PMID: 37929099 PMCID: PMC10620874 DOI: 10.1021/acsomega.2c06825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/05/2023] [Indexed: 11/07/2023]
Abstract
Biopolymer-based bioactive hydrogels are excellent wound dressing materials for wound healing applications. They have excellent properties, including hydrophilicity, tunable mechanical and morphological properties, controllable functionality, biodegradability, and desirable biocompatibility. The bioactive hydrogels were fabricated from bacterial cellulose (BC), gelatin, and graphene oxide (GO). The GO-functionalized-BC (GO-f-BC) was synthesized by a hydrothermal method and chemically crosslinked with bacterial cellulose and gelatin using tetraethyl orthosilicate (TEOS) as a crosslinker. The structural, morphological, and wettability properties were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a universal testing machine (UTM), respectively. The swelling analysis was conducted in different media, and aqueous medium exhibited maximum hydrogel swelling compared to other media. The Franz diffusion method was used to study curcumin (Cur) release (Max = 69.32%, Min = 49.32%), and Cur release kinetics followed the Hixson-Crowell model. Fibroblast (3T3) cell lines were employed to determine the cell viability and proliferation to bioactive hydrogels. Antibacterial activities of bioactive hydrogels were evaluated against infection-causing bacterial strains. Bioactive hydrogels are hemocompatible due to their less than 0.5% hemolysis against fresh human blood. The results show that bioactive hydrogels can be potential wound dressing materials for wound healing applications.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
| | - Goran M. Stojanović
- Department
of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Roselinda Ab Rehman
- Oral
and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ali-Reza Moradi
- Department
of Physics, Institute for Advanced Studies
in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Muhammad Rizwan
- Department
of Chemistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nureddin Ashammakhi
- Department
of Biomedical Engineering and the Institute for Quantitative Health
Science & Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Anwarul Hasan
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
24
|
Li Y, Miao R, Yang Y, Han L, Han Q. A zinc-ion battery-type self-powered strain sensing system by using a high-performance ionic hydrogel. SOFT MATTER 2023; 19:8022-8032. [PMID: 37830392 DOI: 10.1039/d3sm00993a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Flexible strain sensors based on conductive hydrogels have profound implications for wearable electronics and health-monitoring systems. However, such sensors still need to integrate with energy providing devices to drive their functions. Herein, we develop a soaking-free polyacrylamide/carboxymethyl cellulose/tannic acid (PAAM/CMC/TA) hydrogel containing 2 M ZnSO4 + 0.1 M MnSO4 electrolyte for a novel zinc-ion battery-type self-powered strain sensing system. The synthesized hydrogel possesses desirable stretchability (tensile strain/stress of 622%/132 kPa), self-healing and self-adhesive properties, as well as good ionic conductivity (0.76 ± 0.04 S m-1). A mechanically durable Zn-MnO2 battery is developed using the PAAM/CMC/TA hydrogel and it can deliver a high specific capacity (223.0 mA h g-1) and maintain stable energy outputs under severe mechanical deformations. The electrochemical behavior of the battery can recover even after several self-healing cycles. Due to the excellent strain and pressure sensing properties of the PAAM/CMC/TA hydrogel, the battery combined with a fixed resistor served as a self-powered wearable sensing device, which could translate different human movements into distinguishable electrical signals without an external power supply. Our work provides guidance for the development of next-generation self-powered sensors.
Collapse
Affiliation(s)
- Yueqin Li
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Runtian Miao
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yong Yang
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Lin Han
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiangshan Han
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
25
|
Akturk A, Kasikci FN, Dikmetas DN, Karbancioglu-Guler F, Erol-Taygun M. Hypericum perforatum Oil and Vitamin A Palmitate-Loaded Gelatin Nanofibers Cross-Linked by Tannic Acid as Wound Dressings. ACS OMEGA 2023; 8:24023-24031. [PMID: 37426268 PMCID: PMC10324379 DOI: 10.1021/acsomega.3c02967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Recent studies in wound dressing applications offer new therapies to promote the wound healing process. The main strategy of this study is to combine the traditional perspective of using medicinal oils with polymeric scaffolds manufactured by an engineering approach to fabricate a potential tissue engineering product that provides both new tissue formation and wound healing. Thus, Hypericum perforatum oil (HPO) and vitamin A palmitate (VAP) incorporated gelatin (Gt) nanofibrous scaffolds were successfully prepared by the electrospinning method. Tannic acid (TA) was used as the cross-linking agent. The amounts of VAP and HPO loaded in the base Gt solution [15% w/v in 4:6 v/v acetic acid/deionized water] were 5 and 50 wt % (based on the weight of Gt), respectively. The obtained scaffolds were studied regarding their microstructure, chemical structure, thermal stability, antibacterial activity, in vitro release study, and cellular proliferation assay. In the light of these studies, it was determined that VAP and HPO were incorporated successfully in Gt nanofibers cross-linked with TA. Release kinetic tests confirmed that the patterns of TA and VAP release were consistent with the Higuchi model, whereas HPO release was consistent with the first-order kinetic model. In addition, this membrane was biocompatible with L929 fibroblast cells and had antibacterial activity and thermal stability. This preliminary study suggests potential applicability of the proposed dressing to treat skin wounds in clinics.
Collapse
Affiliation(s)
- Aysen Akturk
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34449, Turkey
| | - Funda Nur Kasikci
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34449, Turkey
| | - Dilara Nur Dikmetas
- Department
of Food Engineering, Istanbul Technical
University, Maslak, Istanbul 34449, Turkey
| | | | - Melek Erol-Taygun
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34449, Turkey
| |
Collapse
|
26
|
He W, Guo X, Xia P, Lu S, Zhang Y, Fan H. Temperature and pressure sensitive ionic conductive triple-network hydrogel for high-durability dual signal sensors. J Colloid Interface Sci 2023; 647:456-466. [PMID: 37271090 DOI: 10.1016/j.jcis.2023.05.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
In this work, the fabrication of strengthened triple network hydrogels was successfully achieved based on in-situ polymerization of polyacrylamide by combining both chemical and physical cross-linking methods. The ion conductive phase of lithium chloride (LiCl) and solvent in the hydrogel were regulated through soaking solution. The pressure and temperature sensing behavior and durability of the hydrogel were investigated. The hydrogel containing 1 mol/L LiCl and 30 %v/v glycerol displayed a pressure sensitivity of 4.16 kPa-1 and a temperature sensitivity of 2.04 %/oC ranging from 20 to 50 °C. The durability results reveal that the hydrogel could maintain water retention rate of 69 % after 20 days of ageing. The presence of LiCl disrupted the interactions among water molecules and made it possible for the hydrogel to respond to changes in environment humidity. The dual signal testing revealed that the delay of temperature response over time (about 100 s) is much different from the rapidity of pressure response (in 0.5 s). This leads to the obvious separation of the temperature-pressure dual signal output. The assembled hydrogel sensor was further applied to monitor human motion and skin temperature. The signals can be distinguished by different resistance variation values and curve shapes in the typical temperature-pressure dual signal performance of human breathing. This demonstrates that this ion conductive hydrogel has the potential for application in flexible sensors and human-machine interfaces.
Collapse
Affiliation(s)
- Weidi He
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China; National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang Guizhou 550014, China
| | - Xincheng Guo
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China
| | - Peng Xia
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China
| | - Shengjun Lu
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China; National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang Guizhou 550014, China.
| | - Yufei Zhang
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China.
| | - Haosen Fan
- College of Materials & Metallurgy, Guizhou University, Guiyang Guizhou 550025, China.
| |
Collapse
|
27
|
Liu T, Liu L, Gou GY, Fang Z, Sun J, Chen J, Cheng J, Han M, Ma T, Liu C, Xue N. Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21721-21745. [PMID: 37098855 DOI: 10.1021/acsami.3c02690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flexible wearable devices have been widely used in biomedical applications, the Internet of Things, and other fields, attracting the attention of many researchers. The physiological and biochemical information on the human body reflects various health states, providing essential data for human health examination and personalized medical treatment. Meanwhile, physiological and biochemical information reveals the moving state and position of the human body, and it is the data basis for realizing human-computer interactions. Flexible wearable physiological and biochemical sensors provide real-time, human-friendly monitoring because of their light weight, wearability, and high flexibility. This paper reviews the latest advancements, strategies, and technologies of flexibly wearable physiological and biochemical sensors (pressure, strain, humidity, saliva, sweat, and tears). Next, we systematically summarize the integration principles of flexible physiological and biochemical sensors with the current research progress. Finally, important directions and challenges of physiological, biochemical, and multimodal sensors are proposed to realize their potential applications for human movement, health monitoring, and personalized medicine.
Collapse
Affiliation(s)
- Tiezhu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Lidan Liu
- Zhucheng Jiayue Central Hospital, Shandong 262200, China
| | - Guang-Yang Gou
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhen Fang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Jianhai Sun
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jiamin Chen
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jianqun Cheng
- School of Integrated Circuit, Quanzhou University of Information Engineering, Quanzhou, Fujian 362000, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100091, China
| | - Tianjun Ma
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Chunxiu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Ning Xue
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| |
Collapse
|
28
|
Yang J, Cheng J, Qi G, Wang B. Ultrastretchable, Multihealable, and Highly Sensitive Strain Sensor Based on a Double Cross-Linked MXene Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17163-17174. [PMID: 36944184 DOI: 10.1021/acsami.2c23230] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability of a flexible strain sensor to directly adapt the complicated human biological motion or combined gestures and remotely control the artificial intelligence robotics could benefit the wearable electronics such as intelligent robotics and patient healthcare. However, it is a challenge for the flexible strain sensor to simultaneously achieve high sensing performances and stretchability and long sustainability under various deformation stress or damage. Herein, a dual-cross-linked poly(acrylic acid-stearyl methacrylate)/MXene [P(AA-SMA)M] hydrogel with enhanced mechanical stretchability and self-healability is fabricated by importing reversible coordination and hydrophobic interaction into polymer networks. As a result, the hydrogel film not only exhibits high tensile strength (525 kPa) and stretchability (∼2600%) but also achieves repetitive healable property with 843% elongation even after the 20th broken/self-healing cycle. More importantly, the resultant strain sensor delivers a low detection limit, wide sensing range, fast response time, and repeatability of 1000 cycles even after repeated self-healing. So, the sensor can monitor subtle human motions and recognize different handwriting and gestures, which reveals potential applications toward health-care devices, flexible electronics, and human-machine interfacing.
Collapse
Affiliation(s)
- Jie Yang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 621900, China
| | - Jianli Cheng
- Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 621900, China
| | - Guicai Qi
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 621900, China
| | - Bin Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontiers Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
29
|
Zhao Z, Hu YP, Liu KY, Yu W, Li GX, Meng CZ, Guo SJ. Recent Development of Self-Powered Tactile Sensors Based on Ionic Hydrogels. Gels 2023; 9:gels9030257. [PMID: 36975706 PMCID: PMC10048595 DOI: 10.3390/gels9030257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels are three-dimensional polymer networks with excellent flexibility. In recent years, ionic hydrogels have attracted extensive attention in the development of tactile sensors owing to their unique properties, such as ionic conductivity and mechanical properties. These features enable ionic hydrogel-based tactile sensors with exceptional performance in detecting human body movement and identifying external stimuli. Currently, there is a pressing demand for the development of self-powered tactile sensors that integrate ionic conductors and portable power sources into a single device for practical applications. In this paper, we introduce the basic properties of ionic hydrogels and highlight their application in self-powered sensors working in triboelectric, piezoionic, ionic diode, battery, and thermoelectric modes. We also summarize the current difficulty and prospect the future development of ionic hydrogel self-powered sensors.
Collapse
Affiliation(s)
- Zhen Zhao
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yong-Peng Hu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kai-Yang Liu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wei Yu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guo-Xian Li
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chui-Zhou Meng
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shi-Jie Guo
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
30
|
Lang S, Du Y, Ma L, Bai Y, Ji Y, Liu G. Multifunctional and Tunable Coacervate Powders to Enable Rapid Hemostasis and Promote Infected Wound Healing. Biomacromolecules 2023; 24:1839-1854. [PMID: 36924317 DOI: 10.1021/acs.biomac.3c00043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Hemostatic powders provide an important treatment approach for time-sensitive hemorrhage control. Conventional hemostatic powders are challenged by the lack of tissue adhesiveness, insufficient hemostatic efficacy, limited infection control, and so forth. This study develops a hemostatic powder from tricomponent GTP coacervates consisting of gelatin, tannic acid (TA), and poly(vinyl alcohol) (PVA). The physical cross-linking by TA results in facile preparation, good storage stability, ease of application to wounds, and removal, which provide good potential for clinical translation. When rehydrated, the coacervate powders rapidly form a cohesive layer with interconnected microporous structure, competent flexibility, switchable wet adhesiveness, and antibacterial properties, which facilitate the hemostatic efficacy for treating irregular, noncompressible, or bacteria-infected wounds. Compared to commercial hemostats, GTP treatment results in significantly accelerated hemostasis in a liver puncture model (∼19 s, >30% reduction in the hemostatic time) and in a tail amputation model (∼38 s, >60% reduction in the hemostatic time). In the GTP coacervates, gelatin functioned as the biodegradable scaffold, while PVA introduced the flexible segments to enable shape-adaptability and interfacial interactions. Furthermore, TA contributed to the physical cross-linking, adhesiveness, and antibacterial performance of the coacervates. The study explores the tunability of GTP coacervate powders to enhance their hemostatic and wound healing performances.
Collapse
Affiliation(s)
- Shiying Lang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Ma
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangjing Bai
- West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Ji
- Institute of Textiles and Clothing, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
31
|
Seong M, Kondaveeti S, Choi G, Kim S, Kim J, Kang M, Jeong HE. 3D Printable Self-Adhesive and Self-Healing Ionotronic Hydrogels for Wearable Healthcare Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11042-11052. [PMID: 36788742 DOI: 10.1021/acsami.2c21704] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ionotronic hydrogels have attracted significant attention in emerging fields such as wearable devices, flexible electronics, and energy devices. To date, the design of multifunctional ionotronic hydrogels with strong interfacial adhesion, rapid self-healing, three-dimensional (3D) printing processability, and high conductivity are key requirements for future wearable devices. Herein, we report the rational design and facile synthesis of 3D printable, self-adhesive, self-healing, and conductive ionotronic hydrogels based on the synergistic dual reversible interactions of poly(vinyl alcohol), borax, pectin, and tannic acid. Multifunctional ionotronic hydrogels exhibit strong adhesion to various substrates with different roughness and chemical components, including porcine skin, glass, nitrile gloves, and plastics (normal adhesion strength of 55 kPa on the skin). In addition, the ionotronic hydrogels exhibit intrinsic ionic conductivity imparting strain-sensing properties with a gauge factor of 2.5 up to a wide detection range of approximately 2000%, as well as improved self-healing behavior. Based on these multifunctional properties, we further demonstrate the use of ionotronic hydrogels in the 3D printing process for implementing complex patterns as wearable strain sensors for human motion detection. This study is expected to provide a new avenue for the design of multifunctional ionotronic hydrogels, enabling their potential applications in wearable healthcare devices.
Collapse
Affiliation(s)
- Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Stalin Kondaveeti
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Geonjun Choi
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Somi Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeil Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
32
|
Hu B, Kang X, Xu S, Zhu J, Yang L, Jiang C. Multiplex Chroma Response Wearable Hydrogel Patch: Visual Monitoring of Urea in Body Fluids for Health Prognosis. Anal Chem 2023; 95:3587-3595. [PMID: 36753619 DOI: 10.1021/acs.analchem.2c03806] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Visual wearable devices can rapid intuitively monitor biomarkers in body fluids to indicate the human health status and provide valuable reference for further medical diagnosis. However, unavoidable interference factors such as skin color, natural light, and background luminescence can interfere with the visualization accuracy of flexible wearable devices, limiting their practical sensing application. Here, we designed a wearable sensing patch via an embedded upconversion optical probe in a 3D porous polyacrylamide hydrogel, exhibiting a multiplex chroma response to urea based on the inner filter effect, which overcomes the susceptibility to external conditions due to its near-infrared excited luminescence and improves the resolution and accuracy of visual sensing. Furthermore, a highly compatible portable sensing platform combined with a smartphone was designed to achieve in situ rapid quantitative analysis of urea. The limit of detection values of the upconversion optical probe and hydrogel sensor are as low as 1.4 and 30 μM respectively, exhibiting the practicality in different scenarios. The designed sensing patch provides a convenient and accurate sensing strategy for the detection of biomarkers in body fluids and has the potential to be developed into a point-of-care device to provide disease early warning and clinical diagnosis.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiaohui Kang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jiawei Zhu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.,Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
33
|
Song J, Mou C, Balakrishnan G, Wang Y, Rajagopalan M, Schreiner A, Naik D, Cohen-Karni T, Halbreiner MS, Bettinger CJ. Hysteresis-free and high sensitivity strain sensing of ionically conductive hydrogels. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200132. [PMID: 36816547 PMCID: PMC9937743 DOI: 10.1002/anbr.202200132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hydrogels are promising materials for soft and implantable strain sensors owing to their large compliance (E<100 kPa) and significant extensibility (εmax >500%) compared to other polymer networks. Further, hydrogels can be functionalized to seamlessly integrate with many types of tissues. However, most current methods attempt to imbue additional electronic functionality to structural hydrogel materials by incorporating fillers with orthogonal properties such as electronic or mixed ionic conduction. Although composite strategies may improve performance or facilitate heterogeneous integration with downstream hardware, composites complicate the path for regulatory approval and may compromise the otherwise compelling properties of the underlying structural material. Here we report hydrogel strain sensors composed of genipin-crosslinked gelatin and dopamine-functionalized poly(ethylene glycol) for in vivo monitoring of cardiac function. By measuring their impedance only in their resistive regime (>10 kHz), hysteresis is reduced and the resulting gauge factor is increased by ~50x to 1.02±0.05 and 1.46±0.05 from approximately 0.03-0.05 for PEG-Dopa and genipin-crosslinked gelatin respectively. Adhesion and in vivo biocompatibility are studied to support implementation of strain sensors for monitoring cardiac output in porcine models. Impedance-based strain sensing in the kilohertz regime simplifies the piezoresistive behavior of these materials and expands the range of hydrogel-based strain sensors.
Collapse
Affiliation(s)
- Jiwoo Song
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Chenchen Mou
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Gaurav Balakrishnan
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yingqiao Wang
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mahathy Rajagopalan
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Audrey Schreiner
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Durva Naik
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tzahi Cohen-Karni
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - M. Scott Halbreiner
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Christopher J. Bettinger
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
34
|
Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact Mater 2022; 18:471-491. [PMID: 35415299 PMCID: PMC8971585 DOI: 10.1016/j.bioactmat.2022.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance, superior biocompatibility and biodegradation, as well as high loading capability and permeability of drug. Such polymeric patches are classified into microneedles (MNs), hydrogel, microcapsule, microsphere and fiber depending on the formed morphology. The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity, promoting on-demand and regulated drug administration, thus providing the great potential to their clinic translation. In this review, the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed. The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed, including diabetes therapy, wound healing, dermatological disease therapy, bone regeneration, cardiac repair, hair repair, obesity therapy and some immune disease therapy. Alternatively, the limitations, latest challenges and future perspectives of such biomedical therapeutic devices are addressed. The most explored polymeric patches, such as microneedle, hydrogel, microsphere, microcapsule, and fiber are summarized. Polymeric patches integrated with a diversity of nanomaterials are systematically overviewed in non-cancer therapy. The future prospective for the development of polymeric patch based nanotherapeutics is discussed.
Collapse
|
35
|
Wang Z, Ma Z, Wang S, Pi M, Wang X, Li M, Lu H, Cui W, Ran R. Cellulose nanocrystal/phytic acid reinforced conductive hydrogels for antifreezing and antibacterial wearable sensors. Carbohydr Polym 2022; 298:120128. [DOI: 10.1016/j.carbpol.2022.120128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
|
36
|
He Z, Liu J, Fan X, Song B, Gu H. Tara Tannin-Cross-Linked, Underwater-Adhesive, Super Self-Healing, and Recyclable Gelatin-Based Conductive Hydrogel as a Strain Sensor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Zhen He
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| | - Jiachang Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| | - Xin Fan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| | - Bin Song
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| |
Collapse
|
37
|
Zhang H, Shen H, Lan J, Wu H, Wang L, Zhou J. Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors. Carbohydr Polym 2022; 295:119848. [DOI: 10.1016/j.carbpol.2022.119848] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
|
38
|
Wu S, Zeng T, Liu Z, Ma G, Xiong Z, Zuo L, Zhou Z. 3D Printing Technology for Smart Clothing: A Topic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207391. [PMID: 36295455 PMCID: PMC9609778 DOI: 10.3390/ma15207391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 06/12/2023]
Abstract
Clothing is considered to be an important element of human social activities. With the increasing maturity of 3D printing technology, functional 3D printing technology can realize the perfect combination of clothing and electronic devices while helping smart clothing to achieve specific functions. Furthermore, the application of functional 3D printing technology in clothing not only provides people with the most comfortable and convenient wearing experience, but also completely subverts consumers' perception of traditional clothing. This paper introduced the progress of the application of 3D printing from the aspect of traditional clothing and smart clothing through two mature 3D printing technologies normally used in the field of clothing, and summarized the challenges and prospects of 3D printing technology in the field of smart clothing. Finally, according to the analysis of the gap between 3D-printed clothing and traditionally made clothing due to the material limitations, this paper predicted that the rise in intelligent materials will provide a new prospect for the development of 3D-printed clothing. This paper will provide some references for the application research of 3D printing in the field of smart clothing.
Collapse
Affiliation(s)
- Shuangqing Wu
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China
| | - Taotao Zeng
- School of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhenhua Liu
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China
| | - Guozhi Ma
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China
| | - Zhengyu Xiong
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China
| | - Lin Zuo
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China
| | - Zeyan Zhou
- School of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
39
|
Anti-wetting surfaces with self-healing property: fabrication strategy and application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Flexible self-powered integrated sensing system based on a rechargeable zinc-ion battery by using a multifunctional polyacrylamide/carboxymethyl chitosan/LiCl ionic hydrogel. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Choe G, Tang X, Wang R, Wu K, Jin Jeong Y, Kyu An T, Hyun Kim S, Mi L. Printing of self-healable gelatin conductors engineered for improving physical and electrical functions: Exploring potential application in soft actuators and sensors. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Zang X, Ma H, Sun Y, Tang Y, Ji J, Xue M. Integrated Polypyrrole-Based Smart Clothing with Photothermal Conversion and Thermosensing Functions for Wearable Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9967-9973. [PMID: 35916597 DOI: 10.1021/acs.langmuir.2c01278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Integrated smart clothing with photothermal conversion and thermosensing functions is highly desired for next-generation smart wearable applications. Conducting polymer is a promising material that possesses efficient photothermal conversion performance, great sensitivity to temperature change, and excellent processing properties. In this study, we report a new wearable material using the conducting polymer polypyrrole (PPy) as a photothermal and thermosensing layer and nonwoven fabric as flexible textiles to fabricate integrated PPy-based smart clothing (IPSC). The surface temperature of the prepared IPSC can be as high as 68.4 °C with 808 nm near-infrared (NIR) irradiation at a power destiny of 1 kW/m2. Meanwhile, a temperature resolution of 1 °C can be achieved for IPSC. These superiorities are in favor of fabricating multifunctional smart wearables to satisfy the needs in future life.
Collapse
Affiliation(s)
- Xiaoling Zang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hui Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yao Tang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Junhui Ji
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Mianqi Xue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
43
|
Ding L, Li M, Liu C, Zhou Z, Chen J, Chen X, Chen L, Li J. Study on characteristics of the electric‐field‐sensitive hydrogel inspired by jelly in the ampullae of Lorenzini of elasmobranchs. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Laiqian Ding
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian China
| | - Mingyang Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian China
| | - Chong Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian China
- Key Laboratory for Precision and Non‐traditional Machining Technology of Ministry of Education Dalian University of Technology Dalian China
| | | | - Jing Chen
- Beijing Spacecrafts Co., Ltd. Beijing China
| | | | - Li Chen
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian China
| | - Jingmin Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province Dalian University of Technology Dalian China
| |
Collapse
|
44
|
Silver-Hydrogel/PDMS film with high mechanical strength for anti-interference strain sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Jafari H, Ghaffari-Bohlouli P, Niknezhad SV, Abedi A, Izadifar Z, Mohammadinejad R, Varma RS, Shavandi A. Tannic acid: a versatile polyphenol for design of biomedical hydrogels. J Mater Chem B 2022; 10:5873-5912. [PMID: 35880440 DOI: 10.1039/d2tb01056a] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tannic acid (TA), a natural polyphenol, is a hydrolysable amphiphilic tannin derivative of gallic acid with several galloyl groups in its structure. Tannic acid interacts with various organic, inorganic, hydrophilic, and hydrophobic materials such as proteins and polysaccharides via hydrogen bonding, electrostatic, coordinative bonding, and hydrophobic interactions. Tannic acid has been studied for various biomedical applications as a natural crosslinker with anti-inflammatory, antibacterial, and anticancer activities. In this review, we focus on TA-based hydrogels for biomaterials engineering to help biomaterials scientists and engineers better realize TA's potential in the design and fabrication of novel hydrogel biomaterials. The interactions of TA with various natural or synthetic compounds are deliberated, discussing parameters that affect TA-material interactions thus providing a fundamental set of criteria for utilizing TA in hydrogels for tissue healing and regeneration. The review also discusses the merits and demerits of using TA in developing hydrogels either through direct incorporation in the hydrogel formulation or indirectly via immersing the final product in a TA solution. In general, TA is a natural bioactive molecule with diverse potential for engineering biomedical hydrogels.
Collapse
Affiliation(s)
- Hafez Jafari
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Pejman Ghaffari-Bohlouli
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71345-1978, Iran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
46
|
Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int J Biol Macromol 2022; 218:601-633. [PMID: 35902015 DOI: 10.1016/j.ijbiomac.2022.07.168] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Gelatin's versatile functionalization offers prospects of facile and effective crosslinking as well as combining with other materials (e.g., metal nanoparticles, carbonaceous, minerals, and polymeric materials exhibiting desired functional properties) to form hybrid materials of improved thermo-mechanical, physio-chemical and biological characteristics. Gelatin-based hydrogels (GHs) and (nano)composite hydrogels possess unique functional features that make them appropriate for a wide range of environmental, technical, and biomedical applications. The properties of GHs could be balanced by optimizing the hydrogel design. The current review explores the various crosslinking techniques of GHs, their properties, composite types, and ultimately their end-use applications. GH's ability to absorb a large volume of water within the gel network via hydrogen bonding is frequently used for water retention (e.g., agricultural additives), and absorbency towards targeted chemicals from the environment (e.g., as wound dressings for absorbing exudates and in water treatment for absorbing pollutants). GH's controllable porosity makes its way to be used to restrict access to chemicals entrapped within the gel phase (e.g., cell encapsulation), regulate the release of encapsulated cargoes within the GH (e.g., drug delivery, agrochemicals release). GH's soft mechanics closely resembling biological tissues, make its use in tissue engineering to deliver suitable mechanical signals to neighboring cells. This review discussed the GHs as potential materials for the creation of biosensors, drug delivery systems, antimicrobials, modified electrodes, water adsorbents, fertilizers and packaging systems, among many others. The future research outlooks are also highlighted.
Collapse
|
47
|
Long S, Xie C, Lu X. Natural polymer‐based adhesive hydrogel for biomedical applications. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Siyu Long
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Chaoming Xie
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| |
Collapse
|
48
|
Li Y, Zhou X, Sarkar B, Gagnon-Lafrenais N, Cicoira F. Recent Progress on Self-Healable Conducting Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108932. [PMID: 35043469 DOI: 10.1002/adma.202108932] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Materials able to regenerate after damage have been the object of investigation since the ancient times. For instance, self-healing concretes, able to resist earthquakes, aging, weather, and seawater have been known since the times of ancient Rome and are still the object of research. During the last decade, there has been an increasing interest in self-healing electronic materials, for applications in electronic skin (E-skin) for health monitoring, wearable and stretchable sensors, actuators, transistors, energy harvesting, and storage devices. Self-healing materials based on conducting polymers are particularly attractive due to their tunable high conductivity, good stability, intrinsic flexibility, excellent processability and biocompatibility. Here recent developments are reviewed in the field of self-healing electronic materials based on conducting polymers, such as poly 3,4-ethylenedioxythiophene (PEDOT), polypyrrole (PPy), and polyaniline (PANI). The different types of healing, the strategies adopted to optimize electrical and mechanical properties, and the various possible healing mechanisms are introduced. Finally, the main challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Xin Zhou
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Biporjoy Sarkar
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Noémy Gagnon-Lafrenais
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| |
Collapse
|
49
|
Zaidi SFA, Kim YA, Saeed A, Sarwar N, Lee NE, Yoon DH, Lim B, Lee JH. Tannic acid modified antifreezing gelatin organohydrogel for low modulus, high toughness, and sensitive flexible strain sensor. Int J Biol Macromol 2022; 209:1665-1675. [PMID: 35487373 DOI: 10.1016/j.ijbiomac.2022.04.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
Abstract
Current hydrogel strain sensors have met assorted essential requirements of wearing comfort, mechanical toughness, and strain sensitivity. However, an increment in the toughness of a hydrogel usually leads to an increase in elastic moduli that could be unfavorable for wearing comfort. In addition, traits of biofriendly and sustainability require synthesis of the hydrogels from natural polymer-based networks. We propose a novel strategy to fabricate an ionic conductive organohydrogel from natural biological macromolecule "gelatin" and polyacid "tannic acid" to resolve these challenges. Tannic acid modified the structure of the gelatin network in the ionic conductive organohydrogels, that not only led to an increase in toughness accompanying a decrease in elastic moduli but also headed to higher strain sensitivity and tunability. The proposed methodology exhibited tunable tensile modulus from 27 to 13 kPa, tensile strength from 287 to 325 kPa, elongation at fracture from 510 to 620%, toughness from 500 to 550 kJ/m3, conductivity from 0.29 to 0.8 S/m, and strain sensitivity (GF = 1.4-6.5). Moreover, the proposed organohydrogel exhibited excellent freezing tolerance. This study provides a facile yet powerful strategy to tune the mechanical and electrical properties of organohydrogels which can be adapted to various wearable sensors.
Collapse
Affiliation(s)
- Syed Farrukh Alam Zaidi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Metallurgical and Materials Engineering, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Yun Ah Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Aiman Saeed
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Nasir Sarwar
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Textile Engineering, University of Engineering and Technology, Lahore (Faisalabad Campus) 38000, Pakistan
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Dae Ho Yoon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Byungkwon Lim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
50
|
Zhang Q, Wang X, Kang Y, Yao C, Li X, Li L. Conjugated Molecule-Assisted Supramolecular Hydrogel with Enhanced Antibacterial and Antibiofouling Properties. ACS APPLIED BIO MATERIALS 2022; 5:3107-3114. [PMID: 35641434 DOI: 10.1021/acsabm.2c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrogel using natural and synthetic polymers to create a cross-linking network has drawn attention in diverse bioapplications. However, inhibition of bacterial infection is still a challenge for hydrogel's wide application. In this work, we reported a supramolecular hydrogel with a good antibacterial property built from conjugated molecules. The water-soluble molecular 4,7-bis[9,9-di(2-carboxy-ethyl)-fluoren-2-yl]-2,1,3-benzothiadiazole (OFBTCOOH) physically linked with monomers via hydrophobic interaction. The free-radical polymerized poly(N-acryloyl glycinamide) was hydrogen-bond cross-linked by dual amides in the side chains to form a hydrogel. An adjustable micro-network was obtained by increasing OFBTCOOH with evidence of enhanced intermolecular interaction. The successfully integrated OFBTCOOH could be excited upon light irradiation. The energy of triplet-state excitons of OFBTCOOH transferred to the ground-state oxygen to produce singlet oxygen, which endowed the hydrogel with the antibacterial property. Meanwhile, the superhydrophilic surface of the hydrogel can bind water molecules to form a stable hydration layer, which acted as barriers to resist protein and bacterial adsorption and achieve the anti-biofouling goal. The ease in introducing conjugated polyelectrolytes may provide a formulation to functionalize hydrogels via various physical interactions.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuetong Kang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) Chongqing, Yangtze Normal University, Chongqing 408100, P. R. China
| | - XinRui Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|