1
|
Mendez-Pfeiffer P, Ballesteros Monrreal MG, Mendez-Encinas MA, Valencia D, Ortiz B, González-Davis O, Cadena-Nava RD. Nanoparticles in Antibacterial Therapy: A Systematic Review of Enhanced Efficacy against Intracellular Bacteria. ACS OMEGA 2025; 10:17070-17086. [PMID: 40352514 PMCID: PMC12059930 DOI: 10.1021/acsomega.5c01813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/01/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Intracellular bacterial infections represent a considerable therapeutic challenge due to the ability of pathogens to invade and replicate within host cells, hampering the action of the immune system and the effectiveness of conventional antibiotics. Bacteria such as Mycobacterium tuberculosis, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus (MRSA), among others, can persist within host cells, allowing them to evade the immune response and develop resistance to antibacterial treatments. A key factor in the persistence of these infections is the ability of bacteria to enter a dormant state, which reduces their susceptibility to antibiotics that affect the dividing cells. Nanotechnology is emerging as a promising solution as nanoparticle-based systems can improve the intracellular penetration of antibiotics, allow their controlled release, and reduce side effects. This review covers the development and efficacy of nanoparticle-encapsulated antibiotics in models of intracellular infections, highlighting the need to further investigate their potential to overcome the barriers of conventional therapies and improve the treatment of these complex infections.
Collapse
Affiliation(s)
- Pablo Mendez-Pfeiffer
- Departamento
de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860, México
- Departamento
de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Campus Caborca, Caborca 83600, Sonora, México
| | - Manuel G. Ballesteros Monrreal
- Departamento
de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Campus Caborca, Caborca 83600, Sonora, México
| | - Mayra A. Mendez-Encinas
- Departamento
de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Campus Caborca, Caborca 83600, Sonora, México
| | - Dora Valencia
- Departamento
de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Campus Caborca, Caborca 83600, Sonora, México
| | - Bryan Ortiz
- Instituto
de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras
| | - Oscar González-Davis
- Departamento
de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860, México
| | - Ruben D. Cadena-Nava
- Departamento
de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860, México
| |
Collapse
|
2
|
Liu J, Zhang L, Ma H, Sun H, Ge SA, Liu J, Fan S, Quan C. Quaternary ammonium chitosan-functionalized mesoporous silica nanoparticles: A promising targeted drug delivery system for the treatment of intracellular MRSA infection. Carbohydr Polym 2025; 352:123184. [PMID: 39843087 DOI: 10.1016/j.carbpol.2024.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/28/2024] [Accepted: 12/22/2024] [Indexed: 01/30/2025]
Abstract
The limited membrane permeability and bacterial resistance pose significant challenges in the management of intracellular drug-resistant bacterial infections. To overcome this issue, we developed a bacterial-targeted drug delivery system based on quaternary ammonium chitosan-modified mesoporous silica nanoparticles (MSN-NH2-CFP@HACC) for the treatment of intracellular Methicillin-resistant Staphylococcus aureus (MRSA) infections. This system utilizes amino-functionalized mesoporous silica nanoparticles to efficiently load cefoperazone (CFP), and the nanoparticles' surface is coated with 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) to target bacteria and enhance macrophage uptake. The findings indicate that MSN-NH2-CFP@HACC nanoparticles are efficiently internalized by macrophages, demonstrate accelerated drug release in acidic environments, and exhibit enhanced antibacterial properties, effectively suppressing the proliferation and intracellular escape of MRSA. Moreover, HACC enhances the bacterial capture ability of the nanoparticles and reduces resistance by disrupting bacterial membrane structures and inhibiting bacterial β-lactamase activity. In a murine model of MRSA bacteremia, MSN-NH2-CFP@HACC exhibited remarkable antibacterial efficacy and significantly attenuated severe inflammatory responses. In conclusion, MSN-NH2-CFP@HACC represent a promising antibiotic delivery system with exceptional antibacterial efficacy and favorable biocompatibility, thus presenting a novel strategy for addressing intracellular drug-resistant bacterial infections and demonstrating significant potential for clinical application.
Collapse
Affiliation(s)
- Junfeng Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Liying Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Haodi Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Haoyang Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Shu-Ai Ge
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Jieyi Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Shengdi Fan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|
3
|
Li W, Tan CH, Baek JS, Jiang L, Ng NKJ, Chong KKL, Wong JJ, Gao L, Kline KA, Loo SCJ. Anti-Intracellular MRSA Activity of Antibiotic-Loaded Lipid-Polymer Hybrid Nanoparticles and Their Effectiveness in Murine Skin Wound Infection Models. ACS Infect Dis 2025; 11:750-761. [PMID: 39949070 DOI: 10.1021/acsinfecdis.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a significant concern for skin and soft tissue infections. Apart from biofilm formation, these bacteria can reside intracellularly in phagocytic and nonphagocytic mammalian cells, complicating treatment with conventional antibiotics. Lipid-polymer hybrid nanoparticle (LPN) systems, combining the advantages of polymeric nanoparticles and liposomes, represent a new generation of nanocarriers with the potential to address these therapeutic challenges. In this study, gentamicin (Gen) and vancomycin (Van) were encapsulated in LPNs and evaluated for their ability to eliminate intracellular MRSA in phagocytic macrophage RAW-Blue cells and nonphagocytic epithelial HaCaT cells. Compared to free antibiotics at 100 μg/mL, LPN formulations significantly reduced intracellular bacterial loads in both cell lines. Specifically, LPN-Van resulted in approximately 0.7 Log CFU/well reduction in RAW-Blue cells and 0.3 Log CFU/well reduction in HaCaT cells. LPN-Gen showed a more pronounced reduction, with approximately 1.26 Log CFU/well reduction in RAW-Blue cells and 0.45 Log CFU/well reduction in HaCaT cells. In vivo, LPN-Van at 500 μg/mL significantly reduced MRSA biofilm viability compared to untreated controls (p < 0.001), achieving 98% eradication based on median values. In comparison, free vancomycin achieved a nonstatistically significant 79.2% reduction in biofilm viability compared to control. Prophylactically, LPN-Van at 500 μg/mL decreased MRSA levels to the limit of detection, resulting in a ∼3.5 Log reduction in the median CFU/wound compared to free vancomycin. No acute dermal toxicity was observed for LPN-Van based on histological analysis. These data indicate that LPNs show promise as a drug delivery platform technology to address intracellular infections.
Collapse
Affiliation(s)
- Wenrui Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore
| | - Chuan Hao Tan
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jong-Suep Baek
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Lai Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Noele Kai Jing Ng
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kelvin Kian Long Chong
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jun Jie Wong
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Liheng Gao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kimberly A Kline
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
4
|
Alfieri A, Di Franco S, Passavanti MB, Pace MC, Simeon V, Chiodini P, Leone S, Fiore M. Antimicrobial Lock Therapy in Clinical Practice: A Scoping Review. Microorganisms 2025; 13:406. [PMID: 40005772 PMCID: PMC11857916 DOI: 10.3390/microorganisms13020406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Antimicrobial lock therapy (ALT) prevents microbial colonization in central vein catheters and treats existing catheter-related bloodstream infections (CRBSIs); the ALT assessment involves several key considerations. First, identifying which patients are suitable candidates is crucial. Additionally, understanding the clinical contexts in which is utilised provides insight into its applications. Examining when ALT has been employed and analyzing trends in its use over time can highlight its evolving role in patient care. Equally important is understanding how ALT is administered, including the specific agents used. Lastly, determining whether there is sufficient existing literature is essential to evaluate the feasibility of conducting future systematic reviews. This study is a scoping review adhered to the PRISMA-ScR guidelines and followed a five-stage methodological framework. Of the 1024 studies identified, 336 were included in the analysis. Findings highlight the widespread use of ethanol and taurolidine for CRBSIs prevention and the concurrent use of ALT with systemic antimicrobials to treat CRBSIs without catheter removal. ALT improves clinical outcomes, including post-infection survival and catheter retention. From our analysis, we have concluded that both an umbrella review of systematic reviews and a network meta-analysis comparing lock solutions can provide clearer guidance for clinical practice.
Collapse
Affiliation(s)
- Aniello Alfieri
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.A.); (S.D.F.); (M.B.P.); (M.C.P.)
| | - Sveva Di Franco
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.A.); (S.D.F.); (M.B.P.); (M.C.P.)
| | - Maria Beatrice Passavanti
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.A.); (S.D.F.); (M.B.P.); (M.C.P.)
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.A.); (S.D.F.); (M.B.P.); (M.C.P.)
| | - Vittorio Simeon
- Medical Statistics Unit, Department of Public, Clinical and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (V.S.); (P.C.)
| | - Paolo Chiodini
- Medical Statistics Unit, Department of Public, Clinical and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (V.S.); (P.C.)
| | - Sebastiano Leone
- Division of Infectious Diseases, Department of Internal Medicine, San Giuseppe Moscati Hospital, Contrada Amoretta, 83100 Avellino, Italy;
| | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.A.); (S.D.F.); (M.B.P.); (M.C.P.)
| |
Collapse
|
5
|
Sun Y, Qin S, Li Y, Hasan N, Li YV, Liu J. Machine learning integrated with in vitro experiments for study of drug release from PLGA nanoparticles. Sci Rep 2025; 15:4218. [PMID: 39905099 PMCID: PMC11794646 DOI: 10.1038/s41598-024-82728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/09/2024] [Indexed: 02/06/2025] Open
Abstract
This paper investigates delivery of encapsulated drug from poly lactic-co-glycolic micro-/nano-particles. Experimental data collected from about 50 papers are analyzed by machine learning algorithms including linear regression, principal component analysis, Gaussian process regression, and artificial neural networks. The focus is to understand the effect of drug solubility, drug molecular weight, particle size, and pH-value of the release matrix/environment on drug release profiles. The results obtained from machine learning is then used as guidelines for designing new in vitro experiments to examine dependence of drug release profiles on those four factors. It is interesting to see that indeed the results of the new in vitro experiments are in basic agreement with the results obtained from machine learning.
Collapse
Affiliation(s)
- Yu Sun
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO, 80523-1617, USA
| | - Shuhuai Qin
- Department of Mathematics, Colorado State University, Fort Collins, CO, 80523-1874, USA
| | - Yingli Li
- Department of Mathematics, Colorado State University, Fort Collins, CO, 80523-1874, USA
| | - Naimul Hasan
- Department of Design and Merchandising, Colorado State University, Fort Collins, CO, 80523-1574, USA
| | - Yan Vivian Li
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO, 80523-1617, USA
- Department of Design and Merchandising, Colorado State University, Fort Collins, CO, 80523-1574, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jiangguo Liu
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO, 80523-1617, USA.
- Department of Mathematics, Colorado State University, Fort Collins, CO, 80523-1874, USA.
| |
Collapse
|
6
|
Musciacchio L, Mardirossian M, Marussi G, Crosera M, Turco G, Porrelli D. Core-shell electrospun polycaprolactone nanofibers, loaded with rifampicin and coated with silver nanoparticles, for tissue engineering applications. BIOMATERIALS ADVANCES 2025; 166:214036. [PMID: 39276661 DOI: 10.1016/j.bioadv.2024.214036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In the field of tissue engineering, the use of core-shell fibers represents an advantageous approach to protect and finely tune the release of bioactive compounds with the aim to regulate their efficacy. In this work, core-shell electrospun polycaprolactone nanofiber-based membranes, loaded with rifampicin and coated with silver nanoparticles, were developed and characterized. The membranes are composed by randomly oriented nanofibers with a homogeneous diameter, as demonstrated by scanning electron microscopy (SEM). An air-plasma treatment was applied to increase the hydrophilicity of the membranes as confirmed by contact angle measurements. The rifampicin release from untreated and air-plasma treated membranes, evaluated by UV spectrophotometry, displayed a similar and constant over-time release profile, demonstrating that the air-plasma treatment does not degrade the rifampicin, loaded in the core region of the nanofibers. The presence and the distribution of silver nanoparticles on the nanofiber surface were investigated by SEM and Energy Dispersive Spectroscopy. Moreover, SEM imaging demonstrated that the produced membranes possess a good stability over time, in terms of structure maintenance. The developed membranes showed a good biocompatibility towards murine fibroblasts, human osteosarcoma cells and urotheliocytes, reveling the absence of cytotoxic effects. Moreover, doble-functionalized membranes inhibit the growth of E. coli and S. aureus. Thanks to the possibilities offered by the coaxial electrospinning, the membranes here proposed are promising for several tissue engineering applications.
Collapse
Affiliation(s)
- Luigi Musciacchio
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Giovanna Marussi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| |
Collapse
|
7
|
Tulinska J, Kobylinska L, Lehotska Mikusova M, Babincova J, Mitina N, Rollerova E, Liskova A, Madrova N, Alacova R, Zaichenko A, Lesyk R, Horvathova M, Szabova M, Lukan N, Vari S. PEG-Polymeric Nanocarriers Alleviate the Immunosuppressive Effects of Free 4-Thiazolidinone-Based Chemotherapeutics on T Lymphocyte Function and Cytokine Production. Int J Nanomedicine 2024; 19:14021-14041. [PMID: 39742092 PMCID: PMC11687095 DOI: 10.2147/ijn.s479137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Our study aimed to assess the effects of anticancer 4-thiazolidinone-based free water-insoluble therapeutics Les-3288 and Les-3833 and their waterborne complexes with branched PEG-containing polymeric carriers (A24-PEG550 and A24-PEG750) on immune response. Methods Human peripheral blood was used to study in vitro lymphocyte proliferative function, leukocyte phagocytic activity and respiratory burst, and cytokine production. Results The binding of the polymer to the anticancer drug Les-3288, which is intended to mitigate the immunosuppressive effects of the free drug on the proliferative activity of T lymphocytes and T-dependent B cells, demonstrated comparable efficacy for both A24-PEG750 and A24-PEG550 nanocarriers. Furthermore, it was observed that the drug-polymer complex significantly increased the reduced levels of IFN-γ and TNF-α resulting from free Les-3288. Conversely, the reduced levels of IL-6 and IL-4 remained unchanged. Administration of either form of Les-3288 had no effect on the phagocytic activity of monocytes, granulocytes or the respiratory burst of granulocytes. Due to the reduced cell viability and increased cytotoxicity associated with Les-3833, tenfold lower doses were selected for the immune assays. The effects of free Les-3833 on lymphocyte proliferative function resulted in significant stimulation of T-dependent B cells. The binding of Les-3833 to the smaller carrier, A24-PEG550 was found to maintain the stimulatory effect on B lymphocytes. While no effect of free Les-3833 on the granulocyte phagocytic activity was observed, binding of Les-3833 to both polymeric carriers resulted in a decrease in granulocyte phagocytic activity and respiratory burst, with no observable effect on monocytes. Monitoring of cytokine production showed no significant effect of either form of Les-3833 on the production of IFN-γ and IL-6. In the context of TNF-α and IL-4, the positive effect of polymer binding on restoring suppressed cytokine levels induced by the Les-3833 free drug was slightly more favorable for A24-PEG750. Conclusion The drug complexation with novel PEGylated carriers is a promising way for efficient therapeutic development.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Lesya Kobylinska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Julia Babincova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Natalia Mitina
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Eva Rollerova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Nikola Madrova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Alexander Zaichenko
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and BioOrganic Chemistry Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Sandor Vari
- International Research and Innovation in Medicine Program, Cedars - Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
8
|
Subramaniam S, Joyce P, Conn CE, Prestidge CA. Cellular uptake and in vitro antibacterial activity of lipid-based nanoantibiotics are influenced by protein corona. Biomater Sci 2024; 12:3411-3422. [PMID: 38809118 DOI: 10.1039/d4bm00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Bacteria have evolved survival mechanisms that enable them to live within host cells, triggering persistent intracellular infections that present significant clinical challenges due to the inability for conventional antibiotics to permeate cell membranes. In recent years, antibiotic nanocarriers or 'nanoantibiotics' have presented a promising strategy for overcoming intracellular infections by facilitating cellular uptake of antibiotics, thus improving targeting to the bacteria. However, prior to reaching host cells, nanocarriers experience interactions with proteins that form a corona and alter their physiological response. The influence of this protein corona on the cellular uptake, drug release and efficacy of nanoantibiotics for intracellular infections is poorly understood and commonly overlooked in preclinical studies. In this study, protein corona influence on cellular uptake was investigated for two nanoparticles; liposomes and cubosomes in macrophage and epithelial cells that are commonly infected with pathogens. Studies were conducted in presence of fetal bovine serum (FBS) to form a biologically relevant protein corona in an in vitro setting. Protein corona impact on cellular uptake was shown to be nanoparticle-dependent, where reduced internalization was observed for liposomes, the opposite was observed for cubosomes. Subsequently, vancomycin-loaded cubosomes were explored for their drug delivery performance against intracellular small colony variants of Staphylococcus aureus. We demonstrated improved bacterial killing in macrophages, with greater reduction in bacterial viability upon internalization of cubosomes mediated by the protein corona. However, no differences in efficacy were observed in epithelial cells. Thus, this study provides insights and evidence to the role of protein corona in modulating the performance of nanoparticles in a dynamic manner; these findings will facilitate improved understanding and translation of future investigations from in vitro to in vivo.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide 5000, South Australia, Australia.
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide 5000, South Australia, Australia.
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide 5000, South Australia, Australia.
| |
Collapse
|
9
|
Aparicio-Blanco J, Vishwakarma N, Lehr CM, Prestidge CA, Thomas N, Roberts RJ, Thorn CR, Melero A. Antibiotic resistance and tolerance: What can drug delivery do against this global threat? Drug Deliv Transl Res 2024; 14:1725-1734. [PMID: 38341386 PMCID: PMC11052818 DOI: 10.1007/s13346-023-01513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/12/2024]
Abstract
Antimicrobial resistance and tolerance (AMR&T) are urgent global health concerns, with alarmingly increasing numbers of antimicrobial drugs failing and a corresponding rise in related deaths. Several reasons for this situation can be cited, such as the misuse of traditional antibiotics, the massive use of sanitizing measures, and the overuse of antibiotics in agriculture, fisheries, and cattle. AMR&T management requires a multifaceted approach involving various strategies at different levels, such as increasing the patient's awareness of the situation and measures to reduce new resistances, reduction of current misuse or abuse, and improvement of selectivity of treatments. Also, the identification of new antibiotics, including small molecules and more complex approaches, is a key factor. Among these, novel DNA- or RNA-based approaches, the use of phages, or CRISPR technologies are some potent strategies under development. In this perspective article, emerging and experienced leaders in drug delivery discuss the most important biological barriers for drugs to reach infectious bacteria (bacterial bioavailability). They explore how overcoming these barriers is crucial for producing the desired effects and discuss the ways in which drug delivery systems can facilitate this process.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur, 482003, Madhya Pradesh, India
| | - Claus-Michael Lehr
- Department Drug Delivery across Biological Barriers (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123, Saarbrücken, Germany
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Chelsea R Thorn
- Biotherapeutics Pharmaceutical Research and Development, Pfizer, Inc., 1 Burtt Road, Andover, MA, 01810, USA.
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
10
|
Aanniz T, El Omari N, Elouafy Y, Benali T, Zengin G, Khalid A, Abdalla AN, Sakran AM, Bouyahya A. Innovative Encapsulation Strategies for Food, Industrial, and Pharmaceutical Applications. Chem Biodivers 2024; 21:e202400116. [PMID: 38462536 DOI: 10.1002/cbdv.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
Bioactive metabolites obtained from fruits and vegetables as well as many drugs have various capacities to prevent or treat various ailments. Nevertheless, their efficiency, in vivo, encounter many challenges resulting in lower efficacy as well as different side effects when high doses are used resulting in many challenges for their application. Indeed, demand for effective treatments with no or less unfavorable side effects is rising. Delivering active molecules to a particular site of action within the human body is an example of targeted therapy which remains a challenging field. Developments of nanotechnology and polymer science have great promise for meeting the growing demands of efficient options. Encapsulation of active ingredients in nano-delivery systems has become as a vitally tool for protecting the integrity of critical biochemicals, improving their delivery, enabling their controlled release and maintaining their biological features. Here, we examine a wide range of nano-delivery techniques, such as niosomes, polymeric/solid lipid nanoparticles, nanostructured lipid carriers, and nano-emulsions. The advantages of encapsulation in targeted, synergistic, and supportive therapies are emphasized, along with current progress in its application. Additionally, a revised collection of studies was given, focusing on improving the effectiveness of anticancer medications and addressing the problem of antimicrobial resistance. To sum up, this paper conducted a thorough analysis to determine the efficacy of encapsulation technology in the field of drug discovery and development.
Collapse
Affiliation(s)
- Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP, 1014, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, 46030, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ashraf M Sakran
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah, 21955, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
11
|
Lokhande AS, Maurya V, Rani K, Parashar P, Gaind R, Tandon V, Devarajan PV. Polydispersity-mediated high efficacy of an in-situ aqueous nanosuspension of PPEF.3HCl in methicillin resistant Staphylococcus aureus sepsis model. Int J Pharm 2024; 655:123982. [PMID: 38460770 DOI: 10.1016/j.ijpharm.2024.123982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Recently, World Health Organization declared antimicrobial resistance as the third greatest threat to human health. Absence of known cross-resistance, new class, new target, and a new mode of action are few major strategies being undertaken by researches to combat multidrug resistant pathogen. PPEF.3HCl, a bisbenzimidazole was developed as highly potent antibacterial agent against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, targeting topoisomerase IA. The present work encompasses a radical on-site generation of In-situ nanosuspension of PPEF.3HCl with enhanced efficacy against methicillin resistant S. aureus in septicemia model. We have generated instantaneously a PPEF.3HCl nanosuspension (IsPPEF.3HCl-NS) by mixing optimized monophasic PPEF.3HCl preconcentrate in propylene glycol into an aqueous medium comprising tween 80 as stabilizer. The IsPPEF.3HCl-NS showed precipitation efficiency of > 90 %, average particle size < 500 nm, retained upto 5 h, a negative zeta potential and bi/trimodal particle size distribution. Differential scanning calorimetry, X-ray diffraction confirmed partial amorphization and transmission electron microscopy revealed spherical particles. IsPPEF.3HCl-NS was non-hemolytic and exhibited good stability in serum. More significantly, it exhibited a ∼ 1.6-fold increase in macrophage uptake compared to free PPEF.3HCl in the RAW 264.7 macrophage cell line. Confocal microscopy revealed accumulation of IsPPEF.3HCl-NS within the lysosomal compartment and cell cytosol, proposing high efficacy. In terms of antimicrobial efficacy, IsPPEF.3HCl-NS outperforms free PPEF.3HCl against clinical methicillin sensitive and resistant S. aureus strains. In a pivotal experiment, IsPPEF.3HCl-NS exhibited over 83 % survival at 8 mg/kg.bw and an impressive reduction of ∼ 4-5 log-fold in bacterial load, primarily in the kidney, liver and spleen of septicemia mice. IsPPEF.3HCl-NS prepared by the In-situ approach, coupled with enhanced intramacrophage delivery and superior efficacy, positions IsPPEF.3HCl-NS as a pioneering and highly promising formulation in the battle against antimicrobial resistance.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Vikas Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Komal Rani
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Palak Parashar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajni Gaind
- Vardhaman Medical College Hospital, Safdarjung Hospital, New Delhi 110029, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India.
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
12
|
Subramaniam S, Joyce P, Ogunniyi AD, Dube A, Sampson SL, Lehr CM, Prestidge CA. Minimum Information for Conducting and Reporting In Vitro Intracellular Infection Assays. ACS Infect Dis 2024; 10:337-349. [PMID: 38295053 DOI: 10.1021/acsinfecdis.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Bacterial pathogens are constantly evolving to outsmart the host immune system and antibiotics developed to eradicate them. One key strategy involves the ability of bacteria to survive and replicate within host cells, thereby causing intracellular infections. To address this unmet clinical need, researchers are adopting new approaches, such as the development of novel molecules that can penetrate host cells, thus exerting their antimicrobial activity intracellularly, or repurposing existing antibiotics using nanocarriers (i.e., nanoantibiotics) for site-specific delivery. However, inconsistency in information reported across published studies makes it challenging for scientific comparison and judgment of experiments for future direction by researchers. Together with the lack of reproducibility of experiments, these inconsistencies limit the translation of experimental results beyond pre-clinical evaluation. Minimum information guidelines have been instrumental in addressing such challenges in other fields of biomedical research. Guidelines and recommendations provided herein have been designed for researchers as essential parameters to be disclosed when publishing their methodology and results, divided into four main categories: (i) experimental design, (ii) establishing an in vitro model, (iii) assessment of efficacy of novel therapeutics, and (iv) statistical assessment. These guidelines have been designed with the intention to improve the reproducibility and rigor of future studies while enabling quantitative comparisons of published studies, ultimately facilitating translation of emerging antimicrobial technologies into clinically viable therapies that safely and effectively treat intracellular infections.
Collapse
Affiliation(s)
- Santhni Subramaniam
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Abiodun D Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Bellville, 7535 Cape Town, South Africa
| | - Samantha L Sampson
- South African Medical Research Council Centre for Tuberculosis Research, and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, 7602 Cape Town, South Africa
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Clive A Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
13
|
Hernández-Giottonini K, Arellano-Reynoso B, Rodríguez-Córdova RJ, de la Vega-Olivas J, Díaz-Aparicio E, Lucero-Acuña A. Enhancing Therapeutic Efficacy against Brucella canis Infection in a Murine Model Using Rifampicin-Loaded PLGA Nanoparticles. ACS OMEGA 2023; 8:49362-49371. [PMID: 38162745 PMCID: PMC10753543 DOI: 10.1021/acsomega.3c07892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
The in vivo efficacy of rifampicin encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles was evaluated for the treatment of BALB/c mice experimentally infected with Brucella canis. The PLGA nanoparticles loaded with rifampicin (RNP) were prepared using the single emulsification-solvent evaporation technique, resulting in nanoparticles with a hydrodynamic diameter of 138 ± 6 nm. The zeta potential and polydispersity index values indicated that the system was relatively stable with a narrow size distribution. The release of rifampicin from the nanoparticles was studied in phosphate buffer at pH 7.4 and 37 °C. The release profile showed an initial burst phase, followed by a slower release stage attributed to nanoparticle degradation and relaxation, which continued for approximately 30 days until complete drug release. A combined model of rifampicin release, accounting for both the initial burst and the degradation-relaxation of the nanoparticles, effectively described the experimental data. The efficacy of RNP was studied in vivo; infected mice were treated with free rifampicin at concentrations of 2 mg per kilogram of mice per day (C1) and 4 mg per kilogram of mice per day (C2), as well as equivalent doses of RNP. Administration of four doses of the nanoparticles significantly reduced the B. canis load in the spleen of infected BALB/c mice. RNP demonstrated superior effectiveness compared to the free drug in the spleen, achieving reductions of 85.4 and 49.4%, respectively, when using C1 and 93.3 and 61.8%, respectively, when using C2. These results highlight the improved efficacy of the antibiotic when delivered through nanoparticles in experimentally infected mice. Therefore, the RNP holds promise as a potential alternative for the treatment of B. canis.
Collapse
Affiliation(s)
- Karol
Yesenia Hernández-Giottonini
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Beatriz Arellano-Reynoso
- Facultad
de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma
de México, Circuito Exterior Ciudad
Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Rosalva Josefina Rodríguez-Córdova
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| | | | - Efrén Díaz-Aparicio
- CENID
Salud Animal e Inocuidad, Instituto Nacional
de Investigaciones Forestales, Agrícolas y Pecuarias, Carretera Federal México-Toluca
Km. 15.5, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Armando Lucero-Acuña
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
14
|
Yin X, Lin S, Xiong Y, Zhang P, Mei X. Biomimetic nanoplatform with anti-inflammation and neuroprotective effects for repairing spinal cord injury in mice. Mater Today Bio 2023; 23:100836. [PMID: 38046275 PMCID: PMC10689280 DOI: 10.1016/j.mtbio.2023.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 12/05/2023] Open
Abstract
Regeneration in the therapeutics of spinal cord injury (SCI) remains a challenge caused by the hyperinflammation microenvironment. Nanomaterials-based treatment strategies for diseases with excellent therapeutic efficacy are actively pursued. Here, we develop biodegradable poly (lactic-co-glycolic acid) nanoparticles (PLGA) obtained by loading celastrol (pCel) for SCI thrapy. Cel, as an antioxidant drug, facilitated reactive oxygen species (ROS) scavenging, and decreased the generation of pro-inflammatory cytokines. To facilitate its administration, pCel is formulated into microspheres by oil-in-water (O/W) emulsion/solvent evaporation technique. The constructed pCel can induced polarization of macrophages and obviously improved lipopolysaccharide (LPS) and interferon-γ (IFN-γ)-induced mitochondrial dysfunction, and increased neurite length in PC12 cells and primary neurons. In vivo experiments revealed that pCel regulated the phenotypic polarization of macrophages, prevented the release of pro-inflammatory cytokines, promoted myelin regeneration and inhibited scar tissue formation, and further improve motor function. These findings indicated that the neuroprotective effect of this artificial biodegradable nanoplatform is benefit for the therapy of SCI. This research opens an exciting perspective for the application of SCI treatment and supports the clinical significance of pCel.
Collapse
Affiliation(s)
- Xuechen Yin
- Department of Laboratory Medicine, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Sen Lin
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ying Xiong
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), France
| | - Peng Zhang
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xifan Mei
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
15
|
Bertoni S, Albertini B, Ronowicz-Pilarczyk J, Passerini N. Tailoring the release of drugs having different water solubility by hybrid polymer-lipid microparticles with a biphasic structure. Eur J Pharm Biopharm 2023; 190:171-183. [PMID: 37517450 DOI: 10.1016/j.ejpb.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
The aim of this study is to investigate the potential of hybrid polymer-lipid microparticles with a biphasic structure (b-MPs) as drug delivery system. Hybrid b-MPs of Compritol®888 ATO as main lipid constituent of the shell and polyethylene glycol 400 as core material were produced by an innovative solvent-free approach based on spray congealing. To assess the suitability of hybrid b-MPs to encapsulate various types of APIs, three model drugs (fluconazole, tolbutamide and nimesulide) with extremely different water solubility were loaded into the polymeric core. The hybrid systems were characterized in terms of particle size, morphology and physical state. Various techniques (e.g. optical, Confocal Raman and Scanning Electron Microscopy) were used to investigate the influence of the drugs on different aspects of the b-MPs, including external and internal morphology, properties at the lipid/polymer interface and drug distribution. Hybrid b-MPs were suitable for the encapsulation of all drugs (encapsulation efficiency > 90 %) regardless the drug hydrophobic/hydrophilic properties. Finally, the drug release behaviors from hybrid b-MPs were studied and compared with traditional solid lipid MPs (consisting of only the lipid carrier). Due to the combination of lipid and polymeric materials, hybrid b-MPs showed a wide array of release profiles that depends on their composition, the type of loaded drug, the drug loading amount and location, providing a versatile platform and allowing the formulators to finely balance the release performance of drugs intended for oral administration. Overall, the study demonstrates that hybrid, solvent-free b-MPs produced by spray congealing are an extremely versatile delivery platform able to efficiently encapsulate and release very different types of drug compounds.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, Bologna 40127, Italy
| | - Beatrice Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, Bologna 40127, Italy.
| | - Joanna Ronowicz-Pilarczyk
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, Bydgoszcz 85-089, Poland
| | - Nadia Passerini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, Bologna 40127, Italy
| |
Collapse
|
16
|
Shakya AK, Al-Sulaibi M, Naik RR, Nsairat H, Suboh S, Abulaila A. Review on PLGA Polymer Based Nanoparticles with Antimicrobial Properties and Their Application in Various Medical Conditions or Infections. Polymers (Basel) 2023; 15:3597. [PMID: 37688223 PMCID: PMC10490122 DOI: 10.3390/polym15173597] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The rise in the resistance to antibiotics is due to their inappropriate use and the use of a broad spectrum of antibiotics. This has also contributed to the development of multidrug-resistant microorganisms, and due to the unavailability of suitable new drugs for treatments, it is difficult to control. Hence, there is a need for the development of new novel, target-specific antimicrobials. Nanotechnology, involving the synthesis of nanoparticles, may be one of the best options, as it can be manipulated by using physicochemical properties to develop intelligent NPs with desired properties. NPs, because of their unique properties, can deliver drugs to specific targets and release them in a sustained fashion. The chance of developing resistance is very low. Polymeric nanoparticles are solid colloids synthesized using either natural or synthetic polymers. These polymers are used as carriers of drugs to deliver them to the targets. NPs, synthesized using poly-lactic acid (PLA) or the copolymer of lactic and glycolic acid (PLGA), are used in the delivery of controlled drug release, as they are biodegradable, biocompatible and have been approved by the USFDA. In this article, we will be reviewing the synthesis of PLGA-based nanoparticles encapsulated or loaded with antibiotics, natural products, or metal ions and their antibacterial potential in various medical applications.
Collapse
Affiliation(s)
- Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mazen Al-Sulaibi
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Hamdi Nsairat
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Sara Suboh
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | | |
Collapse
|
17
|
Maghrebi S, Thomas N, Prestidge CA, Joyce P. Inulin-lipid hybrid (ILH) microparticles promote pH-triggered release of rifampicin within infected macrophages. Drug Deliv Transl Res 2023; 13:1716-1729. [PMID: 36630076 PMCID: PMC10126022 DOI: 10.1007/s13346-022-01287-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
Intracellular bacteria serve as a problematic source of infection due to their ability to evade biological immune responses and the inability for conventional antibiotics to efficiently penetrate cellular membranes. Subsequently, new treatment approaches are urgently required to effectively eradicate intracellular pathogens residing within immune cells (e.g. macrophages). In this study, the poorly soluble and poorly permeable antibiotic, rifampicin, was re-purposed via micro-encapsulation within inulin-lipid hybrid (ILH) particles for the treatment of macrophages infected with small colony variants of Staphylococcus aureus (SCV S. aureus). Rifampicin-encapsulated ILH (Rif-ILH) microparticles were synthesized by spray drying a lipid nano-emulsion, with inulin dissolved throughout the aqueous phase and rifampicin pre-loaded within the lipid phase. Rif-ILH were strategically designed and engineered with pH-responsive properties to promote lysosomal drug release upon cellular internalization, while preventing premature rifampicin release in plasma-simulating media. The pH-responsiveness of Rif-ILH was controlled by the acid-mediated hydrolysis of the inulin coating, where exposure to acidic media simulating the lysosomal environment of macrophages triggered hydrolysis of the oligofructose chain and the subsequent diffusion of rifampicin from Rif-ILH. This pH-provoked release mechanism, as well as the ability for ILH microparticles to be more readily internalized by macrophages, was found to be influential in triggering a 2.9-fold increase in intracellular rifampicin concentration within infected macrophages, compared to the pure drug. The subsequent increase in exposure of intracellular pathogens to rifampicin leads to a ~ 2-log improvement in antibacterial activity for Rif-ILH, at a rifampicin dose of 2.5 µg/mL. Thus, the reduction in viability of intracellular SCV S. aureus, in the absence of cellular toxicity, is indicative of ILH microparticles serving as a unique approach for the safe and efficacious delivery of antibiotics to phagocytic cells for the treatment of intracellular infections.
Collapse
Affiliation(s)
- Sajedeh Maghrebi
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Nicky Thomas
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Clive A Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
18
|
Subramaniam S, Joyce P, Prestidge CA. Liquid crystalline lipid nanoparticles improve the antibacterial activity of tobramycin and vancomycin against intracellular Pseudomonas aeruginosa and Staphylococcus aureus. Int J Pharm 2023; 639:122927. [PMID: 37059243 DOI: 10.1016/j.ijpharm.2023.122927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
The intracellular survival of bacteria is a significant challenge in the fight against antimicrobial resistance. Currently available antibiotics suffer from limited penetration across host cell membranes, resulting in suboptimal treatment against the internalised bacteria. Liquid crystalline nanoparticles (LCNP) are gaining significant research interest in promoting the cellular uptake of therapeutics due to their fusogenic properties; however, they have not been reported for targeting intracellular bacteria. Herein, the cellular internalisation of LCNPs in RAW 264.7 macrophages and A549 epithelial cells was investigated and optimized through the incorporation of a cationic lipid, dimethyldioctadecylammonium bromide (DDAB). LCNPs displayed a honeycomb-like structure, while the inclusion of DDAB resulted into an onion-like organisation with larger internal pores. Cationic LCNPs enhanced the cellular uptake in both cells, reaching up to ∼90% uptake in cells. Further, LCNPs were encapsulated with tobramycin or vancomycin to improve their activity against intracellular gram-negative, Pseudomonas aeruginosa (P. aeruginosa) and gram-positive, Staphylococcus aureus (S. aureus) bacteria. The enhanced cellular uptake of cationic LCNP resulted in significant reduction of intracellular bacterial load (up to 90% reduction), compared to antibiotic dosed in its free form; with reduced performance observed for epithelial cells infected with S. aureus. Specifically engineered LCNP can re-sensitise antibiotics against both intracellular Gram positive and negative bacteria in diverse cell lines.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA, 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA, 5000, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA, 5000, Australia.
| |
Collapse
|
19
|
Lokhande AS, Panchal F, Munshi R, Madkaikar M, Malshe VC, Devarajan PV. pH-responsive microparticles of rifampicin for augmented intramacrophage uptake and enhanced antitubercular efficacy. Int J Pharm 2023; 635:122729. [PMID: 36803923 DOI: 10.1016/j.ijpharm.2023.122729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
In this study we present pH-responsive rifampicin (RIF) microparticles comprising lecithin and a biodegradable hydrophobic polymer, polyethylene sebacate (PES), to achieve high intramacrophage delivery and enhanced antitubercular efficacy. PES and PES-lecithin combination microparticles (PL MPs) prepared by single step precipitation revealed average size of 1.5 to 2.7 µm, entrapment efficiency ∼ 60 %, drug loading 12-15 % and negative zeta potential. Increase in lecithin concentration enhanced hydrophilicity. PES MPs demonstrated faster release in simulated lung fluid pH 7.4, while lecithin MPs facilitated faster and concentration dependent release in acidic artificial lysosomal fluid (ALF) pH 4.5 due to swelling and destabilization confirmed by TEM. PES and PL (1:2) MPs exhibited comparable macrophage uptake which was ∼ 5-fold superior than free RIF, in the RAW 264.7 macrophage cells. Confocal microscopy depicted intensified accumulation of the MPs in the lysosomal compartment, with augmented release of coumarin dye from the PL MPs, confirming pH-triggered increased intracellular release. Although, PES MPs and PL (1:2) MPs displayed comparable and high macrophage uptake, antitubercular efficacy against macrophage internalised M. tuberculosis was significantly higher with PL (1:2) MPs. This suggested great promise of the pH-sensitive PL (1:2) MPs for enhanced antitubercular efficacy.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Falguni Panchal
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Renuka Munshi
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Manisha Madkaikar
- Department of Paediatric Immunology and Leukemia Biology, ICMR-National Institute of Immunohaematology, KEM Hospital campus, Parel, Mumbai 400012, Maharashtra, India
| | - Vinod C Malshe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
20
|
Jambhrunkar M, Maghrebi S, Doddakyathanahalli D, Wignall A, Prestidge CA, Bremmell KE. Mesoporous Organosilica Nanoparticles to Fight Intracellular Staphylococcal Aureus Infections in Macrophages. Pharmaceutics 2023; 15:pharmaceutics15041037. [PMID: 37111523 PMCID: PMC10146421 DOI: 10.3390/pharmaceutics15041037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Intracellular bacteria are inaccessible and highly tolerant to antibiotics, hence are a major contributor to the global challenge of antibiotic resistance and recalcitrant clinical infections. This, in tandem with stagnant antibacterial discovery, highlights an unmet need for new delivery technologies to treat intracellular infections more effectively. Here, we compare the uptake, delivery, and efficacy of rifampicin (Rif)-loaded mesoporous silica nanoparticles (MSN) and organo-modified (ethylene-bridged) MSN (MON) as an antibiotic treatment against small colony variants (SCV) Staphylococcus aureus (SA) in murine macrophages (RAW 264.7). Macrophage uptake of MON was five-fold that of equivalent sized MSN and without significant cytotoxicity on human embryonic kidney cells (HEK 293T) or RAW 264.7 cells. MON also facilitated increased Rif loading with sustained release, and seven-fold increased Rif delivery to infected macrophages. The combined effects of increased uptake and intracellular delivery of Rif by MON reduced the colony forming units of intracellular SCV-SA 28 times and 65 times compared to MSN-Rif and non-encapsulated Rif, respectively (at a dose of 5 µg/mL). Conclusively, the organic framework of MON offers significant advantages and opportunities over MSN for the treatment of intracellular infections.
Collapse
Affiliation(s)
- Manasi Jambhrunkar
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sajedeh Maghrebi
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Divya Doddakyathanahalli
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
21
|
Microparticles in the Development and Improvement of Pharmaceutical Formulations: An Analysis of In Vitro and In Vivo Studies. Int J Mol Sci 2023; 24:ijms24065441. [PMID: 36982517 PMCID: PMC10049314 DOI: 10.3390/ijms24065441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
Microparticulate systems such as microparticles, microspheres, microcapsules or any particle in a micrometer scale (usually of 1–1000 µm) are widely used as drug delivery systems, because they offer higher therapeutic and diagnostic performance compared to conventional drug delivery forms. These systems can be manufactured with many raw materials, especially polymers, most of which have been effective in improving the physicochemical properties and biological activities of active compounds. This review will focus on the in vivo and in vitro application in the last decade (2012 to 2022) of different active pharmaceutical ingredients microencapsulated in polymeric or lipid matrices, the main formulation factors (excipients and techniques) and mostly their biological activities, with the aim of introducing and discussing the potential applicability of microparticulate systems in the pharmaceutical field.
Collapse
|
22
|
Qu S, Zhu K. Endocytosis-mediated redistribution of antibiotics targets intracellular bacteria. NANOSCALE 2023; 15:4781-4794. [PMID: 36779877 DOI: 10.1039/d2nr05421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The increasing emergence and dissemination of antibiotic resistance pose a severe threat to overwhelming healthcare practices worldwide. The lack of new antibacterial drugs urgently calls for alternative therapeutic strategies to combat multidrug-resistant (MDR) bacterial pathogens, especially those that survive and replicate in host cells, causing relapse and recurrence of infections. Intracellular drug delivery is a direct efficient strategy to combat invasive pathogens by increasing the accumulation of antibiotics. However, the increased accumulation of antibiotics in the infected host cells does not mean high efficacy. The difficulty of treatment lies in the efficient intracellular delivery of antibiotics to the pathogen-containing compartments. Here, we first briefly review the survival mechanisms of intracellular bacteria to facilitate the exploration of potential antibacterial targets for precise delivery. Furthermore, we provide an overview of endocytosis-mediated drug delivery systems, including the biomedical and physicochemical properties modulating the endocytosis and intracellular redistribution of antibiotics. Lastly, we summarize the targets and payloads of recently described intracellular delivery systems and their modes of action against diverse pathogenic bacteria-associated infections. This overview of endocytosis-mediated redistribution of antibiotics sheds light on the development of novel delivery platforms and alternative strategies to combat intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kui Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
- Engineering Research Center of Animal Innovative drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Chu K, Zhu Y, Lu G, Huang S, Yang C, Zheng J, Chen J, Ban J, Jia H, Lu Z. Formation of Hydrophilic Nanofibers from Nanostructural Design in the Co-Encapsulation of Celecoxib through Electrospinning. Pharmaceutics 2023; 15:pharmaceutics15030730. [PMID: 36986590 PMCID: PMC10051909 DOI: 10.3390/pharmaceutics15030730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
This study presents a method for a one-step co-encapsulation of PLGA nanoparticles in hydrophilic nanofibers. The aim is to effectively deliver the drug to the lesion site and achieve a longer release time. The celecoxib nanofiber membrane (Cel-NPs-NFs) was prepared by emulsion solvent evaporation and electrospinning with celecoxib as a model drug. By this method, nanodroplets of celecoxib PLGA are entrapped within polymer nanofibers during an electrospinning process. Moreover, Cel-NPs-NFs exhibited good mechanical strength and hydrophilicity, with a cumulative release of 67.74% for seven days, and the cell uptake at 0.5 h was 2.7 times higher than that of pure nanoparticles. Furthermore, pathological sections of the joint exhibited an apparent therapeutic effect on rat OA, and the drug was delivered effectively. According to the results, this solid matrix containing nanodroplets or nanoparticles could use hydrophilic materials as carriers to prolong drug release time.
Collapse
Affiliation(s)
- Kedi Chu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Zhu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Geng Lu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sa Huang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510663, China
| | - Chuangzan Yang
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Juying Zheng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junming Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junfeng Ban
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huanhuan Jia
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510663, China
- Correspondence: (H.J.); (Z.L.)
| | - Zhufen Lu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (H.J.); (Z.L.)
| |
Collapse
|
24
|
Nanosized Drug Delivery Systems to Fight Tuberculosis. Pharmaceutics 2023; 15:pharmaceutics15020393. [PMID: 36839715 PMCID: PMC9964171 DOI: 10.3390/pharmaceutics15020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Tuberculosis (TB) is currently the second deadliest infectious disease. Existing antitubercular therapies are long, complex, and have severe side effects that result in low patient compliance. In this context, nanosized drug delivery systems (DDSs) have the potential to optimize the treatment's efficiency while reducing its toxicity. Hundreds of publications illustrate the growing interest in this field. In this review, the main challenges related to the use of drug nanocarriers to fight TB are overviewed. Relevant publications regarding DDSs for the treatment of TB are classified according to the encapsulated drugs, from first-line to second-line drugs. The physicochemical and biological properties of the investigated formulations are listed. DDSs could simultaneously (i) optimize the therapy's antibacterial effects; (ii) reduce the doses; (iii) reduce the posology; (iv) diminish the toxicity; and as a global result, (v) mitigate the emergence of resistant strains. Moreover, we highlight that host-directed therapy using nanoparticles (NPs) is a recent promising trend. Although the research on nanosized DDSs for TB treatment is expanding, clinical applications have yet to be developed. Most studies are only dedicated to the development of new formulations, without the in vivo proof of concept. In the near future, it is expected that NPs prepared by "green" scalable methods, with intrinsic antibacterial properties and capable of co-encapsulating synergistic drugs, may find applications to fight TB.
Collapse
|
25
|
Feng W, Chittò M, Moriarty TF, Li G, Wang X. Targeted Drug Delivery Systems for Eliminating Intracellular Bacteria. Macromol Biosci 2023; 23:e2200311. [PMID: 36189899 DOI: 10.1002/mabi.202200311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Indexed: 01/19/2023]
Abstract
The intracellular survival of pathogenic bacteria requires a range of survival strategies and virulence factors. These infections are a significant clinical challenge, wherein treatment frequently fails because of poor antibiotic penetration, stability, and retention in host cells. Drug delivery systems (DDSs) are promising tools to overcome these shortcomings and enhance the efficacy of antibiotic therapy. In this review, the classification and the mechanisms of intracellular bacterial persistence are elaborated. Furthermore, the systematic design strategies applied to DDSs to eliminate intracellular bacteria are also described, and the strategies used for internalization, intracellular activation, bacterial targeting, and immune enhancement are highlighted. Finally, this overview provides guidance for constructing functionalized DDSs to effectively eliminate intracellular bacteria.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,AO Research Institute Davos, Davos, 7270, Switzerland
| | - Marco Chittò
- AO Research Institute Davos, Davos, 7270, Switzerland
| | | | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
26
|
Alsaab HO, Alharbi FD, Alhibs AS, Alanazi NB, Alshehri BY, Saleh MA, Alshehri FS, Algarni MA, Almugaiteeb T, Uddin MN, Alzhrani RM. PLGA-Based Nanomedicine: History of Advancement and Development in Clinical Applications of Multiple Diseases. Pharmaceutics 2022; 14:pharmaceutics14122728. [PMID: 36559223 PMCID: PMC9786338 DOI: 10.3390/pharmaceutics14122728] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Research on the use of biodegradable polymers for drug delivery has been ongoing since they were first used as bioresorbable surgical devices in the 1980s. For tissue engineering and drug delivery, biodegradable polymer poly-lactic-co-glycolic acid (PLGA) has shown enormous promise among all biomaterials. PLGA are a family of FDA-approved biodegradable polymers that are physically strong and highly biocompatible and have been extensively studied as delivery vehicles of drugs, proteins, and macromolecules such as DNA and RNA. PLGA has a wide range of erosion times and mechanical properties that can be modified. Many innovative platforms have been widely studied and created for the development of methods for the controlled delivery of PLGA. In this paper, the various manufacturing processes and characteristics that impact their breakdown and drug release are explored in depth. Besides different PLGA-based nanoparticles, preclinical and clinical applications for different diseases and the PLGA platform types and their scale-up issues will be discussed.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
- Correspondence: ; Tel.: +966-556047523
| | - Fatima D. Alharbi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanoud S. Alhibs
- Department of Pharmacy, King Fahad Medical City, Riyadh 11564, Saudi Arabia
| | - Nouf B. Alanazi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bayan Y. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Majed A. Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Turki Almugaiteeb
- Taqnia-Research Products Development Company, Riyadh 13244, Saudi Arabia
| | | | - Rami M. Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
27
|
Feng W, Li G, Kang X, Wang R, Liu F, Zhao D, Li H, Bu F, Yu Y, Moriarty TF, Ren Q, Wang X. Cascade-Targeting Poly(amino acid) Nanoparticles Eliminate Intracellular Bacteria via On-Site Antibiotic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109789. [PMID: 35066925 DOI: 10.1002/adma.202109789] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Intracellular bacteria in latent or dormant states tolerate high-dose antibiotics. Fighting against these opportunistic bacteria has been a long-standing challenge. Herein, the design of a cascade-targeting drug delivery system (DDS) that can sequentially target macrophages and intracellular bacteria, exhibiting on-site drug delivery, is reported. The DDS is fabricated by encapsulating rifampicin (Rif) into mannose-decorated poly(α-N-acryloyl-phenylalanine)-block-poly(β-N-acryloyl-d-aminoalanine) nanoparticles, denoted as Rif@FAM NPs. The mannose units on Rif@FAM NPs guide the initial macrophage-specific uptake and intracellular accumulation. After the uptake, the detachment of mannose in acidic phagolysosome via Schiff base cleavage exposes the d-aminoalanine moieties, which subsequently steer the NPs to escape from lysosomes and target intracellular bacteria through peptidoglycan-specific binding, as evidenced by the in situ/ex situ co-localization using confocal, flow cytometry, and transmission electron microscopy. Through the on-site Rif delivery, Rif@FAM NPs show superior in vitro and in vivo elimination efficiency than the control groups of free Rif or the DDSs lacking the macrophages- or bacteria-targeting moieties. Furthermore, Rif@FAM NPs remodel the innate immune response of the infected macrophages by upregulating M1/M2 polarization, resulting in a reinforced antibacterial capacity. Therefore, this biocompatible DDS enabling macrophages and bacteria targeting in a cascade manner provides a new outlook for the therapy of intracellular pathogen infection.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruibai Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, P. R. China
| | - Fang Liu
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanqiang Bu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | | | - Qun Ren
- Empa, the Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
28
|
Vlachopoulos A, Karlioti G, Balla E, Daniilidis V, Kalamas T, Stefanidou M, Bikiaris ND, Christodoulou E, Koumentakou I, Karavas E, Bikiaris DN. Poly(Lactic Acid)-Based Microparticles for Drug Delivery Applications: An Overview of Recent Advances. Pharmaceutics 2022; 14:359. [PMID: 35214091 PMCID: PMC8877458 DOI: 10.3390/pharmaceutics14020359] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
The sustained release of pharmaceutical substances remains the most convenient way of drug delivery. Hence, a great variety of reports can be traced in the open literature associated with drug delivery systems (DDS). Specifically, the use of microparticle systems has received special attention during the past two decades. Polymeric microparticles (MPs) are acknowledged as very prevalent carriers toward an enhanced bio-distribution and bioavailability of both hydrophilic and lipophilic drug substances. Poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and their copolymers are among the most frequently used biodegradable polymers for encapsulated drugs. This review describes the current state-of-the-art research in the study of poly(lactic acid)/poly(lactic-co-glycolic acid) microparticles and PLA-copolymers with other aliphatic acids as drug delivery devices for increasing the efficiency of drug delivery, enhancing the release profile, and drug targeting of active pharmaceutical ingredients (API). Potential advances in generics and the constant discovery of therapeutic peptides will hopefully promote the success of microsphere technology.
Collapse
Affiliation(s)
- Antonios Vlachopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Georgia Karlioti
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelia Balla
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Vasileios Daniilidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Theocharis Kalamas
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Myrika Stefanidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelos Karavas
- Pharmathen S.A., Pharmaceutical Industry, Dervenakion Str. 6, Pallini Attikis, GR-153 51 Attiki, Greece
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| |
Collapse
|
29
|
Anwer MK, Ali EA, Iqbal M, Ahmed MM, Aldawsari MF, Saqr AA, Ansari MN, Aboudzadeh MA. Development of Sustained Release Baricitinib Loaded Lipid-Polymer Hybrid Nanoparticles with Improved Oral Bioavailability. Molecules 2021; 27:168. [PMID: 35011397 PMCID: PMC8746631 DOI: 10.3390/molecules27010168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Baricitinib (BTB) is an orally administered Janus kinase inhibitor, therapeutically used for the treatment of rheumatoid arthritis. Recently it has also been approved for the treatment of COVID-19 infection. In this study, four different BTB-loaded lipids (stearin)-polymer (Poly(d,l-lactide-co-glycolide)) hybrid nanoparticles (B-PLN1 to B-PLN4) were prepared by the single-step nanoprecipitation method. Next, they were characterised in terms of physicochemical properties such as particle size, zeta potential (ζP), polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Based on preliminary evaluation, the B-PLN4 was regarded as the optimised formulation with particle size (272 ± 7.6 nm), PDI (0.225), ζP (-36.5 ± 3.1 mV), %EE (71.6 ± 1.5%) and %DL (2.87 ± 0.42%). This formulation (B-PLN4) was further assessed concerning morphology, in vitro release, and in vivo pharmacokinetic studies in rats. The in vitro release profile exhibited a sustained release pattern well-fitted by the Korsmeyer-Peppas kinetic model (R2 = 0.879). The in vivo pharmacokinetic data showed an enhancement (2.92 times more) in bioavailability in comparison to the normal suspension of pure BTB. These data concluded that the formulated lipid-polymer hybrid nanoparticles could be a promising drug delivery option to enhance the bioavailability of BTB. Overall, this study provides a scientific basis for future studies on the entrapment efficiency of lipid-polymer hybrid systems as promising carriers for overcoming pharmacokinetic limitations.
Collapse
Affiliation(s)
- Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.A.); (M.F.A.); (A.A.S.)
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.A.A.); (M.I.)
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.A.A.); (M.I.)
- Bioavailability Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.A.); (M.F.A.); (A.A.S.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.A.); (M.F.A.); (A.A.S.)
| | - Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.A.); (M.F.A.); (A.A.S.)
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - M. Ali Aboudzadeh
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, University Pau & Pays Adour, E2S UPPA, IPREM, UMR5254, 64000 Pau, France
| |
Collapse
|
30
|
Solvent-Free Fabrication of Biphasic Lipid-Based Microparticles with Tunable Structure. Pharmaceutics 2021; 14:pharmaceutics14010054. [PMID: 35056953 PMCID: PMC8780016 DOI: 10.3390/pharmaceutics14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022] Open
Abstract
Lipid-based biphasic microparticles are generally produced by long and complex techniques based on double emulsions. In this study, spray congealing was used as a solvent-free fabrication method with improved processability to transform water-in-oil non-aqueous emulsions into spherical solid lipid-based particles with a biphasic structure (b-MPs). Emulsions were prepared by melt emulsification using different compositions of lipids (Dynasan®118 and Compritol®888 ATO), surfactants (Cetylstearyl alcohol and Span®60) and hydrophilic carriers (PEGs, Gelucire®48/16 and Poloxamer 188). First, pseudo-ternary phase diagrams were constructed to identify the area corresponding to each emulsion type (coarse emulsion or microemulsion). The hydrophobicity of the lipid mostly affected the interfacial tension, and thus the microstructure of the emulsion. Emulsions were then processed by spray congealing and the obtained b-MPs were characterized in terms of thermal and chemical properties (by DSC and FT-IR), external and internal morphology (by SEM, CLSM and Raman mapping). Solid free-flowing spherical particles (main size range 200–355 µm) with different architectures were successfully produced: microemulsions led to the formation of particles with a homogeneous internal structure, while coarse emulsions generated “multicores-shell” particles consisting of variable size hydrophilic cores evenly distributed within the crystalline lipid phase. Depending on their composition and structure, b-MPs could achieve various release profiles, representing a more versatile system than microparticles based on a single lipid phase. The formulation and technological strategy proposed, provides a feasible and cost-effective way of fabricating b-MPs with tunable internal structure and release behavior.
Collapse
|
31
|
Wang W, Yu C, Zhang F, Li Y, Zhang B, Huang J, Zhang Z, Jin L. Improved oral delivery of insulin by PLGA nanoparticles coated with 5 β-cholanic acid conjugated glycol chitosan. Biomed Mater 2021; 16. [PMID: 34571498 DOI: 10.1088/1748-605x/ac2a8c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Oral insulin has been regarded as the best alternative to insulin injection in therapy of diabetes because of its convenience and painlessness. However, several obstacles in the gastrointestinal tract, such as gastric acid and enzyme, greatly reduce the bioavailability of oral insulin. Herein, we report design and preparation of poly (d, l-lactic-co-glycolic acid) nanoparticles (PLGA NPs) coated with 5β-cholanic acid modified glycol chitosan (GC-CA) (GC-CA@PLGA NPs) to improve the oral delivery of insulin. The GC-CA@PLGA NPs with the size of (302.73 ± 5.13 nm) and zeta potential of (25.03 ± 0.31 mV) were synthesized using the double-emulsion method. The insulin-loading capacity and encapsulation efficiency were determined to be 5.77 ± 0.58% and 51.99 ± 5.27%, respectively. Compared with GC-modified PLGA NPs (GC@PLGA NPs) and bare PLGA NPs, the GC-CA@PLGA NPs showed excellent stability and uptake by Caco-2 cells after simulated gastric acid digestion. Further experiment suggests good biocompatibility of GC-CA@PLGA NPs, including hemolysis and cytotoxicity. Inin vivoexperiment, the insulin loaded in the GC-CA@PLGA NPs exhibited a long-term and stable release profile for lowering blood glucose and presented 30.43% bioavailability in oral administration. In brief, we have developed an efficient and safe drug delivery system, GC-CA@PLGA NPs, for significantly improved oral administration of insulin, which may find potential application in the treatment of diabetes.
Collapse
Affiliation(s)
- Weizhi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drugability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drugability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yuxuan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Bo Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drugability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, People's Republic of China
| |
Collapse
|
32
|
Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev 2021; 177:113948. [PMID: 34464665 DOI: 10.1016/j.addr.2021.113948] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Bacteria have developed a wealth of strategies to avoid and resist the action of antibiotics, one of which involves pathogens invading and forming reservoirs within host cells. Due to the poor cell membrane permeability, stability and retention of conventional antibiotics, this renders current treatments largely ineffective, since achieving a therapeutically relevant antibiotic concentration at the site of intracellular infection is not possible. To overcome such challenges, current antibiotics are 'repurposed' via reformulation using micro- or nano-carrier systems that effectively encapsulate and deliver therapeutics across cellular membranes of infected cells. Bioinspired materials that imitate the uptake of biological particulates and release antibiotics in response to natural stimuli are recently explored to improve the targeting and specificity of this 'nanoantibiotic' approach. In this review, the mechanisms of internalization and survival of intracellular bacteria are elucidated, effectively accentuating the current treatment challenges for intracellular infections and the implications for repurposing conventional antibiotics. Key case studies of nanoantibiotics that have drawn inspiration from natural biological particles and cellular uptake pathways to effectively eradicate intracellular pathogens are detailed, clearly highlighting the rational for harnessing bioinspired drug delivery strategies.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
33
|
Lopes LGF, Carvalho EM, Sousa EHS. A bioinorganic chemistry perspective on the roles of metals as drugs and targets against Mycobacterium tuberculosis - a journey of opportunities. Dalton Trans 2021; 49:15988-16003. [PMID: 32583835 DOI: 10.1039/d0dt01365j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Medicinal inorganic chemists have provided many strategies to tackle a myriad of diseases, pushing forward the frontiers of pharmacology. As an example, the fight against tuberculosis (TB), an infectious bacterial disease, has led to the development of metal-based compounds as potential drugs. This disease remains a current health issue causing over 1.4 million of deaths per year. The emergence of multi- (MDR) and extensively-drug resistant (XDR) Mycobacterium tuberculosis (Mtb) strains along with a long dormancy process, place major challenges in developing new therapeutic compounds. Isoniazid is a front-line prodrug used against TB with appealing features for coordination chemists, which have been explored in a series of cases reported here. An isoniazid iron-based compound, called IQG-607, has caught our attention, whose in vitro and in vivo studies are advanced and thoroughly discussed, along with other metal complexes. Isoniazid is inactive against dormant Mtb, a hard to eliminate state of this bacillus, found in one-fourth of the world's population and directly implicated in the lengthy treatment of TB (ca. 6 months). Thus, our understanding of this phenomenon may lead to a rational design of new drugs. Along these lines, we describe how metals as targets can cross paths with metals used as selective therapeutics, where we mainly review heme-based sensors, DevS and DosT, as a key system in the Mtb dormancy process and a current drug target. Overall, we report new opportunities for bioinorganic chemists to tackle this longstanding and current threat.
Collapse
Affiliation(s)
- Luiz G F Lopes
- Group of Bioinorganic, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil.
| | | | | |
Collapse
|
34
|
Tan C, Jiang L, Li W, Chan SH, Baek JS, Ng NKJ, Sailov T, Kharel S, Chong KKL, Loo SCJ. Lipid-Polymer Hybrid Nanoparticles Enhance the Potency of Ampicillin against Enterococcus faecalis in a Protozoa Infection Model. ACS Infect Dis 2021; 7:1607-1618. [PMID: 33866781 PMCID: PMC8383308 DOI: 10.1021/acsinfecdis.0c00774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/21/2022]
Abstract
Enterococcus faecalis (E. faecalis) biofilms are implicated in endocarditis, urinary tract infections, and biliary tract infections. Coupled with E. faecalis internalization into host cells, this opportunistic pathogen poses great challenges to conventional antibiotic therapy. The inability of ampicillin (Amp) to eradicate bacteria hidden in biofilms and intracellular niches greatly reduces its efficacy against complicated E. faecalis infections. To enhance the potency of Amp against different forms of E. faecalis infections, Amp was loaded into Lipid-Polymer hybrid Nanoparticles (LPNs), a highly efficient nano delivery platform consisting of a unique combination of DOTAP lipid shell and PLGA polymeric core. The antibacterial activity of these nanoparticles (Amp-LPNs) was investigated in a protozoa infection model, achieving a much higher multiplicity of infection (MOI) compared with studies using animal phagocytes. A significant reduction of total E. faecalis was observed in all groups receiving 250 μg/mL Amp-LPNs compared with groups receiving the same concentration of free Amp during three different interventions, simulating acute and chronic infections and prophylaxis. In early intervention, no viable E. faecalis was observed after 3 h LPNs treatment whereas free Amp did not clear E. faecalis after 24 h treatment. Amp-LPNs also greatly enhanced the antibacterial activity of Amp at late intervention and boosted the survival rate of protozoa approaching 400%, where no viable protozoa were identified in the free Amp groups at the 40 h postinfection treatment time point. Prophylactic effectiveness with Amp-LPNs at a concentration of 250 μg/mL was exhibited in both bacteria elimination and protozoa survival toward subsequent infections. Using protozoa as a surrogate model for animal phagocytes to study high MOI infections, this study suggests that LPN-formulated antibiotics hold the potential to significantly improve the therapeutic outcome in highly complicated bacterial infections.
Collapse
Affiliation(s)
- Chuan
Hao Tan
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Lai Jiang
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798
| | - Wenrui Li
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798
- NTU
Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335
| | - Siew Herng Chan
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Jong-Suep Baek
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798
| | - Noele Kai Jing Ng
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Talgat Sailov
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Sharad Kharel
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798
| | - Kelvin Kian Long Chong
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Say Chye Joachim Loo
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798
- Harvard
T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| |
Collapse
|
35
|
Stachowiak N, Kowalonek J, Kozlowska J. Freeze-Dried Matrices Composed of Degradable Polymers with Surfactant-Loaded Microparticles Based on Pectin and Sodium Alginate. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3044. [PMID: 34204985 PMCID: PMC8199913 DOI: 10.3390/ma14113044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022]
Abstract
Gelatin/polyvinylpyrrolidone/hydroxyethyl cellulose/glycerol porous matrices with microspheres made of sodium alginate or pectin and sodium alginate were produced. A surfactant was loaded into these microparticles. The microspheres were characterized using optical microscopy, scanning electron microscopy SEM, and laser diffraction particle size analyzer. For the matrices, the density, porosity, swelling capacity, dissolution in phosphate saline buffer were determined and SEM, mechanical, and thermogravimetric studies were applied. The results showed that the size of the two-component microspheres was slightly larger than that of single-ingredient microparticles. The images confirmed the spherical shape of the microparticles. The prepared matrices had high water uptake ability and porosity due to the presence of hydrophilic polymers. The presence of microparticles in the matrices caused a decrease in these parameters. Degradation of the composites with the microspheres was significantly faster than the matrix without them. The addition of microparticles increased the stiffness and toughness of the prepared materials. The efficiency of the thermal decomposition main stage was reduced in the samples with microspheres, whereas a char residue increased in these composites.
Collapse
Affiliation(s)
- Natalia Stachowiak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (J.K.); (J.K.)
| | | | | |
Collapse
|
36
|
Ding L, Tang S, Wyatt TA, Knoell DL, Oupický D. Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges. J Control Release 2021; 330:977-991. [PMID: 33181203 DOI: 10.1016/j.jconrel.2020.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Lung diseases are a leading cause of mortality worldwide and there exists urgent need for new therapies. Approval of the first siRNA treatments in humans has opened the door for further exploration of this therapeutic strategy for other disease states. Pulmonary delivery of siRNA-based biopharmaceuticals offers the potential to address multiple unmet medical needs in lung-related diseases because of the specific physiology of the lung and characteristic properties of siRNA. Inhalation-based siRNA delivery designed for efficient, targeted delivery to specific cells within the lung holds great promise. Efficient delivery of siRNA directly to the lung, however, is relatively complex. This review focuses on the barriers that impact pulmonary siRNA delivery and successful recent approaches to advance this field forward. We focus on the pulmonary barriers that affect siRNA delivery, the disease-dependent pathological changes and their role in pulmonary disease and impact on siRNA delivery, as well as the recent development on the pulmonary siRNA delivery systems.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Department of Veterans Affairs Nebraska, Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
37
|
Zhang W, Zhai Z, Li S, Lin X, Bai W, Ding N, Zhang Y, Tong J, Sun J, Gao C. In situ formation of tetraphenylethylene nano-structures on microgels inside living cells via reduction-responsive self-assembly. NANOSCALE 2021; 13:138-149. [PMID: 33350429 DOI: 10.1039/d0nr06661c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlling the assembly of synthetic molecules in living systems is of significance for their adaptive applications. However, it is difficult to achieve, especially for composite self-assemblies, due to the complexity and dynamic change of the intracellular environment, and there exist technical difficulties for the direct visualization of organic and polymer self-assemblies. Herein, we demonstrate a novel strategy for the in situ formation of self-assembled micro-nano composite structures in a cell milieu using reduction-responsive microgels (MGs) as a platform. The MGs were prepared by a templating and crosslinking method using a synthetic amphiphlic polymer as the basic material and porous CaCO3 microparticles as the template. The aggregation-induced emission (AIE) tetraphenylethylene moieties and reduction-labile disulfide bonds in the MGs were employed as the self-assembly building blocks and triggering sites for the intracellular self-assembly, respectively. In the presence of reductive agents such as glutathione, nano-spikes were gradually formed on the MGs. After the MGs were internalized by cells, the in situ formation of microgel/nano-spike composite structures was evidenced by the enhanced fluorescence intensity and was further confirmed by direct transmission electron microscopy observation. This work provides an effective strategy to cope with the challenging task of achieving and probing controlled self-assembly in a cell milieu, leading to new insights into investigating biological self-assembly and promoting the development of micro-/nanomaterials by learning from nature.
Collapse
Affiliation(s)
- Wenbo Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Maghrebi S, Jambhrunkar M, Joyce P, Prestidge CA. Engineering PLGA–Lipid Hybrid Microparticles for Enhanced Macrophage Uptake. ACS APPLIED BIO MATERIALS 2020; 3:4159-4167. [DOI: 10.1021/acsabm.0c00251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sajedeh Maghrebi
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Manasi Jambhrunkar
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Paul Joyce
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Clive A. Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
39
|
Joyce P, Ulmefors H, Maghrebi S, Subramaniam S, Wignall A, Jõemetsa S, Höök F, Prestidge CA. Enhancing the Cellular Uptake and Antibacterial Activity of Rifampicin through Encapsulation in Mesoporous Silica Nanoparticles. NANOMATERIALS 2020; 10:nano10040815. [PMID: 32344619 PMCID: PMC7221943 DOI: 10.3390/nano10040815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection.
Collapse
Affiliation(s)
- Paul Joyce
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (P.J.); (S.J.); (F.H.)
| | - Hanna Ulmefors
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; (H.U.); (S.M.); (S.S.); (A.W.)
- ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
| | - Sajedeh Maghrebi
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; (H.U.); (S.M.); (S.S.); (A.W.)
- ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
| | - Santhni Subramaniam
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; (H.U.); (S.M.); (S.S.); (A.W.)
- ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
| | - Anthony Wignall
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; (H.U.); (S.M.); (S.S.); (A.W.)
- ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
| | - Silver Jõemetsa
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (P.J.); (S.J.); (F.H.)
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (P.J.); (S.J.); (F.H.)
| | - Clive A. Prestidge
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; (H.U.); (S.M.); (S.S.); (A.W.)
- ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
- Correspondence:
| |
Collapse
|