1
|
Zhang Q, Li M, Li L, Geng D, Chen W, Hu W. Recent progress in emerging two-dimensional organic-inorganic van der Waals heterojunctions. Chem Soc Rev 2024; 53:3096-3133. [PMID: 38373059 DOI: 10.1039/d3cs00821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Two-dimensional (2D) materials have attracted significant attention in recent decades due to their exceptional optoelectronic properties. Among them, to meet the growing demand for multifunctional applications, 2D organic-inorganic van der Waals (vdW) heterojunctions have become increasingly popular in the development of optoelectronic devices. These heterojunctions demonstrate impressive capability to synergistically combine the favourable characteristics of organic and inorganic materials, thereby offering a wide range of advantages. Also, they enable the creation of innovative device structures and introduce novel functionalities in existing 2D materials, avoiding the need for lattice matching in different material systems. Presently, researchers are actively working on improving the performance of devices based on 2D organic-inorganic vdW heterojunctions by focusing on enhancing the quality of 2D materials, precise stacking methods, energy band regulation, and material selection. Therefore, this review presents a thorough examination of the emerging 2D organic-inorganic vdW heterojunctions, including their classification, fabrication, and corresponding devices. Additionally, this review offers profound and comprehensive insight into the challenges in this field to inspire future research directions. It is expected to propel researchers to harness the extraordinary capabilities of 2D organic-inorganic vdW heterojunctions for a wider range of applications by further advancing the understanding of their fundamental properties, expanding the range of available materials, and exploring novel device architectures. The ongoing research and development in this field hold potential to unlock captivating advancements and foster practical applications across diverse industries.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Menghan Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
2
|
Khan AA, Kumar N, Jung U, Heo W, Tan Z, Park J. Performance and stability enhancement of perovskite photodetectors by additive and interface engineering using a dual-functional PPS zwitterion. NANOSCALE HORIZONS 2023; 8:1577-1587. [PMID: 37680179 DOI: 10.1039/d3nh00263b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Hybrid organic-inorganic metal halide perovskites (HOIPs) have gained significant research interest due to their tunable optoelectronic properties and ease of fabrication. Enhancing the stability and efficiency of perovskite materials can be achieved through the passivation of defective surfaces and the improvement of interfacial properties. In this study, we introduce a zwitterionic compound, PPS (3-(1-pyridinio)-1-propanesulfonate), as a bifunctional material that serves as an additive and an interlayer. Incorporating PPS into the perovskite film effectively reduces both positively and negatively charged defects, leading to improved surface morphology and a reduction in undesired charge carrier recombination. Additionally, the formation of a PPS interlayer on SnO2 improves the SnO2/perovskite interfacial characteristics, thereby enhancing charge carrier extraction. As a result, the photodetector exhibits a low dark current of 6.05 × 10-11 A, an excellent responsivity of 5.93 A W-1, a detectivity of 1.51 × 1013 J, and an on/off ratio of 1.2 × 104 under open-air conditions. Moreover, the device demonstrates outstanding stability, retaining 80% of its original responsivity in an ambient environment. This work highlights the great potential of dual-functional materials for defect passivation in future optoelectronic devices, emphasizing the importance of surface modification and interface engineering for improved performance and stability.
Collapse
Affiliation(s)
- Abbas Ahmad Khan
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Navneet Kumar
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Uijin Jung
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Wonjun Heo
- Division of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Zhaozhong Tan
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Jinsub Park
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
- Division of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Wan J, Yuan H, Xiao Z, Sun J, Peng Y, Zhang D, Yuan X, Zhang J, Li Z, Dai G, Yang J. 2D Ruddlesden-Popper Polycrystalline PerovskitePyro-Phototronic Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207185. [PMID: 37226387 DOI: 10.1002/smll.202207185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/10/2023] [Indexed: 05/26/2023]
Abstract
Two-dimensional (2D) Ruddlesden-Popper (RP) layered halide perovskite has attracted wide attentions due to its unique structure and excellent optoelectronic properties. With inserting organic cations, inorganic octahedrons are forced to extend in a certain direction, resulting in an asymmetric 2D perovskite crystal structure and causing spontaneous polarization. The pyroelectric effect resulted from spontaneous polarization exhibits a broad prospect in the application of optoelectronic devices. Herein, 2D RP polycrystalline perovskite (BA)2 (MA)3 Pb4 I13 film with excellent crystal orientation is fabricated by hot-casting deposition, and a class of 2D hybrid perovskite photodetectors (PDs) with pyro-phototronic effect is proposed, achieving temperature and light detection with greatly improved performance by coupling multiple energies. Because of the pyro-phototronic effect, the current is ≈35 times to that of the photovoltaic effect current under 0 V bias. The responsivity and detectivity are 12.7 mA W-1 and 1.73 × 1011 Jones, and the on/off ratio can reach 3.97 × 103 . Furthermore, the influences of bias voltage, light power density, and frequency on the pyro-phototronic effect of 2D RP polycrystalline perovskite PDs are explored. The coupling of spontaneous polarization and light facilitates photo-induced carrier dissociation and tunes the carrier transport process, making 2D RP perovskites a competitive candidate for next-generation photonic devices.
Collapse
Affiliation(s)
- Jiaxin Wan
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Hua Yuan
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Zhixing Xiao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Jia Sun
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Yongyi Peng
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Dou Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Xi Yuan
- Chemistry and Chemical Engineering of Central South University, Central South University, Changsha, Hunan, 410083, China
| | - Jidong Zhang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, Jilin, 130000, China
| | - Zhuan Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Guozhang Dai
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Junliang Yang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
4
|
Schwanninger R, Koepfli SM, Yarema O, Dorodnyy A, Yarema M, Moser A, Nashashibi S, Fedoryshyn Y, Wood V, Leuthold J. Highly Responsive Mid-Infrared Metamaterial Enhanced Heterostructure Photodetector Formed out of Sintered PbSe/PbS Colloidal Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10847-10857. [PMID: 36795914 PMCID: PMC9982815 DOI: 10.1021/acsami.2c23050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Efficient and simple-to-fabricate light detectors in the mid infrared (MIR) spectral range are of great importance for various applications in existing and emerging technologies. Here, we demonstrate compact and efficient photodetectors operating at room temperature in a wavelength range of 2710-4250 nm with responsivities as high as 375 and 4 A/W. Key to the high performance is the combination of a sintered colloidal quantum dot (CQD) lead selenide (PbSe) and lead sulfide (PbS) heterojunction photoconductor with a metallic metasurface perfect absorber. The combination of this photoconductor stack with the metallic metasurface perfect absorber provides an overall ∼20-fold increase of the responsivity compared against reference sintered PbSe photoconductors. More precisely, the introduction of a PbSe/PbS heterojunction increases the responsivity by a factor of ∼2 and the metallic metasurface enhances the responsivity by an order of magnitude. The metasurface not only enhances the light-matter interaction but also acts as an electrode to the detector. Furthermore, fabrication of our devices relies on simple and inexpensive methods. This is in contrast to most of the currently available (state-of-the-art) MIR photodetectors that rely on rather expensive as well as nontrivial fabrication technologies that often require cooling for efficient operation.
Collapse
Affiliation(s)
| | - Stefan M. Koepfli
- Institute
of Electromagnetic Fields, ETH Zurich, 8092 Zurich, Switzerland
| | - Olesya Yarema
- Institute
for Electronics, ETH Zurich, 8092 Zurich, Switzerland
| | - Alexander Dorodnyy
- Institute
of Electromagnetic Fields, ETH Zurich, 8092 Zurich, Switzerland
| | - Maksym Yarema
- Institute
for Electronics, ETH Zurich, 8092 Zurich, Switzerland
| | - Annina Moser
- Institute
for Electronics, ETH Zurich, 8092 Zurich, Switzerland
| | - Shadi Nashashibi
- Institute
of Electromagnetic Fields, ETH Zurich, 8092 Zurich, Switzerland
| | - Yuriy Fedoryshyn
- Institute
of Electromagnetic Fields, ETH Zurich, 8092 Zurich, Switzerland
| | - Vanessa Wood
- Institute
for Electronics, ETH Zurich, 8092 Zurich, Switzerland
| | - Juerg Leuthold
- Institute
of Electromagnetic Fields, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
5
|
Yu W, Li F, Huang T, Li W, Wu T. Go beyond the limit: Rationally designed mixed-dimensional perovskite/semiconductor heterostructures and their applications. Innovation (N Y) 2023; 4:100363. [PMID: 36632191 PMCID: PMC9827388 DOI: 10.1016/j.xinn.2022.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Halide perovskite heterojunctions rationally integrate the chemical and physical properties of multi-dimensional perovskites and judiciously chosen semiconductor materials, offering the promise of going beyond the limit of a single component. This emerging platform of materials innovation offers fresh opportunities to tune material properties, discover interesting phenomena, and enable novel applications. In this review, we first discuss the fundamentals of forming heterojunctions with perovskites and a wide range of semiconductors, and then we give an overview of the research progress of halide perovskite heterojunctions in terms of their optical, electrical, and mechanical properties, focusing on how the heterojunction tunes the energy band structure, electrical transport, and charge recombination behaviors. We further outline the progress of perovskite-based heterojunctions in optoelectronics. Finally, the challenges and future research directions for perovskite/semiconductor heterojunctions are discussed.
Collapse
Affiliation(s)
- Weili Yu
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Feng Li
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tao Huang
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Wei Li
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Wang X, Gao S, Han J, Liu Z, Qiao W, Wang ZY. High-Performance All-Polymer Photodetectors Enabled by New Random Terpolymer Acceptor with Fine-Tuned Molecular Weight. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26978-26987. [PMID: 35656812 DOI: 10.1021/acsami.2c04775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reducing the dark current density and enhancing the overall performance of the device is the focal point in research for organic photodetectors. Two novel random terpolymers (P3 and P4) with different molecular weights are synthesized and evaluated as acceptors in bulk heterojunction (BHJ) polymer photodetectors. Compared with known acceptor materials, such as N2200 (P1) and F-N2200 (P2), polymer P4 has a lower lowest unoccupied molecular orbital (LUMO) energy level, favorable morphology, and good miscibility with a donor material J71, which leads to proper phase separation of the blend film and better dissociation of excitons and transport of carriers. Therefore, a considerably low dark current density (Jd) of 1.9 × 10-10 A/cm2 and a high specific detectivity (D*) of 1.8 × 1013 cm Hz1/2/W (also "Jones") at 580 nm under a -0.1 V bias are realized for the P4-based photodetector. More importantly, the device also exhibits a fast response speed (τr/τf = 1.24/1.87 μs) and a wide linear dynamic range (LDR) of 109.2 dB. This work demonstrates that high-performance all-polymer photodetectors with ideal morphology can be realized by random polymer acceptors with a fine-tuned molecular weight.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shijia Gao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Han
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhipeng Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenqiang Qiao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi Yuan Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
7
|
Hassan A, Azam M, Ahn YH, Zubair M, Cao Y, Khan AA. Low Dark Current and Performance Enhanced Perovskite Photodetector by Graphene Oxide as an Interfacial Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:190. [PMID: 35055209 PMCID: PMC8778836 DOI: 10.3390/nano12020190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/24/2023]
Abstract
Organic-inorganic hybrid perovskite photodetectors are gaining much interest recently for their high performance in photodetection, due to excellent light absorption, low cost, and ease of fabrication. Lower defect density and large grain size are always favorable for efficient and stable devices. Herein, we applied the interface engineering technique for hybrid trilayer (TiO2/graphene oxide/perovskite) photodetector to attain better crystallinity and defect passivation. The graphene oxide (GO) sandwich layer has been introduced in the perovskite photodetector for improved crystallization, better charge extraction, low dark current, and enhanced carrier lifetime. Moreover, the trilayer photodetector exhibits improved device performance with a high on/off ratio of 1.3 × 104, high responsivity of 3.38 AW-1, and low dark current of 1.55 × 10-11 A. The insertion of the GO layer also suppressed the perovskite degradation process and consequently improved the device stability. The current study focuses on the significance of interface engineering to boost device performance by improving interfacial defect passivation and better carrier transport.
Collapse
Affiliation(s)
- Ali Hassan
- International Science & Technology Cooperation Base for Laser Processing Robots, Wenzhou University, Wenzhou 325035, China; (A.H.); (Y.C.)
| | - Muhammad Azam
- Department of Physics, Faculty of Sciences, University of Central Punjab, Lahore 54000, Pakistan;
| | - Yeong Hwan Ahn
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea;
| | - Muhammad Zubair
- Department of Physics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan;
| | - Yu Cao
- International Science & Technology Cooperation Base for Laser Processing Robots, Wenzhou University, Wenzhou 325035, China; (A.H.); (Y.C.)
| | - Abbas Ahmad Khan
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
8
|
Wang H, Ma J, Li D. Two-Dimensional Hybrid Perovskite-Based van der Waals Heterostructures. J Phys Chem Lett 2021; 12:8178-8187. [PMID: 34415173 DOI: 10.1021/acs.jpclett.1c02290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) hybrid perovskites, as newly emerging materials, have become the center of attention in optoelectronic fields within a few years because of their unique optoelectronic properties, including tunable bandgap, long carrier diffusion length, and high absorption coefficient. 2D perovskite-based van der Waals heterostructures via integration of 2D perovskites with other layered materials provide new platforms for many optoelectronic devices with prominent performance, such as photodetectors, light-emitting diodes (LEDs), and phototransistors. In this Perspective, the unique properties of 2D perovskites will be first introduced to explore why this material is attractive and popular. Subsequently, various types of heterostructures based on 2D perovskites will be illustrated, including the heterostructure construction approaches as well as their optical and optoelectronic applications. Finally, potential research directions based on 2D perovskite heterostructures are also proposed.
Collapse
Affiliation(s)
- Haizhen Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiaqi Ma
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Zhang F, Zhang Q, Liu X, Hu Y, Lou Z, Hou Y, Teng F. Property Modulation of Two-Dimensional Lead-Free Perovskite Thin Films by Aromatic Polymer Additives for Performance Enhancement of Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24272-24284. [PMID: 33983724 DOI: 10.1021/acsami.1c03041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The inevitable oxidation of Sn2+ and p-type self-doping has plagued the development of two-dimensional (2D) Sn-based perovskite field effect transistors. In this work, we demonstrate the modulation of the properties of phenethylammonium tin iodide ((PEA)2SnI4) perovskite thin films by introducing the aromatic polymer additives of poly(4-vinylphenol) (PVP) and poly(vinyl pyrrolidone) (PVPD) during the crystallization processes, keeping the 2D layered structure of (PEA)2SnI4 unchanged. The proposed formation mechanisms of the polymer-assisted (PEA)2SnI4:PVP and (PEA)2SnI4:PVPD films disclose that the interactions between the polymers and (PEA)2SnI4, such as hydrogen bonds, π-π interactions, and coordination bonds, lead to the improvement of the morphology and crystallization as well as the inhibition of Sn2+ oxidation of the films. However, the field-effect transistors based on the two polymer-assisted (PEA)2SnI4 thin films constructed on the dielectric of poly(vinyl alcohol) (PVA) modified by crosslinking PVP (CL-PVP) exhibit quite a different performance. Compared with the (PEA)2SnI4 transistor, without sacrificing the hole mobility, the on-off current ratio of the (PEA)2SnI4:PVP device increases by one order of magnitude, and the subthreshold slope declines slightly due to the reduced leakage current, which results from the reduction of p-type self-doping of the perovskite film and the improved quality of the perovskite/dielectric interface because of the strong π-π interactions between the benzene rings in CL-PVP and (PEA)2SnI4:PVP. In contrast, the (PEA)2SnI4:PVPD transistor exhibits relatively poor overall performance because of the N-vinylpyrrolidone of PVPD. More importantly, employing PVP and PVPD as additives can effectively enhance the chemical stability of (PEA)2SnI4 as well as the operational stabilities of the corresponding transistors. Our work provides an effective strategy for selecting chemical additives to improve 2D perovskite properties and suppress the oxidation of Sn-based perovskites, and paves a way toward the future applications of Sn-based perovskite optoelectronic devices with high performance and stability.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Quan Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Xin Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Yufeng Hu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Zhidong Lou
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Yanbing Hou
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Feng Teng
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
10
|
Wang H, Jiang N, Zhang Q, Xie G, Tang N, Liu L, Xie Z. Facilely Tunable Redox Behaviors in Donor–Node–Acceptor Polymers toward High-Performance Ambipolar Electrode Materials. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hailong Wang
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Nianqiang Jiang
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qinglei Zhang
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guojing Xie
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ningning Tang
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|