1
|
Qin C, Yang H, Lu Y, Li B, Ma S, Ma Y, Zhou F. Tribology in Nature: Inspirations for Advanced Lubrication Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420626. [PMID: 39972641 DOI: 10.1002/adma.202420626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Friction-induced energy consumption is a significant global concern, driving researchers to explore advanced lubrication materials. In nature, lubrication is vital for the life cycle of animals, plants, and humans, playing key roles in movement, predation, and decomposition. After billions of years of evolution, natural lubrication exhibits remarkable professionalism, high efficiency, durability, and intelligence, offering valuable insights for designing advanced lubrication materials. This review focuses on the lubrication mechanisms of natural organisms and significant advancements in biomimetic soft matter lubrication materials. It begins by summarizing common biological lubrication behaviors and their underlying mechanisms, followed by current design strategies for biomimetic soft matter lubrication materials. The review then outlines the development and performance of these materials based on different mechanisms and strategies. Finally, it discusses potential research directions and prospects for soft matter lubrication materials. This review will be a valuable resource for advancing research in biomimetic lubrication materials.
Collapse
Affiliation(s)
- Chenxi Qin
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hao Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiong Lu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
2
|
Mishra R, Singh TG, Bhatia R, Awasthi A. Unveiling the therapeutic journey of snail mucus in diabetic wound care. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03657-9. [PMID: 39869187 DOI: 10.1007/s00210-024-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/19/2024] [Indexed: 01/28/2025]
Abstract
A diabetic wound (DW) is an alteration in the highly orchestrated physiological sequence of wound healing especially, the inflammatory phase. These alterations result in the generation of oxidative stress and inflammation at the injury site. This further leads to the impairment in the angiogenesis, extracellular matrix, collagen deposition, and re-epithelialization. Additionally, in DW there is the presence of microbial load which makes the wound worse and impedes the wound healing cycle. There are several treatment strategies which have been employed by the researchers to mitigate the aforementioned challenges. However, they failed to address the multifactorial pathogenic nature of the disease. Looking at the severity of the disease researchers have explored snail mucus and its components such as achacin, allantoin, elastin, collagen, and glycosaminoglycan due to its multiple therapeutic potentials; however, glycosaminoglycan (GAGs) is very important among all because they accelerate the wound-healing process by promoting reepithelialization, vascularization, granulation, and angiogenesis at the site of injury. Despite its varied applications, the field of snail mucus in wound healing is still underexplored. The present review aims to highlight the role of snail mucus in diabetic wound healing, the advantages of snail mucus over conventional treatments, the therapeutic potential of snail mucus, and the application of snail mucus in DW. Additionally, clinical trials, patents, structural variations, and advancements in snail mucus characterization have been covered in the article.
Collapse
Affiliation(s)
- Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Ankit Awasthi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
3
|
Saleem W, Carpentier N, Hinnekens C, Oh D, Van Vlierberghe S, Braeckmans K, Nauwynck H. Porcine ex-vivo intestinal mucus has age-dependent blocking activity against transmissible gastroenteritis virus. Vet Res 2024; 55:113. [PMID: 39304917 DOI: 10.1186/s13567-024-01374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Transmissible gastroenteritis virus (TGEV) causes high mortality in young piglets (< 3 days of age). With aging, the susceptibility/morbidity/mortality rates drop. We previously hypothesized that the age-related changes in the intestinal mucus could be responsible for this resistance. Hence, this study investigated the effect of porcine intestinal mucus from 3-day and 3-week-old pigs on the free mobility of the virulent TGEV Miller strain, and on the infection in swine testicle (ST) cells. Single particle tracking (SPT) revealed that TGEV had significantly higher diffusion coefficients in 3-day mucus compared to 3-week mucus. TGEV and charged and uncharged control nanoparticles diffused freely in 3-day mucus but were hindered by 3-week mucus in the diffusion model; TGEV mimicked the diffusion behavior of negatively charged carboxylated particles. Inoculation of ST cells with TGEV in the presence of 3-week mucus resulted in a significantly lower average number of infected cells (30.9 ± 11.9/5 fields) compared with 3-day mucus (84.6 ± 16.4/5 fields). These results show that 3-week mucus has a significant TGEV-blocking activity compared to 3-day mucus in free diffusion and infection of the underlying susceptible cells. Additionally, a label-free proteomics analysis revealed an increased expression of mucin 13, known for negatively regulating the tight junctions in intestinal epithelium, in 3-day-old pigs. In 3-week-old pigs, a higher expression of mucin 2, a type of secreted mucin which is known for inhibiting coronavirus infection, was observed. Concludingly, this study demonstrated a protective effect of 3-week mucus against viral infections.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Nathan Carpentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Charlotte Hinnekens
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dayoung Oh
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
4
|
Cerullo AR, McDermott MB, Pepi LE, Liu ZL, Barry D, Zhang S, Yang X, Chen X, Azadi P, Holford M, Braunschweig AB. Comparative mucomic analysis of three functionally distinct Cornu aspersum Secretions. Nat Commun 2023; 14:5361. [PMID: 37660066 PMCID: PMC10475054 DOI: 10.1038/s41467-023-41094-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Every animal secretes mucus, placing them among the most diverse biological materials. Mucus hydrogels are complex mixtures of water, ions, carbohydrates, and proteins. Uncertainty surrounding their composition and how interactions between components contribute to mucus function complicates efforts to exploit their properties. There is substantial interest in commercializing mucus from the garden snail, Cornu aspersum, for skincare, drug delivery, tissue engineering, and composite materials. C. aspersum secretes three mucus-one shielding the animal from environmental threats, one adhesive mucus from the pedal surface of the foot, and another pedal mucus that is lubricating. It remains a mystery how compositional differences account for their substantially different properties. Here, we characterize mucus proteins, glycosylation, ion content, and mechanical properties that could be used to provide insight into structure-function relationships through an integrative "mucomics" approach. We identify macromolecular components of these hydrogels, including a previously unreported protein class termed Conserved Anterior Mollusk Proteins (CAMPs). Revealing differences between C. aspersum mucus shows how considering structure at all levels can inform the design of mucus-inspired materials.
Collapse
Affiliation(s)
- Antonio R Cerullo
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Maxwell B McDermott
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Lauren E Pepi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Zhi-Lun Liu
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Diariou Barry
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Sheng Zhang
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Xi Chen
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Physics, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Mande Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, NY, 10024, USA
| | - Adam B Braunschweig
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA.
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Saleem W, Ren X, Van Den Broeck W, Nauwynck H. Changes in intestinal morphology, number of mucus-producing cells and expression of coronavirus receptors APN, DPP4, ACE2 and TMPRSS2 in pigs with aging. Vet Res 2023; 54:34. [PMID: 37055856 PMCID: PMC10100624 DOI: 10.1186/s13567-023-01169-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
Porcine enteric viral infections cause high morbidity and mortality in young piglets (<3 weeks). Later, these rates decrease with age. This age-dependent infectivity remains largely unexplored. This study investigated the changes in intestinal morphology, number of mucus-producing cells and expression level of coronavirus receptors in three age groups of pigs. Villus height and crypt depth increased with age from 3 days to 3 months in duodenum and ileum but not in mid-jejunum, where the villus height decreased from 580 µm at 3 days to 430 µm at 3 months. Enterocyte length-to-width ratio increased from 3 days to 3 months in all intestinal regions. The number of mucus-producing cells increased with age in the intestinal villi and crypts. The Brunner's glands of the duodenum contained the highest concentration of mucus-producing cells. The expression of coronavirus receptor APN was highest in the small intestinal villi at all ages. DPP4 expression slightly decreased over time in jejunum and ileum; it was highest in the ileal villi of 3-day-old piglets (70.2% of cells). ACE2 and TMPRSS2 positive cells increased with age in jejunal and ileal crypts and were particularly dominant in the ileal crypts (> 45% of cells). Except for the expression of DPP4 in the jejunum and ileum of young pigs, the expression pattern of the selected coronavirus receptors was very different and not correlated with the age-dependent susceptibility to viral infections. In contrast, the number of mucus-producing cells increased over time and may play an essential role in protecting enteric mucosae against intestinal viruses.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Xiaolei Ren
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
6
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
7
|
Bej R, Haag R. Mucus-Inspired Dynamic Hydrogels: Synthesis and Future Perspectives. J Am Chem Soc 2022; 144:20137-20152. [PMID: 36074739 PMCID: PMC9650700 DOI: 10.1021/jacs.1c13547] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Mucus hydrogels at biointerfaces are crucial for protecting against foreign pathogens and for the biological functions of the underlying cells. Since mucus can bind to and host both viruses and bacteria, establishing a synthetic model system that can emulate the properties and functions of native mucus and can be synthesized at large scale would revolutionize the mucus-related research that is essential for understanding the pathways of many infectious diseases. The synthesis of such biofunctional hydrogels in the laboratory is highly challenging, owing to their complex chemical compositions and the specific chemical interactions that occur throughout the gel network. In this perspective, we discuss the basic chemical structures and diverse physicochemical interactions responsible for the unique properties and functions of mucus hydrogels. We scrutinize the different approaches for preparing mucus-inspired hydrogels, with specific examples. We also discuss recent research and what it reveals about the challenges that must be addressed and the opportunities to be considered to achieve desirable de novo synthetic mucus hydrogels.
Collapse
Affiliation(s)
- Raju Bej
- Institute for Chemistry and
Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and
Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
8
|
Lema MA, Nava-Medina IB, Cerullo AR, Abdelaziz R, Jimenez SM, Geldner JB, Abdelhamid M, Kwan CS, Kharlamb L, Neary MC, Braunschweig AB. Scalable Preparation of Synthetic Mucins via Nucleophilic Ring-Opening Polymerization of Glycosylated N-Carboxyanhydrides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel A. Lema
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, City College of New York, 160 Convent Ave, New York, New York 10031, United States
| | - Ilse B. Nava-Medina
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Antonio R. Cerullo
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| | - Radwa Abdelaziz
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Stephanie M. Jimenez
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Jacob B. Geldner
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Mohamed Abdelhamid
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Chak-Shing Kwan
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Lily Kharlamb
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| | - Michelle C. Neary
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Adam B. Braunschweig
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| |
Collapse
|
9
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
10
|
McDermott M, Cerullo AR, Parziale J, Achrak E, Sultana S, Ferd J, Samad S, Deng W, Braunschweig AB, Holford M. Advancing Discovery of Snail Mucins Function and Application. Front Bioeng Biotechnol 2021; 9:734023. [PMID: 34708024 PMCID: PMC8542881 DOI: 10.3389/fbioe.2021.734023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 01/12/2023] Open
Abstract
Mucins are a highly glycosylated protein family that are secreted by animals for adhesion, hydration, lubrication, and other functions. Despite their ubiquity, animal mucins are largely uncharacterized. Snails produce mucin proteins in their mucous for a wide array of biological functions, including microbial protection, adhesion and lubrication. Recently, snail mucins have also become a lucrative source of innovation with wide ranging applications across chemistry, biology, biotechnology, and biomedicine. Specifically, snail mucuses have been applied as skin care products, wound healing agents, surgical glues, and to combat gastric ulcers. Recent advances in integrated omics (genomic, transcriptomic, proteomic, glycomic) technologies have improved the characterization of gastropod mucins, increasing the generation of novel biomaterials. This perspective describes the current research on secreted snail mucus, highlighting the potential of this biopolymer, and also outlines a research strategy to fulfill the unmet need of examining the hierarchical structures that lead to the enormous biological and chemical diversity of snail mucus genes.
Collapse
Affiliation(s)
- Maxwell McDermott
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Antonio R Cerullo
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - James Parziale
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Eleonora Achrak
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Sharmin Sultana
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Jennifer Ferd
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Safiyah Samad
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - William Deng
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Adam B Braunschweig
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States.,Advanced Science Research Center, Graduate Center of New York, Graduate Department of Biochemistry, New York, NY, United States.,PhD Programs in Biochemistry and Chemistry Graduate Center of the City University of New York, New York, NY, United States
| | - Mandë Holford
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States.,PhD Programs in Biochemistry and Chemistry Graduate Center of the City University of New York, New York, NY, United States.,PhD Program in Biology Graduate Center of the City University of New York, New York, NY, United States.,Department of Invertebrate Zoology, The American Museum of Natural History, New York, NY, United States
| |
Collapse
|
11
|
Valles DJ, Zholdassov YS, Korpanty J, Uddin S, Naeem Y, Mootoo DR, Gianneschi NC, Braunschweig AB. Glycopolymer Microarrays with Sub‐Femtomolar Avidity for Glycan Binding Proteins Prepared by Grafted‐To/Grafted‐From Photopolymerizations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel J. Valles
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Yerzhan S. Zholdassov
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Joanna Korpanty
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Samiha Uddin
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Yasir Naeem
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - David R. Mootoo
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Nathan C. Gianneschi
- Department of Chemistry Northwestern University Evanston IL 60208 USA
- Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
- Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Adam B. Braunschweig
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
- The PhD program in Biochemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
| |
Collapse
|
12
|
Valles DJ, Zholdassov YS, Korpanty J, Uddin S, Naeem Y, Mootoo DR, Gianneschi NC, Braunschweig AB. Glycopolymer Microarrays with Sub-Femtomolar Avidity for Glycan Binding Proteins Prepared by Grafted-To/Grafted-From Photopolymerizations. Angew Chem Int Ed Engl 2021; 60:20350-20357. [PMID: 34273126 DOI: 10.1002/anie.202105729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/04/2021] [Indexed: 11/09/2022]
Abstract
We report a novel glycan array architecture that binds the mannose-specific glycan binding protein, concanavalin A (ConA), with sub-femtomolar avidity. A new radical photopolymerization developed specifically for this application combines the grafted-from thiol-(meth)acrylate polymerization with thiol-ene chemistry to graft glycans to the growing polymer brushes. The propagation of the brushes was studied by carrying out this grafted-to/grafted-from radical photopolymerization (GTGFRP) at >400 different conditions using hypersurface photolithography, a printing strategy that substantially accelerates reaction discovery and optimization on surfaces. The effect of brush height and the grafting density of mannosides on the binding of ConA to the brushes was studied systematically, and we found that multivalent and cooperative binding account for the unprecedented sensitivity of the GTGFRP brushes. This study further demonstrates the ease with which new chemistry can be tailored for an application as a result of the advantages of hypersurface photolithography.
Collapse
Affiliation(s)
- Daniel J Valles
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Yerzhan S Zholdassov
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Joanna Korpanty
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Samiha Uddin
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Yasir Naeem
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - David R Mootoo
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Adam B Braunschweig
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA.,The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
| |
Collapse
|
13
|
Büscher TH, Lohar R, Kaul MC, Gorb SN. Multifunctional Adhesives on the Eggs of the Leaf Insect Phyllium philippinicum (Phasmatodea: Phylliidae): Solvent Influence and Biomimetic Implications. Biomimetics (Basel) 2020; 5:biomimetics5040066. [PMID: 33261153 PMCID: PMC7768468 DOI: 10.3390/biomimetics5040066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Leaf insects (Phylliidae) are well-camouflaged terrestrial herbivores. They imitate leaves of plants almost perfectly and even their eggs resemble seeds—visually and regarding to dispersal mechanisms. The eggs of the leaf insect Phyllium philippinicum utilize an adhesive system with a combination of glue, which can be reversibly activated through water contact and a water-responding framework of reinforcing fibers that facilitates their adjustment to substrate asperities and real contact area enhancement. So far, the chemical composition of this glue remains unknown. To evaluate functional aspects of the glue–solvent interaction, we tested the effects of a broad array of chemical solvents on the glue activation and measured corresponding adhesive forces. Based on these experiments, our results let us assume a proteinaceous nature of the glue with different functional chemical subunits, which enable bonding of the glue to both the surface of the egg and the unpredictable substrate. Some chemicals inhibited adhesion, but the deactivation was always reversible by water-contact and in some cases yielded even higher adhesive forces. The combination of glue and fibers also enables retaining the adhesive on the egg, even if detached from the egg’s surface. The gained insights into this versatile bioadhesive system could hereafter inspire further biomimetic adhesives.
Collapse
|