1
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
2
|
Cocco A, Paniziutti S, Olla C, Corpino R, Maria Carbonaro C, Carlo Ricci P, Melis N, Caria P, Sanna G, Zysman-Colman E, Secci F. Design, Synthesis, and Photophysical Characterization of Biocompatible Thermally Activated Delayed Fluorescent Carbazole-Coumarins for Sensing Applications. Chemistry 2024; 30:e202401263. [PMID: 38949777 DOI: 10.1002/chem.202401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
A series of fluorescent carbazole-coumarins exhibiting good photoluminescence quantum yields and thermally activated delayed fluorescence (TADF) properties have been designed and synthetized using computer-aided density functional theory calculations. The TADF characteristics of the carbazole-coumarins were systematically explored both in solution and in the solid state, utilizing poly(methyl methacrylate) (PMMA) as a matrix. The study revealed that the introduction of carbazole units onto the coumarin benzene ring led to compounds with thermally induced reverse intersystem crossing and delayed fluorescence. The study further demonstrated the potential utility of these compounds in practical applications by incorporating them into a Cmr-PMMA-based sensor for molecular oxygen detection. The resulting sensor exhibited promising performance, highlighting the adaptability and efficacy of the synthesized TADF-carbazole-coumarin compounds for reversible molecular oxygen sensing.
Collapse
Affiliation(s)
- Andrea Cocco
- Dept. of Chemical and Geological Sciences, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, Fife, KY16 9ST, UK
| | - Sara Paniziutti
- Dept. of Chemical and Geological Sciences, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, Fife, KY16 9ST, UK
| | - Chiara Olla
- Department of Physics, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Riccardo Corpino
- Department of Physics, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Carlo Maria Carbonaro
- Department of Physics, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Pier Carlo Ricci
- Department of Physics, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Nicola Melis
- Department of Mechanical, Chemical and Materials Engineering, Università degli Studi di Cagliari, via Marengo 2, 09123, Cagliari, Italy
| | - Paola Caria
- Department of Biomedical Sciences, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Giuseppina Sanna
- Department of Biomedical Sciences, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, Fife, KY16 9ST, UK
| | - Francesco Secci
- Dept. of Chemical and Geological Sciences, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| |
Collapse
|
3
|
Russegger A, Fischer SM, Debruyne AC, Wiltsche H, Boese AD, Dmitriev RI, Borisov SM. Tunable Self-Referenced Molecular Thermometers via Manipulation of Dual Emission in Platinum(II) Pyridinedipyrrolide Complexes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11930-11943. [PMID: 38390631 PMCID: PMC10921383 DOI: 10.1021/acsami.3c19226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Optical temperature sensors based on self-referenced readout schemes such as the emission ratio and the decay time are crucial for a wide range of applications, with the former often preferred due to simplicity of instrumentation. This work describes a new group of dually emitting dyes, platinum(II) pincer complexes, that can be used directly for ratiometric temperature sensing without an additional reference material. They consist of Pt(II) metal center surrounded by a pyridinedipyrrolide ligand (PDP) and a terminal ligand (benzonitrile, pyridine, 1-butylimidazol or carbon monoxide). Upon excitation with blue light, these complexes exhibit green to orange emission, with quantum yields in anoxic toluene at 25 °C ranging from 13% to 86% and decay times spanning from 8.5 to 97 μs. The emission is attributed to simultaneous thermally activated delayed fluorescence (TADF) and phosphorescence processes on the basis of photophysical investigations and DFT calculations. Rather uniquely, simple manipulations in substituents of the PDP ligand and alteration of the terminal ligand allow fine-tuning of the ratio between TADF and phosphorescence from almost 100% TADF emission (Pt(MesPDPC6F5(BN)) to over 80% of phosphorescence (Pt(PhPDPPh(BuIm)). Apart from ratiometric capabilities, the complexes also are useful as decay time-based temperature indicators with temperature coefficients exceeding 1.5% K-1 in most cases. Immobilization of the dyes into oxygen-impermeable polyacrylonitrile produces temperature sensing materials that can be read out with an ordinary RGB camera or a smartphone. In addition, Pt(PhPDPPh)Py can be incorporated into biocompatible RL100 nanoparticles suitable for cellular nanothermometry, as we demonstrate with temperature measurements in multicellular colon cancer spheroids.
Collapse
Affiliation(s)
- Andreas Russegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Susanne M. Fischer
- Physical
and Theoretical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, Graz 8010, Austria
| | - Angela C. Debruyne
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medical and Health Sciences, Ghent University, C.
Heymanslaan 10, Ghent 9000, Belgium
| | - Helmar Wiltsche
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - A. Daniel Boese
- Physical
and Theoretical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, Graz 8010, Austria
| | - Ruslan I. Dmitriev
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medical and Health Sciences, Ghent University, C.
Heymanslaan 10, Ghent 9000, Belgium
- Ghent
Light Microscopy Core, Ghent University, Ghent 9000, Belgium
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| |
Collapse
|
4
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Sutton GD, Jiang C, Liu G, Teets TS. Ratiometric oxygen sensors of cyclometalated iridium(III) with enhanced quantum yields and variable dynamic ranges. Dalton Trans 2023; 52:3195-3202. [PMID: 36794766 DOI: 10.1039/d3dt00350g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Four luminescent ratiometric oxygen sensors, pairing phosphorescent cyclometalated iridium with coumarin or BODIPY fluorophores, are presented here. These compounds realize three key improvements over our previous designs, namely higher phosphorescence quantum yields, the ability to access intermediate dynamic ranges better suited for typical atmospheric O2 levels, and the possibility of using visible excitation instead of UV. These ratiometric sensors are accessed via very simple, 1-step syntheses involving direct reaction of the chloro-bridged cyclometalated iridium dimer with the pyridyl-substituted fluorophore. They have phosphorescent quantum yields up to 29% with short to intermediate phosphoresence lifetimes ranging from 1.7 to 5.3 μs in three of the sensors, with the fourth having a long lifetime of 440 μs that is very responsive to oxygen. In one case, visible excitation of 430 nm is used to provide dual emission instead of UV excitation.
Collapse
Affiliation(s)
- Gregory D Sutton
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA.
| | - Chenggang Jiang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA.
| | - Gardenia Liu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA.
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
6
|
Xu P, Hojo R, Hudson ZM. Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Materials with Imidazo-pyrazine-5,6-dicarbonitrile Acceptors. Chemistry 2023; 29:e202203585. [PMID: 36806222 DOI: 10.1002/chem.202203585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/23/2023]
Abstract
Three donor-acceptor compounds based on the imidazo-pyrazine-5,6-dicarbonitrile (IPDC) acceptor were synthesized. The IPDC emitters exhibit blue to near-infrared (NIR) emission with up to 54 % photoluminescent quantum yield. 9,9-Dimethyl-9,10-dihydroacridine (ACR), phenoxazine (POX), and phenothiazine (PTZ) served as electron donors. IPDC-POX displayed NIR emission in toluene solution, while showing room-temperature phosphorescence in the solid state. IPDC-ACR exhibited yellow thermally activated delayed fluorescence. Interestingly, dual-emissive behavior as well as excitation-dependent thermally activated delayed fluorescence (TADF) was found for IPDC-PTZ, arising from the two conformers of phenothiazine derivatives. Overall, this work describes a novel strong electron acceptor from the fusion of imidazole, pyrazine, and nitrile functional groups into one conjugated heterocycle for materials exhibiting NIR emission, TADF, and/or room-temperature phosphorescence (RTP).
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
7
|
Advancing biomedical applications via manipulating intersystem crossing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Mayder DM, Christopherson CJ, Primrose WL, Lin ASM, Hudson ZM. Polymer dots and glassy organic dots using dibenzodipyridophenazine dyes as water-dispersible TADF probes for cellular imaging. J Mater Chem B 2022; 10:6496-6506. [PMID: 35979840 DOI: 10.1039/d2tb01252a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence imaging of living cells is key to better understanding cellular morphology and biological processes. Water-dispersible nanoparticles exhibiting thermally activated delayed fluorescence (TADF) have recently emerged as useful probes for time-resolved fluorescence imaging (TRFI), circumventing interference from biological autofluorescence. Many existing approaches, however, require TADF dyes with specific structural features, precluding many high-performance TADF materials from being used in this application. Here, we describe the synthesis of two TADF emitters based on the rigid and strongly electron-withdrawing dibenzo[a,c]dipyrido[3,2-h:2'-3'-j]phenazine-12-yl (BPPZ) motif, and demonstrate two parallel approaches for the encapsulation of these fluorophores to yield water-dispersible nanoparticles suitable for TRFI. First, fluorescent polymer dots (Pdots) were formed by dye encapsulation within cell-penetrating amphiphilic copolymers. Glassy organic nanoparticles (g-Odots) were also prepared, giving nanoparticles with higher photoluminescence quantum yields and improved colour purity. Both approaches yielded nanoparticles suitable for imaging, with reasonable uptake and cytotoxicity on the timescale of standard imaging experiments using human cervical (HeLa) and liver (HepG2) cancer cell lines. This work demonstrates two flexible strategies for preparing water-dispersible TADF nanoparticles for TRFI, both of which should be readily adaptable to nearly any existing hydrophobic TADF dye.
Collapse
Affiliation(s)
- Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Cheyenne J Christopherson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Angela S-M Lin
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| |
Collapse
|
9
|
Wu Y, Sutton GD, Halamicek MDS, Xing X, Bao J, Teets TS. Cyclometalated iridium-coumarin ratiometric oxygen sensors: improved signal resolution and tunable dynamic ranges. Chem Sci 2022; 13:8804-8812. [PMID: 35975154 PMCID: PMC9350586 DOI: 10.1039/d2sc02909j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 12/31/2022] Open
Abstract
In this work we introduce a new series of ratiometric oxygen sensors based on phosphorescent cyclometalated iridium centers partnered with organic coumarin fluorophores. Three different cyclometalating ligands and two different pyridyl-containing coumarin types were used to prepare six target complexes with tunable excited-state energies. Three of the complexes display dual emission, with fluorescence arising from the coumarin ligand, and phosphorescence from either the cyclometalated iridium center or the coumarin. These dual-emitting complexes function as ratiometric oxygen sensors, with the phosphorescence quenched under O2 while fluorescence is unaffected. The use of blue-fluorescent coumarins results in good signal resolution between fluorescence and phosphorescence. Moreover, the sensitivity and dynamic range, measured with Stern-Volmer analysis, can be tuned two orders of magnitude by virtue of our ability to synthetically control the triplet excited-state ordering. The complex with cyclometalated iridium 3MLCT phosphorescence operates under hyperoxic conditions, whereas the two complexes with coumarin-centered phosphorescence are sensitive to very low levels of O2 and function as hypoxic sensors.
Collapse
Affiliation(s)
- Yanyu Wu
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Gregory D Sutton
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Michael D S Halamicek
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Xinxin Xing
- University of Houston, Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH) Houston TX 77204 USA
| | - Jiming Bao
- University of Houston, Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH) Houston TX 77204 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
10
|
Li C, Harrison AK, Liu Y, Zhao Z, Zeng C, Dias FB, Ren Z, Yan S, Bryce MR. Asymmetrical-Dendronized TADF Emitters for Efficient Non-doped Solution-Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angew Chem Int Ed Engl 2022; 61:e202115140. [PMID: 34870886 PMCID: PMC9306820 DOI: 10.1002/anie.202115140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 12/03/2022]
Abstract
The mechanism of thermally activated delayed fluorescence (TADF) in dendrimers is not clear. We report that fully-conjugated or fully-nonconjugated structures cause unwanted degenerate excited states due to multiple identical dendrons, which limit their TADF efficiency. We have synthesized asymmetrical "half-dendronized" and "half-dendronized-half-encapsulated" emitters. By eliminating degenerate excited states, the triplet locally excited state is ≥0.3 eV above the lowest triplet charge-transfer state, assuring a solely thermal equilibrium route for an effective spin-flip process. The isolated encapsulating tricarbazole unit can protect the TADF unit, reducing nonradiative decay and enhancing TADF performance. Non-doped solution-processed devices reach a high external quantum efficiency (EQEmax ) of 24.0 % (65.9 cd A-1 , 59.2 lm W-1 ) with CIE coordinates of (0.24, 0.45) with a low efficiency roll-off and EQEs of 23.6 % and 21.3 % at 100 and 500 cd m-2 .
Collapse
Affiliation(s)
- Chensen Li
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| | | | - Yuchao Liu
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Cheng Zeng
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | | | - Zhongjie Ren
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Martin R. Bryce
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
11
|
Li C, Harrison AK, Liu Y, Zhao Z, Zeng C, Dias FB, Ren Z, Yan S, Bryce MR. Asymmetrical‐Dendronized TADF Emitters for Efficient Non‐doped Solution‐Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chensen Li
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Chemistry Department Durham University South Road Durham DH1 3LE UK
| | | | - Yuchao Liu
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Cheng Zeng
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Fernando B. Dias
- Physics Department Durham University South Road Durham DH1 3LE UK
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Martin R. Bryce
- Chemistry Department Durham University South Road Durham DH1 3LE UK
| |
Collapse
|
12
|
Zhu A, Yu J, Zhou T, Zhang K, Qiu S, Ban X, Wang Y, Shen Z, Da S, Gao X. Rational design of multi-functional thermally activated delayed fluorescence emitters for both sensor and OLED applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj00770c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-conjugated linking as a molecular design strategy to construct multifunctional structures to achieve the TADF feature and sensor properties in a single system.
Collapse
Affiliation(s)
- Aiyun Zhu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Jianmin Yu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Tao Zhou
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Kaizhi Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Suyu Qiu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Xinxin Ban
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Lianyungang, Jiangsu, 222005, China
| | - Yuanchu Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Zhouzhou Shen
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Shiji Da
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Xuzhu Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, Jiangsu, 222005, China
| |
Collapse
|
13
|
Fang F, Zhu L, Li M, Song Y, Sun M, Zhao D, Zhang J. Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal-Free Luminophores for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102970. [PMID: 34705318 PMCID: PMC8693050 DOI: 10.1002/advs.202102970] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Indexed: 05/06/2023]
Abstract
The development of simple, efficient, and biocompatible organic luminescent molecules is of great significance to the clinical transformation of biomaterials. In recent years, purely organic thermally activated delayed fluorescence (TADF) materials with an extremely small single-triplet energy gap (ΔEST ) have been considered as the most promising new-generation electroluminescence emitters, which is an enormous breakthrough in organic optoelectronics. By merits of the unique photophysical properties, high structure flexibility, and reduced health risks, such metal-free TADF luminophores have attracted tremendous attention in biomedical fields, including conventional fluorescence imaging, time-resolved imaging and sensing, and photodynamic therapy. However, there is currently no systematic summary of the TADF materials for biomedical applications, which is presented in this review. Besides a brief introduction of the major developments of TADF material, the typical TADF mechanisms and fundamental principles on design strategies of TADF molecules and nanomaterials are subsequently described. Importantly, a specific emphasis is placed on the discussion of TADF materials for various biomedical applications. Finally, the authors make a forecast of the remaining challenges and future developments. This review provides insightful perspectives and clear prospects towards the rapid development of TADF materials in biomedicine, which will be highly valuable to exploit new luminescent materials.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Lin Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
14
|
Mayder DM, Tonge CM, Nguyen GD, Tran MV, Tom G, Darwish GH, Gupta R, Lix K, Kamal S, Algar WR, Burke SA, Hudson ZM. Polymer Dots with Enhanced Photostability, Quantum Yield, and Two-Photon Cross-Section using Structurally Constrained Deep-Blue Fluorophores. J Am Chem Soc 2021; 143:16976-16992. [PMID: 34618454 DOI: 10.1021/jacs.1c06094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Semiconducting polymer dots (Pdots) have emerged as versatile probes for bioanalysis and imaging at the single-particle level. Despite their utility in multiplexed analysis, deep blue Pdots remain rare due to their need for high-energy excitation and sensitivity to photobleaching. Here, we describe the design of deep blue fluorophores using structural constraints to improve resistance to photobleaching, two-photon absorption cross sections, and fluorescence quantum yields using the hexamethylazatriangulene motif. Scanning tunneling microscopy was used to characterize the electronic structure of these chromophores on the atomic scale as well as their intrinsic stability. The most promising fluorophore was functionalized with a polymerizable acrylate handle and used to give deep-blue fluorescent acrylic polymers with Mn > 18 kDa and Đ < 1.2. Nanoprecipitation with amphiphilic polystyrene-graft-(carboxylate-terminated poly(ethylene glycol)) gave water-soluble Pdots with blue fluorescence, quantum yields of 0.81, and molar absorption coefficients of (4 ± 2) × 108 M-1 cm-1. This high brightness facilitated single-particle visualization with dramatically improved signal-to-noise ratio and photobleaching resistance versus an unencapsulated dye. The Pdots were then conjugated with antibodies for immunolabeling of SK-BR3 human breast cancer cells, which were imaged using deep blue fluorescence in both one- and two-photon excitation modes.
Collapse
Affiliation(s)
- Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Christopher M Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Giang D Nguyen
- Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road, Vancouver V6T 1Z1, British Columbia, Canada.,Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver V6T 1Z4, British Columbia, Canada
| | - Michael V Tran
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Gary Tom
- Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road, Vancouver V6T 1Z1, British Columbia, Canada.,Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver V6T 1Z4, British Columbia, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Rupsa Gupta
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Kelsi Lix
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Saeid Kamal
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - W Russ Algar
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Sarah A Burke
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada.,Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road, Vancouver V6T 1Z1, British Columbia, Canada.,Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver V6T 1Z4, British Columbia, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| |
Collapse
|
15
|
Poisson J, Polgar AM, Fromel M, Pester CW, Hudson ZM. Preparation of Patterned and Multilayer Thin Films for Organic Electronics via Oxygen‐Tolerant SI‐PET‐RAFT. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jade Poisson
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Alexander M. Polgar
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Michele Fromel
- Department of Chemical Engineering Department of Chemistry Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Christian W. Pester
- Department of Chemical Engineering Department of Chemistry Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Zachary M. Hudson
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
16
|
Poisson J, Polgar AM, Fromel M, Pester CW, Hudson ZM. Preparation of Patterned and Multilayer Thin Films for Organic Electronics via Oxygen-Tolerant SI-PET-RAFT. Angew Chem Int Ed Engl 2021; 60:19988-19996. [PMID: 34337845 DOI: 10.1002/anie.202107830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/10/2022]
Abstract
An oxygen-tolerant approach is described for preparing surface-tethered polymer films of organic semiconductors directly from electrode substrates using polymer brush photolithography. A photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) approach was used to prepare multiblock polymer architectures with the structures of multi-layer organic light-emitting diodes (OLEDs), including electron-transport, emissive, and hole-transport layers. The preparation of thermally activated delayed fluorescence (TADF) and thermally assisted fluorescence (TAF) trilayer OLED architectures are described. By using direct photomasking as well as a digital micromirror device, we also show that the surface-initiated (SI)-PET-RAFT approach allows for enhanced control over layer thickness, and spatial resolution in polymer brush patterning at low cost.
Collapse
Affiliation(s)
- Jade Poisson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Alexander M Polgar
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Michele Fromel
- Department of Chemical Engineering, Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christian W Pester
- Department of Chemical Engineering, Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
17
|
Nelson Z, Romero NA, Tiepelt J, Baldo M, Swager TM. Polymerization and Depolymerization of Photoluminescent Polyarylene Chalcogenides. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zachary Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nathan A. Romero
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jan Tiepelt
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Marc Baldo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Lai Z, Ye J, Xiong J. Energy transfer processes and structure of carboxymethyl cellulose-Tb/Eu nanocomplexes with color-tunable photoluminescence. Carbohydr Polym 2021; 271:118386. [PMID: 34364585 DOI: 10.1016/j.carbpol.2021.118386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022]
Abstract
A series of fluorescent nanocomplexes of carboxymethyl cellulose (CMC)/Terbium (Tb)- Europium (Eu) were successfully synthesized without introducing a second ligand. By adjusting the concentration of the coordinated ions, these nanocomplexes exhibit favorably visibly tunable luminescence properties with colors being able to change from green to red. The XPS analysis demonstrates the formation Tb(III)-O2- and Eu(III)-O2- between OH and COO- in CMC and Tb3+ or Eu3+ ions, which is advantage for light absorption by UV-Vis spectroscopy and fluorescence spectroscopy. The ligand CMC plays a role in coordinating with terbium and europium ions, but also serves as an energy donor to these metal ions by antenna effect. Moreover, the energy transfer also occurred from terbium ions to europium ions in CMC matrix, which is responsible for the tunable luminescence properties of these complexes.
Collapse
Affiliation(s)
- Zhibin Lai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Ye
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Xiong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
19
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter*. Angew Chem Int Ed Engl 2021; 60:12066-12073. [PMID: 33666324 PMCID: PMC8251797 DOI: 10.1002/anie.202101870] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/12/2022]
Abstract
We report the characterization of rotaxanes based on a carbazole-benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.
Collapse
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Materials Research CentreIndian Institute of ScienceBangalore560012India
| | - Federica Rizzi
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Wenbo Li
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Michael A. Jinks
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Abhishek Kumar Gupta
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ifor D. W. Samuel
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
20
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Materials Research Centre Indian Institute of Science Bangalore 560012 India
| | - Federica Rizzi
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Wenbo Li
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Michael A. Jinks
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Stephen M. Goldup
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Eli Zysman‐Colman
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
21
|
Poisson J, Tonge CM, Paisley NR, Sauvé ER, McMillan H, Halldorson SV, Hudson ZM. Exploring the Scope of Through-Space Charge-Transfer Thermally Activated Delayed Fluorescence in Acrylic Donor–Acceptor Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jade Poisson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christopher M. Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nathan R. Paisley
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ethan R. Sauvé
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hayley McMillan
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sarah V. Halldorson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
22
|
Polymer-supported, photo-redox catalysts prepared from unimolecular photo-redox catalyst/initiator systems. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Xu S, Huang H, Yuan C, Liu F, Ding H, Xiao Q. Synthesis and photophysical properties of donor-substituted phenyl-phosphachromones as potential TADF materials. Org Chem Front 2021. [DOI: 10.1039/d1qo00121c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel arylamine-substituted phenyl-phosphachromones were constructed via post-functionalization.
Collapse
Affiliation(s)
- Shuangshuang Xu
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Haiyang Huang
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Chengxiong Yuan
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Fen Liu
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Haixin Ding
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Qiang Xiao
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| |
Collapse
|
24
|
Nguyen VN, Kumar A, Lee MH, Yoon J. Recent advances in biomedical applications of organic fluorescence materials with reduced singlet–triplet energy gaps. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213545] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Mayder DM, Tonge CM, Hudson ZM. Thermally Activated Delayed Fluorescence in 1,3,4-Oxadiazoles with π-Extended Donors. J Org Chem 2020; 85:11094-11103. [PMID: 32813517 DOI: 10.1021/acs.joc.0c00908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Here, we describe the synthesis of five 1,3,4-oxadiazole-based donor-acceptor materials, using dendritic carbazole-based donors 9'H-9,3':6'9″-tercarbazole (terCBz) and N3,N3,N6,N6-tetra-p-tolyl-9H-carbazole-3,6-diamine (TTAC). Due to the strongly donating and highly twisted nature of the TTAC donor as well as the spatially separated hole-particle wavefunctions, three of the five compounds exhibited thermally activated delayed fluorescence (TADF) in spite of a relatively large ΔEST measured through phosphorimetry (0.33-0.37 eV). These materials demonstrated photoluminescence quantum yields as high as 0.89 in toluene, with emission maxima ranging from 474 to 495 nm in the solid state. Additionally, two materials containing only terCBZ donor(s) exhibited deep blue fluorescence, with Commission Internationale de l'éclairage coordinates of (0.16, 0.05); the weaker nature of the terCBz donor results in a prohibitively large ΔEST (0.68-0.77 eV). A gap-tuned range-separated hybrid functional (ωB97XD*) was used to rigorously calculate triplet energies, while a systematic analysis of electronic structures and photophysical properties provided further insight into the properties of these materials. These findings ultimately contribute a synthetically facile approach toward highly emissive TADF emitters using a 1,3,4-oxadiazole motif.
Collapse
Affiliation(s)
- Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christopher M Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
26
|
Li Q, Hu J, Lv J, Wang X, Shao S, Wang L, Jing X, Wang F. Through‐Space Charge‐Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for High‐Efficiency Blue Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020; 59:20174-20182. [DOI: 10.1002/anie.202008912] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jianhong Lv
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
27
|
Li Q, Hu J, Lv J, Wang X, Shao S, Wang L, Jing X, Wang F. Through‐Space Charge‐Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for High‐Efficiency Blue Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008912] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jianhong Lv
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
28
|
Polgar AM, Tonge CM, Christopherson CJ, Paisley NR, Reyes AC, Hudson ZM. Thermally Assisted Fluorescent Polymers: Polycyclic Aromatic Materials for High Color Purity and White-Light Emission. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38602-38613. [PMID: 32846499 DOI: 10.1021/acsami.0c07892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermally activated delayed fluorescence (TADF) sensitization of fluorescence is a promising strategy to improve the color purity and operational lifetime of conventional TADF organic light-emitting diodes (OLEDs). Here, we propose a new design strategy for TADF-sensitized fluorescence based on acrylic polymers with a pendant energy-harvesting host, a TADF sensitizer, and fluorescent emitter monomers. Fluorescent emitters were rationally designed from a series of homologous polycyclic aromatic amines, resulting in efficient and color-pure polymeric fluorophores capable of harvesting both singlet and triplet excitons. Macromolecular analogues of blue, green, and yellow fourth-generation OLED emissive layers were prepared in a facile manner by Cu(0) reversible deactivation radical polymerization, with emission quantum yields up to 0.83 in air and narrow emission bands with full width at half-maximum as low as 57 nm. White-light emission can easily be achieved by enforcing incomplete energy transfer between a deep blue TADF sensitizer and yellow fluorophore to yield a single white-emissive polymer with CIE coordinates (0.33, 0.39) and quantum yield 0.77. Energy transfer to the fluorescent emitters occurs at rates of 1-4 × 108 s-1, significantly faster than deactivation caused by internal conversion or intersystem crossing. Rapid energy transfer facilitates high triplet exciton utilization and efficient sensitized emission, even when TADF emitters with a low quantum yield are used as photosensitizers. Our results indicate that a broad library of untapped polymers exhibiting efficient TADF-sensitized fluorescence should be readily accessible from known TADF materials, including many monomers previously thought unsuitable for use in OLEDs.
Collapse
Affiliation(s)
- Alexander M Polgar
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christopher M Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Cheyenne J Christopherson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nathan R Paisley
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Annelie C Reyes
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
29
|
Liu Y, Yang H, Ma C, Luo S, Xu M, Wu Z, Li W, Liu S. Luminescent Transparent Wood Based on Lignin-Derived Carbon Dots as a Building Material for Dual-Channel, Real-Time, and Visual Detection of Formaldehyde Gas. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36628-36638. [PMID: 32662973 DOI: 10.1021/acsami.0c10240] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Formaldehyde (FA) is a widespread indoor air pollutant, and its efficient detection is a major industrial challenge. The development of a building material with real-time and visual self-detection of FA gas is highly desirable for meeting both construction and human health demands. Herein, a luminescent transparent wood (LTW) as the building material was developed for dual-channel, real-time, and visual detection of FA gas. It was fabricated by encapsulating multicolor lignin-derived carbon dots (CDs) and poly(vinyl alcohol) (PVA) into a delignified wood framework. It exhibited 85% optical transmittance, tunable room-temperature phosphorescence (RTP), and ratiometric fluorescence (FL) emission. The tunable luminescence was attributed to different CD graphitization and surface functionalization. The color-responsive ratiometric FL and delayed RTP detections of FA were displayed over the range of 20-1500 μM (R2 = 0.966, LOD = 1.08 nM) and 20-2000 μM (R2 = 0.977, LOD = 45.8 nM), respectively. The LTW was also used as an encapsulation film on a UV-emitting InGaN chip to form white light-emitting diodes, indicating the feasibility as an FA-responsive planar light source. The operational notion of functional LTW can expand its applications to new fields such as a stimuli-responsive light-transmitting window or planar light sources while monitoring indoor air pollutants, temperature, and humidity.
Collapse
Affiliation(s)
- Yushan Liu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Haiyue Yang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Mingcong Xu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Zhenwei Wu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Wei Li
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, P. R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, P. R. China
| |
Collapse
|
30
|
Christopherson CJ, Mayder DM, Poisson J, Paisley NR, Tonge CM, Hudson ZM. 1,8-Naphthalimide-Based Polymers Exhibiting Deep-Red Thermally Activated Delayed Fluorescence and Their Application in Ratiometric Temperature Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20000-20011. [PMID: 32310640 DOI: 10.1021/acsami.0c05257] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of naphthalimide (NAI)-based red-emissive thermally activated delayed fluorescence (TADF) acrylic monomers has been designed and synthesized. When copolymerized with a host material by Cu(0)-reversible deactivation radical polymerization (Cu(0)-RDRP), polymers exhibiting orange to deep-red TADF were obtained with quantum yields of up to 58% in solution and 31% in the solid state. These emitters exhibit dual emission consisting of high-energy prompt fluorescence from the NAI acceptor (λmax = 340 nm in toluene) and red-delayed fluorescence from the charge-transfer process (λmax = 633-711 nm in toluene). This dual emissive property was utilized to create red-to-blue temperature-responsive polymers by copolymerization of NAI-DMAC with N-isopropylacrylamide and a blue fluorescent dopant. These polymers exhibit red TADF at room temperature and blue fluorescence at 70 °C, with a high ratiometric fluorescent thermal response of 32 ± 4% K-1. Such systems are anticipated to have utility in bioimaging, drug delivery, and temperature sensing, further expanding the range of applications for red TADF materials.
Collapse
Affiliation(s)
- Cheyenne J Christopherson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jade Poisson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nathan R Paisley
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christopher M Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
31
|
Paisley NR, Tonge CM, Hudson ZM. Stimuli-Responsive Thermally Activated Delayed Fluorescence in Polymer Nanoparticles and Thin Films: Applications in Chemical Sensing and Imaging. Front Chem 2020; 8:229. [PMID: 32328478 PMCID: PMC7160361 DOI: 10.3389/fchem.2020.00229] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Though molecules exhibiting thermally activated delayed fluorescence (TADF) have seen extensive development in organic light-emitting diodes, their incorporation into polymer nanomaterials and thin films has led to a range of applications in sensing and imaging probes. Triplet quenching can be used to probe oxygen concentration, and the reverse intersystem crossing mechanism which gives rise to TADF can also be used to measure temperature. Moreover, the long emission lifetimes of TADF materials allows for noise reduction in time-gated microscopy, making these compounds ideal for time-resolved fluorescence imaging (TRFI). A polymer matrix enables control over energy transfer between molecules, and can be used to modulate TADF behavior, solubility, biocompatibility, or desirable mechanical properties. Additionally, a polymer's oxygen permeability can be tuned to suit imaging applications in a range of media. Here we review the applications of polymer nanoparticles and films exhibiting TADF in sensing and imaging, demonstrating that this class of materials has great potential beyond electroluminescent devices still waiting to be explored.
Collapse
Affiliation(s)
| | | | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Franco O, Jakoby M, Schneider RV, Hundemer F, Hahn D, Richards BS, Bräse S, Meier MAR, Lemmer U, Howard IA. Sensitizing TADF Absorption Using Variable Length Oligo(phenylene ethynylene) Antennae. Front Chem 2020; 8:126. [PMID: 32175310 PMCID: PMC7054278 DOI: 10.3389/fchem.2020.00126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 12/23/2022] Open
Abstract
Beyond their applications in organic light-emitting diodes (OLEDs), thermally activated delayed fluorescence (TADF) materials can also make good photonic markers. Time-gated measurement of their delayed emission enables “background-free” imaging in, for example, biological systems, because no naturally-occurring compounds exhibit such long-lived emission. Attaching a strongly-absorbing antenna, such as a phenylene ethynylene oligomer, to the TADF core would be of interest to increase their brightness as photonic markers. With this motivation, we study a sequence of TADF-oligomer conjugates with oligomers of varying length and show that, even when the absorption of the oligomer is almost resonant with the charge-transfer absorption of the TADF core, the antenna transfers energy to the TADF core. We study this series of compounds with time resolved emission and transient absorption spectroscopy and find that the delayed fluorescence is essentially turned-off for the longer antennae. Interestingly, we find that the turn-off of the delayed fluorescence is not caused by quenching of the TADF charge-transfer triplet state due to triplet energy transfer of the lower-lying triplet state to the antenna, but must be associated with a decrease in the reverse intersystem crossing rate. These results are of relevance for the further development of TADF “dyes” and also, in the broader context, for understanding the dynamics of TADF molecules in the vicinity of energy donors/acceptors (i.e., in fluorescent OLEDs wherein TADF molecules are used as an assistant dopant).
Collapse
Affiliation(s)
- Olga Franco
- Department of Electrical Engineering and Information Technology, Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marius Jakoby
- Department of Electrical Engineering and Information Technology, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Rebekka V Schneider
- Laboratory of Applied Chemistry, Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Fabian Hundemer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Daniel Hahn
- Laboratory of Applied Chemistry, Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bryce S Richards
- Department of Electrical Engineering and Information Technology, Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Electrical Engineering and Information Technology, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Michael A R Meier
- Laboratory of Applied Chemistry, Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Uli Lemmer
- Department of Electrical Engineering and Information Technology, Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Electrical Engineering and Information Technology, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Department of Electrical Engineering and Information Technology, Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Electrical Engineering and Information Technology, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|