1
|
Schoberleitner I, Lackner M, Coraça-Huber DC, Augustin A, Imsirovic A, Sigl S, Wolfram D. SMI-Capsular Fibrosis and Biofilm Dynamics: Molecular Mechanisms, Clinical Implications, and Antimicrobial Approaches. Int J Mol Sci 2024; 25:11675. [PMID: 39519227 PMCID: PMC11546664 DOI: 10.3390/ijms252111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Silicone mammary implants (SMIs) frequently result in capsular fibrosis, which is marked by the overproduction of fibrous tissue surrounding the implant. This review provides a detailed examination of the molecular and immunological mechanisms driving capsular fibrosis, focusing on the role of foreign body responses (FBRs) and microbial biofilm formation. We investigate how microbial adhesion to implant surfaces and biofilm development contribute to persistent inflammation and fibrotic responses. The review critically evaluates antimicrobial strategies, including preoperative antiseptic protocols and antimicrobial-impregnated materials, designed to mitigate infection and biofilm-related complications. Additionally, advancements in material science, such as surface modifications and antibiotic-impregnated meshes, are discussed for their potential to reduce capsular fibrosis and prevent contracture of the capsule. By integrating molecular insights with clinical applications, this review aims to elucidate the current understanding of SMI-related fibrotic responses and highlight knowledge gaps. The synthesis of these findings aims to guide future research directions of improved antimicrobial interventions and implant materials, ultimately advancing the management of capsular fibrosis and enhancing patient outcomes.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Débora C. Coraça-Huber
- BIOFILM Lab, Department of Orthopedics and Traumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Angela Augustin
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anja Imsirovic
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Mayer K, Ruhoff A, Chan NJ, Waterhouse A, O'Connor AJ, Scheibel T, Heath DE. REDV-Functionalized Recombinant Spider Silk for Next-Generation Coronary Artery Stent Coatings: Hemocompatible, Drug-Eluting, and Endothelial Cell-Specific Materials. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470984 DOI: 10.1021/acsami.3c17861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Coronary artery stents are life-saving devices, and millions of these devices are implanted annually to treat coronary heart disease. The current gold standard in treatment is drug-eluting stents, which are coated with a biodegradable polymer layer that elutes antiproliferative drugs to prevent restenosis due to neointimal hyperplasia. Stenting is commonly paired with systemic antiplatelet therapy to prevent stent thrombosis. Despite their clinical success, current stents have significant limitations including inducing local inflammation that drives hyperplasia; a lack of hemocompatibility that promotes thrombosis, increasing need for antiplatelet therapy; and limited endothelialization, which is a critical step in the healing process. In this research, we designed a novel material for use as a next-generation coating for drug-eluting stents that addresses the limitations described above. Specifically, we developed a recombinant spider silk material that is functionalized with an REDV cell-adhesive ligand, a peptide motif that promotes specific adhesion of endothelial cells in the cardiovascular environment. We illustrated that this REDV-modified spider silk variant [eADF4(C16)-REDV] is an endothelial-cell-specific material that can promote the formation of a near-confluent endothelium. We additionally performed hemocompatibility assays using human whole blood and demonstrated that spider silk materials exhibit excellent hemocompatibility under both static and flow conditions. Furthermore, we showed that the material displayed slow enzyme-mediated degradation. Finally, we illustrated the ability to load and release the clinically relevant drug everolimus from recombinant spider silk coatings in a quantity and at a rate similar to that of commercial devices. These results support the use of REDV-functionalized recombinant spider silk as a coating for drug-eluting stents.
Collapse
Affiliation(s)
- Kai Mayer
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Chair for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Alexander Ruhoff
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - Nicholas J Chan
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anna Waterhouse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Thomas Scheibel
- Chair for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Materialzentrum (BayMat), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayrisches Polymerinstitut (BPI), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
3
|
Branković M, Zivic F, Grujovic N, Stojadinovic I, Milenkovic S, Kotorcevic N. Review of Spider Silk Applications in Biomedical and Tissue Engineering. Biomimetics (Basel) 2024; 9:169. [PMID: 38534854 DOI: 10.3390/biomimetics9030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
This review will present the latest research related to the production and application of spider silk and silk-based materials in reconstructive and regenerative medicine and tissue engineering, with a focus on musculoskeletal tissues, and including skin regeneration and tissue repair of bone and cartilage, ligaments, muscle tissue, peripheral nerves, and artificial blood vessels. Natural spider silk synthesis is reviewed, and the further recombinant production of spider silk proteins. Research insights into possible spider silk structures, like fibers (1D), coatings (2D), and 3D constructs, including porous structures, hydrogels, and organ-on-chip designs, have been reviewed considering a design of bioactive materials for smart medical implants and drug delivery systems. Silk is one of the toughest natural materials, with high strain at failure and mechanical strength. Novel biomaterials with silk fibroin can mimic the tissue structure and promote regeneration and new tissue growth. Silk proteins are important in designing tissue-on-chip or organ-on-chip technologies and micro devices for the precise engineering of artificial tissues and organs, disease modeling, and the further selection of adequate medical treatments. Recent research indicates that silk (films, hydrogels, capsules, or liposomes coated with silk proteins) has the potential to provide controlled drug release at the target destination. However, even with clear advantages, there are still challenges that need further research, including clinical trials.
Collapse
Affiliation(s)
- Marija Branković
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
- Faculty of Engineering, University of Kragujevac, Liceja Knezevine Srbije 1A, 34000 Kragujevac, Serbia
| | - Fatima Zivic
- Faculty of Engineering, University of Kragujevac, Liceja Knezevine Srbije 1A, 34000 Kragujevac, Serbia
| | - Nenad Grujovic
- Faculty of Engineering, University of Kragujevac, Liceja Knezevine Srbije 1A, 34000 Kragujevac, Serbia
| | - Ivan Stojadinovic
- Clinic for Orthopaedics and Traumatology, University Clinical Center, Zmaj Jovina 30, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Strahinja Milenkovic
- Faculty of Engineering, University of Kragujevac, Liceja Knezevine Srbije 1A, 34000 Kragujevac, Serbia
| | - Nikola Kotorcevic
- Faculty of Engineering, University of Kragujevac, Liceja Knezevine Srbije 1A, 34000 Kragujevac, Serbia
| |
Collapse
|
4
|
Trossmann VT, Lentz S, Scheibel T. Factors Influencing Properties of Spider Silk Coatings and Their Interactions within a Biological Environment. J Funct Biomater 2023; 14:434. [PMID: 37623678 PMCID: PMC10455157 DOI: 10.3390/jfb14080434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Biomaterials are an indispensable part of biomedical research. However, although many materials display suitable application-specific properties, they provide only poor biocompatibility when implanted into a human/animal body leading to inflammation and rejection reactions. Coatings made of spider silk proteins are promising alternatives for various applications since they are biocompatible, non-toxic and anti-inflammatory. Nevertheless, the biological response toward a spider silk coating cannot be generalized. The properties of spider silk coatings are influenced by many factors, including silk source, solvent, the substrate to be coated, pre- and post-treatments and the processing technique. All these factors consequently affect the biological response of the environment and the putative application of the appropriate silk coating. Here, we summarize recently identified factors to be considered before spider silk processing as well as physicochemical characterization methods. Furthermore, we highlight important results of biological evaluations to emphasize the importance of adjustability and adaption to a specific application. Finally, we provide an experimental matrix of parameters to be considered for a specific application and a guided biological response as exemplarily tested with two different fibroblast cell lines.
Collapse
Affiliation(s)
- Vanessa T. Trossmann
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
| | - Sarah Lentz
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
- Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Materials Center (BayMAT), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Faculty of Medicine, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
5
|
Trossmann VT, Scheibel T. Design of Recombinant Spider Silk Proteins for Cell Type Specific Binding. Adv Healthc Mater 2023; 12:e2202660. [PMID: 36565209 PMCID: PMC11468868 DOI: 10.1002/adhm.202202660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Cytophilic (cell-adhesive) materials are very important for tissue engineering and regenerative medicine. However, for engineering hierarchically organized tissue structures comprising different cell types, cell-specific attachment and guidance are decisive. In this context, materials made of recombinant spider silk proteins are promising scaffolds, since they exhibit high biocompatibility, biodegradability, and the underlying proteins can be genetically functionalized. Here, previously established spider silk variants based on the engineered Araneus diadematus fibroin 4 (eADF4(C16)) are genetically modified with cell adhesive peptide sequences from extracellular matrix proteins, including IKVAV, YIGSR, QHREDGS, and KGD. Interestingly, eADF4(C16)-KGD as one of 18 tested variants is cell-selective for C2C12 mouse myoblasts, one out of 11 tested cell lines. Co-culturing with B50 rat neuronal cells confirms the cell-specificity of eADF4(C16)-KGD material surfaces for C2C12 mouse myoblast adhesion.
Collapse
Affiliation(s)
- Vanessa Tanja Trossmann
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
| | - Thomas Scheibel
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
- Bayreuth Center for Colloids and Interfaces (BZKG)Bavarian Polymer Institute (BPI)Bayreuth Center for Molecular Biosciences (BZMB)Bayreuth Center for Material Science (BayMAT)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
6
|
Schoberleitner I, Faserl K, Sarg B, Egle D, Brunner C, Wolfram D. Quantitative Proteomic Characterization of Foreign Body Response towards Silicone Breast Implants Identifies Chronological Disease-Relevant Biomarker Dynamics. Biomolecules 2023; 13:biom13020305. [PMID: 36830674 PMCID: PMC9953687 DOI: 10.3390/biom13020305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
The etiology of exaggerated fibrous capsule formation around silicone mammary implants (SMI) is multifactorial but primarily induced by immune mechanisms towards the foreign material silicone. The aim of this work was to understand the disease progression from implant insertion and immediate tissue damage response reflected in (a) the acute wound proteome and (b) the adsorption of chronic inflammatory wound proteins at implant surfaces. An intraindividual relative quantitation TMT-liquid chromatography-tandem mass spectrometry approach was applied to the profile wound proteome formed around SMI in the first five days post-implantation. Compared to plasma, the acute wound profile resembled a more complex composition comprising plasma-derived and locally differentially expressed proteins (DEPs). DEPs were subjected to a functional enrichment analysis, which revealed the dysregulation of signaling pathways mainly involved in immediate inflammation response and ECM turnover. Moreover, we found time-course variations in protein enrichment immediately post-implantation, which were adsorbed to SMI surfaces after 6-8 months. Characterization of the expander-adhesive proteome by a label-free approach uncovered a long-term adsorbed acute wound and the fibrosis-associated proteome. Our findings propose a wound biomarker panel for the early detection and diagnosis of excessive fibrosis that could potentially broaden insights into the characteristics of fibrotic implant encapsulation.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Klaus Faserl
- Protein Core Facility, Biocenter, Institute of Medical Chemistry, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Bettina Sarg
- Protein Core Facility, Biocenter, Institute of Medical Chemistry, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Daniel Egle
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Christine Brunner
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-512-504-82050
| |
Collapse
|
7
|
Croft AS, Spessot E, Bhattacharjee P, Yang Y, Motta A, Wöltje M, Gantenbein B. Biomedical applications of silk and its role for intervertebral disc repair. JOR Spine 2022; 5:e1225. [PMID: 36601376 PMCID: PMC9799090 DOI: 10.1002/jsp2.1225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/10/2022] [Accepted: 09/10/2022] [Indexed: 12/30/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the main contributor to chronic low back pain. To date, the present therapies mainly focus on treating the symptoms caused by IDD rather than addressing the problem itself. For this reason, researchers have searched for a suitable biomaterial to repair and/or regenerate the IVD. A promising candidate to fill this gap is silk, which has already been used as a biomaterial for many years. Therefore, this review aims first to elaborate on the different origins from which silk is harvested, the individual composition, and the characteristics of each silk type. Another goal is to enlighten why silk is so suitable as a biomaterial, discuss its functionalization, and how it could be used for tissue engineering purposes. The second part of this review aims to provide an overview of preclinical studies using silk-based biomaterials to repair the inner region of the IVD, the nucleus pulposus (NP), and the IVD's outer area, the annulus fibrosus (AF). Since the NP and the AF differ fundamentally in their structure, different therapeutic approaches are required. Consequently, silk-containing hydrogels have been used mainly to repair the NP, and silk-based scaffolds have been used for the AF. Although most preclinical studies have shown promising results in IVD-related repair and regeneration, their clinical transition is yet to come.
Collapse
Affiliation(s)
- Andreas S. Croft
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
| | - Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
| | - Promita Bhattacharjee
- Department of Chemical SciencesSSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of LimerickLimerickIreland
| | - Yuejiao Yang
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material TechnologyDresdenGermany
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
8
|
Bargel H, Trossmann VT, Sommer C, Scheibel T. Bioselectivity of silk protein-based materials and their bio-inspired applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:902-921. [PMID: 36127898 PMCID: PMC9475208 DOI: 10.3762/bjnano.13.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Adhesion to material surfaces is crucial for almost all organisms regarding subsequent biological responses. Mammalian cell attachment to a surrounding biological matrix is essential for maintaining their survival and function concerning tissue formation. Conversely, the adhesion and presence of microbes interferes with important multicellular processes of tissue development. Therefore, tailoring bioselective, biologically active, and multifunctional materials for biomedical applications is a modern focus of biomaterial research. Engineering biomaterials that stimulate and interact with cell receptors to support binding and subsequent physiological responses of multicellular systems attracted much interest in the last years. Further to this, the increasing threat of multidrug resistance of pathogens against antibiotics to human health urgently requires new material concepts for preventing microbial infestation and biofilm formation. Thus, materials exhibiting microbial repellence or antimicrobial behaviour to reduce inflammation, while selectively enhancing regeneration in host tissues are of utmost interest. In this context, protein-based materials are interesting candidates due to their natural origin, biological activity, and structural properties. Silk materials, in particular those made of spider silk proteins and their recombinant counterparts, are characterized by extraordinary properties including excellent biocompatibility, slow biodegradation, low immunogenicity, and non-toxicity, making them ideally suited for tissue engineering and biomedical applications. Furthermore, recombinant production technologies allow for application-specific modification to develop adjustable, bioactive materials. The present review focusses on biological processes and surface interactions involved in the bioselective adhesion of mammalian cells and repellence of microbes on protein-based material surfaces. In addition, it highlights the importance of materials made of recombinant spider silk proteins, focussing on the progress regarding bioselectivity.
Collapse
Affiliation(s)
- Hendrik Bargel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Vanessa T Trossmann
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Christoph Sommer
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
- Bayreuth Center of Material Science and Engineering (BayMat), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bayreuth Center of Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
9
|
Lentz S, Trossmann VT, Borkner CB, Beyersdorfer V, Rottmar M, Scheibel T. Structure-Property Relationship Based on the Amino Acid Composition of Recombinant Spider Silk Proteins for Potential Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31751-31766. [PMID: 35786828 DOI: 10.1021/acsami.2c09590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving biomaterials by engineering application-specific and adjustable properties is of increasing interest. Most of the commonly available materials fulfill the mechanical and physical requirements of relevant biomedical applications, but they lack biological functionality, including biocompatibility and prevention of microbial infestation. Thus, research has focused on customizable, application-specific, and modifiable surface coatings to cope with the limitations of existing biomaterials. In the case of adjustable degradation and configurable interaction with body fluids and cells, these coatings enlarge the applicability of the underlying biomaterials. Silks are interesting coating materials, e.g., for implants, since they exhibit excellent biocompatibility and mechanical properties. Herein, we present putative implant coatings made of five engineered recombinant spider silk proteins derived from the European garden spider Araneus diadematus fibroins (ADF), differing in amino acid sequence and charge. We analyzed the influence of the underlying amino acid composition on wetting behavior, blood compatibility, biodegradability, serum protein adsorption, and cell adhesion. The outcome of the comparison indicates that spider silk coatings can be engineered for explicit biomedical applications.
Collapse
Affiliation(s)
- Sarah Lentz
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Vanessa T Trossmann
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Christian B Borkner
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Vivien Beyersdorfer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Markus Rottmar
- Laboratory for Materials-Biology Interactions, Empa Swiss Federal Laboratories for Materials Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
- Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
10
|
Yazawa K, Hidaka K, Negishi J. Cell Adhesion Behaviors on Spider Silk Fibers, Films, and Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7766-7774. [PMID: 35687821 DOI: 10.1021/acs.langmuir.2c00818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silk-based materials have garnered attention for use as medical supplies due to their mechanical toughness and low cytotoxicity. Silkworm silk has been applied as surgical sutures for decades. In contrast, the utilization of spider silk is limited mainly because of its scarcity. Although the biomimicry of spider silk has been developed using recombinant protein expression systems with the use of genetic engineering, the product often results in lower molecular weight and a lack of the N- or C-terminal regions. The incomplete sequence of the spider silk-like protein prevents the objective evaluation of the native spider silk as a medical application and retards the development of spider silk-inspired materials. Here, we reeled the native spider silk directly from live spiders and investigated the cell adhesion behavior based on three kinds of surface topography of spider silk-based substrates, namely, fibers, films, and non-woven fabrics. The cell adhesion behavior was largely influenced by the surface micro/nanostructure rather than the wettability of the surface. This study will contribute to promote the utilization of spider silk in the medical field as a candidate for promising bio-based fibers in the context of sustainable development goals.
Collapse
Affiliation(s)
- Kenjiro Yazawa
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
- Division of Biological and Medical Fibers, Interdisciplinary Cluster for Cutting Edge Research, Institute for Fiber Engineering, Shinshu University, 3-15-1, Tokida, Ueda City, Nagano 386-8567, Japan
| | - Kosuke Hidaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Jun Negishi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| |
Collapse
|
11
|
Șerban MV, Nazarie (Ignat) SR, Dinescu S, Radu IC, Zaharia C, Istrătoiu EA, Tănasă E, Herman H, Gharbia S, Baltă C, Hermenean A, Costache M. Silk ProteinsEnriched Nanocomposite Hydrogels Based on Modified MMT Clay and Poly(2-hydroxyethyl methacrylate-co-2-acrylamido-2-methylpropane Sulfonic Acid) Display Favorable Properties for Soft Tissue Engineering. NANOMATERIALS 2022; 12:nano12030503. [PMID: 35159848 PMCID: PMC8839072 DOI: 10.3390/nano12030503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023]
Abstract
Due to their remarkable structures and properties, three-dimensional hydrogels and nanostructured clay particles have been extensively studied and have shown a high potential for tissue engineering as solutions for tissue defects. In this study, four types of 2-hydroxyethyl methacrylate/2-acrylamido-2-methylpropane sulfonic acid/montmorillonite (HEMA/AMPSA/MMT) hydrogels enriched with sericin, and fibroin were prepared and studied in the context of regenerative medicine for soft tissue regenerative medicine. Our aim was to obtain crosslinked hydrogel structures using modified montmorillonite clay as a crosslinking agent. In order to improve the in vitro and in vivo biocompatibility, silk proteins were further incorporated within the hydrogel matrix. Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) were performed to prove the chemical structures of the modified MMT and nanocomposite hydrogels. Swelling and rheological measurements showed the good elastic behavior of the hydrogels due to this unique network structure in which modified MMT acts as a crosslinking agent. Hydrogel biocompatibility was assessed by MTT, LDH and LIVE/DEAD assays. The hydrogels were evaluated for their potential to support adipogenesis in vitro and human stem cells isolated from adipose tissue were seeded in them and induced to differentiate. The progress was assessed by evaluation of expression of adipogenic markers (ppar-γ2, perilipin) evaluated by qPCR. The potential of the materials to support tissue regeneration was further evaluated on animal models in vivo. All materials proved to be biocompatible, with better results on the 95% HEMA 5% AMPSA enriched with sericin and fibroin material. This composition promoted a better development of adipogenesis compared to the other compositions studied, due the addition of sericin and fibroin. The results were confirmed in vivo as well, with a better progress of soft tissue regeneration after implantation in mice. Therefore, hydrogel 95% HEMA 5% AMPSA enriched with sericin as well as fibroin showed the best results that recommend it for future soft tissue engineering application.
Collapse
Affiliation(s)
- Mirela Violeta Șerban
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
| | - Simona-Rebeca Nazarie (Ignat)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
- The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050663 Bucharest, Romania
- Correspondence: (S.D.); (A.H.)
| | - Ionuț-Cristian Radu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Elena-Alexandra Istrătoiu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Eugenia Tănasă
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
| | - Sami Gharbia
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
| | - Cornel Baltă
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
- Correspondence: (S.D.); (A.H.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
- The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
12
|
Laomeephol C, Vasuratna A, Ratanavaraporn J, Kanokpanont S, Luckanagul JA, Humenik M, Scheibel T, Damrongsakkul S. Impacts of Blended Bombyx mori Silk Fibroin and Recombinant Spider Silk Fibroin Hydrogels on Cell Growth. Polymers (Basel) 2021; 13:4182. [PMID: 34883685 PMCID: PMC8659740 DOI: 10.3390/polym13234182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Binary-blended hydrogels fabricated from Bombyx mori silk fibroin (SF) and recombinant spider silk protein eADF4(C16) were developed and investigated concerning gelation and cellular interactions in vitro. With an increasing concentration of eADF4(C16), the gelation time of SF was shortened from typically one week to less than 48 h depending on the blending ratio. The biological tests with primary cells and two cell lines revealed that the cells cannot adhere and preferably formed cell aggregates on eADF4(C16) hydrogels, due to the polyanionic properties of eADF4(C16). Mixing SF in the blends ameliorated the cellular activities, as the proliferation of L929 fibroblasts and SaOS-2 osteoblast-like cells increased with an increase of SF content. The blended SF:eADF4(C16) hydrogels attained the advantages as well as overcame the limitations of each individual material, underlining the utilization of the hydrogels in several biomedical applications.
Collapse
Affiliation(s)
- Chavee Laomeephol
- Biomaterial Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichai Vasuratna
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Juthamas Ratanavaraporn
- Biomaterial Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sorada Kanokpanont
- Biomaterial Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jittima Amie Luckanagul
- Biomaterial Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Martin Humenik
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| | - Siriporn Damrongsakkul
- Biomaterial Engineering for Medical and Health Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Esser T, Trossmann V, Lentz S, Engel F, Scheibel T. Designing of spider silk proteins for human induced pluripotent stem cell-based cardiac tissue engineering. Mater Today Bio 2021; 11:100114. [PMID: 34169268 PMCID: PMC8209670 DOI: 10.1016/j.mtbio.2021.100114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 12/25/2022] Open
Abstract
Materials made of recombinant spider silk proteins are promising candidates for cardiac tissue engineering, and their suitability has so far been investigated utilizing primary rat cardiomyocytes. Herein, we expanded the tool box of available spider silk variants and demonstrated for the first time that human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes attach, contract, and respond to pharmacological treatment using phenylephrine and verapamil on explicit spider silk films. The hiPSC-cardiomyocytes contracted for at least 14 days on films made of positively charged engineered Araneus diadematus fibroin 4 (eADF4(κ16)) and three different arginyl-glycyl-aspartic acid (RGD)-tagged spider silk variants (positively or negatively charged and uncharged). Notably, hiPSC-cardiomyocytes exhibited different morphologies depending on the spider silk variant used, with less spreading and being smaller on films made of eADF4(κ16) than on RGD-tagged spider silk films. These results indicate that spider silk engineering is a powerful tool to provide new materials suitable for hiPSC-based cardiac tissue engineering. hiPSC-cardiomyocytes attach and contract on positively charged and/or RGD-tagged spider silk variants. hiPSC-cardiomyocytes exhibit spider silk variant-dependent morphology upon adhesion. Explicit spider silk variants promote long-term contractility of hiPSC-cardiomyocytes. hiPSC-cardiomyocytes grown on spider silk materials respond to pharmacological treatment.
Collapse
Key Words
- AFM, atomic force microscopy
- APTES, (3-aminopropyl) triethoxysilane
- ATR, attenuated total reflection
- DPBS, Dulbecco's phosphate-buffered saline
- EthHD1, ethidium homodimer 1
- FT-IR, Fourier-transform infrared (spectroscopy)
- IPTG, isopropyl-β-D-thiogalactoside
- MALDI-TOF, matrix-assisted laser desorption/ionization time-of-flight
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- eADF4, Engineered Araneus diadematus fibroin 4
- hiPSC, human-induced pluripotent stem cell
Collapse
Affiliation(s)
- T.U. Esser
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - V.T. Trossmann
- Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, Bayreuth, 95447, Germany
| | - S. Lentz
- Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, Bayreuth, 95447, Germany
| | - F.B. Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
- MURCE, Muscle Research Center Erlangen, Erlangen, Germany
- Corresponding author. Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany.
| | - T. Scheibel
- Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, Bayreuth, 95447, Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universitätsstraße 30, Universität Bayreuth, Bayreuth, D-95447, Germany
- Corresponding author. Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, Bayreuth, 95447, Germany.
| |
Collapse
|
14
|
Agnieray H, Glasson J, Chen Q, Kaur M, Domigan L. Recent developments in sustainably sourced protein-based biomaterials. Biochem Soc Trans 2021; 49:953-964. [PMID: 33729443 PMCID: PMC8106505 DOI: 10.1042/bst20200896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Research into the development of sustainable biomaterials is increasing in both interest and global importance due to the increasing demand for materials with decreased environmental impact. This research field utilises natural, renewable resources to develop innovative biomaterials. The development of sustainable biomaterials encompasses the entire material life cycle, from desirable traits, and environmental impact from production through to recycling or disposal. The main objective of this review is to provide a comprehensive definition of sustainable biomaterials and to give an overview of the use of natural proteins in biomaterial development. Proteins such as collagen, gelatin, keratin, and silk, are biocompatible, biodegradable, and may form materials with varying properties. Proteins, therefore, provide an intriguing source of biomaterials for numerous applications, including additive manufacturing, nanotechnology, and tissue engineering. We give an insight into current research and future directions in each of these areas, to expand knowledge on the capabilities of sustainably sourced proteins as advanced biomaterials.
Collapse
Affiliation(s)
- H. Agnieray
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - J.L. Glasson
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| | - Q. Chen
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| | - M. Kaur
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - L.J. Domigan
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Joseph E, Rajput SS, Patil S, Nisal A. Mechanism of Adhesion of Natural Polymer Coatings to Chemically Modified Siloxane Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2974-2984. [PMID: 33645228 DOI: 10.1021/acs.langmuir.1c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface coatings play an important role in improving the performance of biomedical implants. Polydimethylsiloxane (PDMS) is a commonly used material for biomedical implants, and surface-coated PDMS implants frequently face problems such as delamination or cracking of the coating. In this work, we have measured the performance of nano-coatings of the biocompatible protein polymer silk fibroin (SF) on pristine as well as modified PDMS surfaces. The PDMS surfaces have been modified using oxygen plasma treatment and 3-amino-propyl-triethoxy-silane (APTES) treatment. Although these techniques of PDMS modification have been known, their effects on adhesion of SF nano-coatings have not been studied. Interestingly, testing of the coated samples using a bulk technique such as tensile and bending deformation showed that the SF nano-coating exhibits improved crack resistance when the PDMS surface has been modified using APTES treatment as compared to an oxygen plasma treatment. These results were validated at the microscopic and mesoscopic length scales through nano-scratch and nano-indentation measurements. Further, we developed a unique method using modified atomic force microscopy to measure the adhesive energy between treated PDMS surfaces and SF molecules. These measurements indicated that the adhesive strength of PDMS-APTES-SF is 10 times more compared to PDMS-O2-SF due to the higher number of molecular linkages formed in this nanoscale contact. This lower number of molecular linkages in the PDMS-O2 indicates that only fewer numbers of surface hydroxyl groups interact with the SF protein through secondary interactions such as hydrogen bonding. On the other hand, a larger number of amine groups present on PDMS-APTES surface hydrogen bond with the polar amino acids present on the silk fibroin protein chain, resulting in better adhesion. Thus, APTES modification to the PDMS substrate results in improved adhesion of nano-coating to the substrate and enhances the delamination and crack resistance of the nano-coatings.
Collapse
Affiliation(s)
- Emmanuel Joseph
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shatruhan Singh Rajput
- Center for Energy Science, Department of Physics, Indian Institute of Science Education and Research, Pune 411008 India
| | - Shivprasad Patil
- Center for Energy Science, Department of Physics, Indian Institute of Science Education and Research, Pune 411008 India
| | - Anuya Nisal
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Jahanmard F, Dijkmans FM, Majed A, Vogely HC, van der Wal BCH, Stapels DAC, Ahmadi SM, Vermonden T, Amin Yavari S. Toward Antibacterial Coatings for Personalized Implants. ACS Biomater Sci Eng 2020; 6:5486-5492. [PMID: 33320546 DOI: 10.1021/acsbiomaterials.0c00683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complex reconstructive surgeries for which patient-specific orthopedic, maxillofacial, or dental implants are used often necessitate wounds that are open for a considerable amount of time. Unsurprisingly, this allows bacteria to establish implant-associated infection, despite the scrupulous sterilization efforts made during surgery. Here, we developed a prophylactic bactericidal coating via electrophoretic deposition technology for two 3D-printed porous titanium implant designs. The surface characteristics, antibiotic release behavior, antibacterial properties, and impact on osteoblast cell proliferation of the optimized coatings were investigated. The results unequivocally confirmed the biofunctionality of the implants in vitro. This study reveals a new avenue for future antibacterial patient-specific implants.
Collapse
Affiliation(s)
- F Jahanmard
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - F M Dijkmans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - A Majed
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - H C Vogely
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - B C H van der Wal
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - D A C Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - S M Ahmadi
- Amber Implants B.V., Delft 2629 JD, The Netherlands
| | - T Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CS, The Netherlands
| | - S Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
17
|
Chien HW, Lin HY, Tsai CY, Chen TY, Chen WN. Superhydrophilic Coating with Antibacterial and Oil-Repellent Properties via NaIO 4-Triggered Polydopamine/Sulfobetaine Methacrylate Polymerization. Polymers (Basel) 2020; 12:E2008. [PMID: 32899234 PMCID: PMC7565826 DOI: 10.3390/polym12092008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
Superhydrophilic coatings have been widely used for the surface modification of membranes or biomedical devices owing to their excellent antifouling properties. However, simplifying the modification processes of such materials remains challenging. In this study, we developed a simple and rapid one-step co-deposition process using an oxidant trigger to fabricate superhydrophilic surfaces based on dopamine chemistry with sulfobetaine methacrylate (SBMA). We studied the effect of different oxidants and SBMA concentrations on surface modification in detail using UV-VIS spectrophotometry, dynamic light scattering, atomic force microscopy, X-ray photoelectron spectroscopy, and surface plasmon resonance. We found that NaIO4 could trigger the rate of polymerization and the optimum ratio of dopamine to SBMA is 1:25 by weight. This makes the surface superhydrophilic (water contact angle < 10°) and antifouling. The superhydrophilic coating, when introduced to polyester membranes, showed great potential for oil/water separation. Our study provides a complete description of the simple and fast preparation of superhydrophilic coatings for surface modification based on mussel-inspired chemistry.
Collapse
Affiliation(s)
- Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 000807, Taiwan; (H.-Y.L.); (T.-Y.C.)
- Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 000807, Taiwan
| | - Hong-Yu Lin
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 000807, Taiwan; (H.-Y.L.); (T.-Y.C.)
| | - Chau-Yi Tsai
- Department of Materials Engineering and Science, National Formosa University, Yunlin County 000640, Taiwan; (C.-Y.T.); (W.-N.C.)
| | - Tai-Yu Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 000807, Taiwan; (H.-Y.L.); (T.-Y.C.)
| | - Wei-Nian Chen
- Department of Materials Engineering and Science, National Formosa University, Yunlin County 000640, Taiwan; (C.-Y.T.); (W.-N.C.)
| |
Collapse
|
18
|
Huang T, Kumari S, Herold H, Bargel H, Aigner TB, Heath DE, O’Brien-Simpson NM, O’Connor AJ, Scheibel T. Enhanced Antibacterial Activity of Se Nanoparticles Upon Coating with Recombinant Spider Silk Protein eADF4(κ16). Int J Nanomedicine 2020; 15:4275-4288. [PMID: 32606677 PMCID: PMC7306472 DOI: 10.2147/ijn.s255833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Selenium nanoparticles (Se NPs) are promising antibacterial agents to tackle the growing problem of antimicrobial resistance. The aim of this study was to fabricate Se NPs with a net positive charge to enhance their antibacterial efficacy. METHODS Se NPs were coated with a positively charged protein - recombinant spider silk protein eADF4(κ16) - to give them a net positive surface charge. Their cytotoxicity and antibacterial activity were investigated, with negatively charged polyvinyl alcohol coated Se NPs as a control. Besides, these eADF4(κ16)-coated Se NPs were immobilized on the spider silk films, and the antibacterial activity of these films was investigated. RESULTS Compared to the negatively charged polyvinyl alcohol coated Se NPs, the positively charged eADF4(κ16)-coated Se NPs demonstrated a much higher bactericidal efficacy against the Gram-negative bacteria E. coli, with a minimum bactericidal concentration (MBC) approximately 50 times lower than that of negatively charged Se NPs. Cytotoxicity testing showed that the eADF4(κ16)-coated Se NPs are safe to both Balb/3T3 mouse embryo fibroblasts and HaCaT human skin keratinocytes up to 31 µg/mL, which is much higher than the MBC of these particles against E. coli (8 ± 1 µg/mL). In addition, antibacterial coatings were created by immobilising the eADF4(κ16)-coated Se NPs on positively charged spider silk films and these were shown to retain good bactericidal efficacy and overcome the issue of low particle stability in culture broth. It was found that these Se NPs needed to be released from the film surface in order to exert their antibacterial effects and this release can be regulated by the surface charge of the film, such as the change of the spider silk protein used. CONCLUSION Overall, eADF4(κ16)-coated Se NPs are promising new antibacterial agents against life-threatening bacteria.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC3010, Australia
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
| | - Sushma Kumari
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
| | - Heike Herold
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
| | - Hendrik Bargel
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
| | - Tamara B Aigner
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
| | - Daniel E Heath
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC3010, Australia
| | - Neil M O’Brien-Simpson
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC3010, Australia
| | - Andrea J O’Connor
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC3010, Australia
| | - Thomas Scheibel
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
- Bavarian Polymer Institute (BPI), Bayreuth Center for Material Science and Engineering (BayMAT), Bayreuth Center for Colloids and Interfaces (BZKG), Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth95447, Germany
| |
Collapse
|
19
|
Kramer JPM, Aigner TB, Petzold J, Roshanbinfar K, Scheibel T, Engel FB. Recombinant spider silk protein eADF4(C16)-RGD coatings are suitable for cardiac tissue engineering. Sci Rep 2020; 10:8789. [PMID: 32472031 PMCID: PMC7260369 DOI: 10.1038/s41598-020-65786-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/08/2020] [Indexed: 01/05/2023] Open
Abstract
Cardiac tissue engineering is a promising approach to treat cardiovascular diseases, which are a major socio-economic burden worldwide. An optimal material for cardiac tissue engineering, allowing cardiomyocyte attachment and exhibiting proper immunocompatibility, biocompatibility and mechanical characteristics, has not yet emerged. An additional challenge is to develop a fabrication method that enables the generation of proper hierarchical structures and constructs with a high density of cardiomyocytes for optimal contractility. Thus, there is a focus on identifying suitable materials for cardiac tissue engineering. Here, we investigated the interaction of neonatal rat heart cells with engineered spider silk protein (eADF4(C16)) tagged with the tripeptide arginyl-glycyl-aspartic acid cell adhesion motif RGD, which can be used as coating, but can also be 3D printed. Cardiomyocytes, fibroblasts, and endothelial cells attached well to eADF4(C16)-RGD coatings, which did not induce hypertrophy in cardiomyocytes, but allowed response to hypertrophic as well as proliferative stimuli. Furthermore, Kymograph and MUSCLEMOTION analyses showed proper cardiomyocyte beating characteristics on spider silk coatings, and cardiomyocytes formed compact cell aggregates, exhibiting markedly higher speed of contraction than cardiomyocyte mono-layers on fibronectin. The results suggest that eADF4(C16)-RGD is a promising material for cardiac tissue engineering.
Collapse
Affiliation(s)
- Johannes P M Kramer
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany
| | - Tamara B Aigner
- Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, 95447, Bayreuth, Germany
| | - Jana Petzold
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, 95447, Bayreuth, Germany.
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universitätsstraße 30, Universität Bayreuth, Bayreuth, D-95447, Germany.
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany.
- MURCE, Muscle Research Center Erlangen, Erlangen, Germany.
| |
Collapse
|
20
|
Mertgen AS, Trossmann VT, Guex AG, Maniura-Weber K, Scheibel T, Rottmar M. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21342-21367. [PMID: 32286789 DOI: 10.1021/acsami.0c01893] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the human body, cells in a tissue are exposed to signals derived from their specific extracellular matrix (ECM), such as architectural structure, mechanical properties, and chemical composition (proteins, growth factors). Research on biomaterials in tissue engineering and regenerative medicine aims to recreate such stimuli using engineered materials to induce a specific response of cells at the interface. Although traditional biomaterials design has been mostly limited to varying individual signals, increasing interest has arisen on combining several features in recent years to improve the mimicry of extracellular matrix properties. Tremendous progress in combinatorial surface modification exploiting, for example, topographical features or variations in mechanics combined with biochemical cues has enabled the identification of their key regulatory characteristics on various cell fate decisions. Gradients especially facilitated such research by enabling the investigation of combined continuous changes of different signals. Despite unravelling important synergies for cellular responses, challenges arise in terms of fabrication and characterization of multifunctional engineered materials. This review summarizes recent work on combinatorial surface modifications that aim to control biological responses. Modification and characterization methods for enhanced control over multifunctional material properties are highlighted and discussed. Thereby, this review deepens the understanding and knowledge of biomimetic combinatorial material modification, their challenges but especially their potential.
Collapse
Affiliation(s)
- Anne-Sophie Mertgen
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Vanessa Tanja Trossmann
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, Bayreuth 95440, Germany
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| |
Collapse
|
21
|
Humenik M, Preiß T, Gödrich S, Papastavrou G, Scheibel T. Functionalized DNA-spider silk nanohydrogels for controlled protein binding and release. Mater Today Bio 2020; 6:100045. [PMID: 32259099 PMCID: PMC7096766 DOI: 10.1016/j.mtbio.2020.100045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrogels are excellent scaffolds to accommodate sensitive enzymes in a protective environment. However, the lack of suitable immobilization techniques on substrates and the lack of selectivity to anchor a biocatalyst are major drawbacks preventing the use of hydrogels in bioanalytical devices. Here, nanofilm coatings on surfaces were made of a recombinant spider silk protein (rssp) to induce rssp self-assembly and thus the formation of fibril-based nanohydrogels. To functionalize spider silk nanohydrogels for bioselective binding of proteins, two different antithrombin aptamers were chemically conjugated with the rssp, thereby integrating the target-binding function into the nanohydrogel network. Human thrombin was selected as a sensitive model target, in which the structural integrity determines its activity. The chosen aptamers, which bind various exosites of thrombin, enabled selective and cooperative embedding of the protein into the nanohydrogels. The change of the aptamer secondary structure using complementary DNA sequences led to the release of active thrombin and confirmed the addressable functionalization of spider silk nanohydrogels.
Collapse
Affiliation(s)
- Martin Humenik
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | - Tamara Preiß
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | - Sebastian Gödrich
- Department of Physical Chemistry II, Faculty of Biology, Chemistry & Earth Sciences, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Georg Papastavrou
- Department of Physical Chemistry II, Faculty of Biology, Chemistry & Earth Sciences, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Material Science (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
22
|
Salehi S, Koeck K, Scheibel T. Spider Silk for Tissue Engineering Applications. Molecules 2020; 25:E737. [PMID: 32046280 PMCID: PMC7037138 DOI: 10.3390/molecules25030737] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its properties, such as biodegradability, low density, excellent biocompatibility and unique mechanics, spider silk has been used as a natural biomaterial for a myriad of applications. First clinical applications of spider silk as suture material go back to the 18th century. Nowadays, since natural production using spiders is limited due to problems with farming spiders, recombinant production of spider silk proteins seems to be the best way to produce material in sufficient quantities. The availability of recombinantly produced spider silk proteins, as well as their good processability has opened the path towards modern biomedical applications. Here, we highlight the research on spider silk-based materials in the field of tissue engineering and summarize various two-dimensional (2D) and three-dimensional (3D) scaffolds made of spider silk. Finally, different applications of spider silk-based materials are reviewed in the field of tissue engineering in vitro and in vivo.
Collapse
Affiliation(s)
- Sahar Salehi
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany (K.K.)
| | - Kim Koeck
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany (K.K.)
| | - Thomas Scheibel
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany (K.K.)
- The Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- The Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- The Bayreuth Materials Center (BayMAT), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
23
|
Aigner T, Haynl C, Salehi S, O'Connor A, Scheibel T. Nerve guidance conduit design based on self-rolling tubes. Mater Today Bio 2020; 5:100042. [PMID: 32159159 PMCID: PMC7063334 DOI: 10.1016/j.mtbio.2020.100042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/29/2022] Open
Abstract
The current gold standard in peripheral nerve repair is nerve autografts for bridging gaps larger than a centimeter. However, autografts are associated with a low availability and the loss of function at the donor site. Nerve guidance conduits (NGCs) made of biocompatible and biodegradable materials reflect suitable alternatives. Clinically approved NGCs comprise either wraps that are rolled around the loose ends of the nerve or steady-state tubes; however, both lack internal guidance structures. Here, we established self-rolling NGCs to allow for gentle encapsulation of nerve cells together with supportive microenvironments, such as (1) an inner tube wall coating with a bioactive spider silk film, (2) an inner tube wall lining using an anisotropic spider silk non-woven mat, or (3) a luminal filler using an anisotropic collagen cryogel. Neuronal cells adhered and differentiated inside the modified tubes and formed neurites, which were oriented along the guidance structures provided by the spider silk non-woven mat or by the fibrillary structure of the collagen cryogel. Thus, our size-adaptable NGCs provide several features useful for peripheral nerve repair, and distinct combinations of the used elements might support and enhance the clinical outcome.
Collapse
Affiliation(s)
- T.B. Aigner
- University of Bayreuth, Department of Biomaterials, Prof.-Rüdiger-Bormann-Str.1, 95447, Bayreuth, Germany
| | - C. Haynl
- University of Bayreuth, Department of Biomaterials, Prof.-Rüdiger-Bormann-Str.1, 95447, Bayreuth, Germany
| | - S. Salehi
- University of Bayreuth, Department of Biomaterials, Prof.-Rüdiger-Bormann-Str.1, 95447, Bayreuth, Germany
| | - A. O'Connor
- University of Melbourne, Department of Biomedical Engineering, Melbourne, Victoria, 3010, Australia
| | - T. Scheibel
- University of Bayreuth, Department of Biomaterials, Prof.-Rüdiger-Bormann-Str.1, 95447, Bayreuth, Germany
- University of Bayreuth, Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universitätsstraße 30, 95447, Bayreuth, Germany
- University of Bayreuth, Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universitätsstraße 30, 95447, Bayreuth, Germany
- University of Bayreuth, Bayreuther Materialzentrum (BayMAT), Universitätsstraße 30, 95447, Bayreuth, Germany
- University of Bayreuth, Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
24
|
Kumari S, Bargel H, Scheibel T. Recombinant Spider Silk-Silica Hybrid Scaffolds with Drug-Releasing Properties for Tissue Engineering Applications. Macromol Rapid Commun 2019; 41:e1900426. [PMID: 31697434 DOI: 10.1002/marc.201900426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/24/2019] [Indexed: 12/19/2022]
Abstract
Fabricating biomaterials with antimicrobial activity to prevent the growth of detrimental microorganisms is of great scientific and practical interest. Here, composite materials comprising recombinant spider silk proteins and mesoporous silica nanoparticles (MSN) loaded with selected antibiotics and antimycotics are fabricated into films and hydrogels. The derived composite materials exhibit excellent antimicrobial properties with sustained release of antibiotics over the course of 15 days. Furthermore, antibiotics/antimycotics inclusion does not impair the cytocompatibility of the composite materials, all of which promote fibroblast cell adhesion and proliferation. Finally, processing of spider silk-MSN composite hydrogels using 3D printing is shown to enable the fabrication of patient-specific antimicrobial implants to prevent infection in the near future.
Collapse
Affiliation(s)
- Sushma Kumari
- Department of Biomaterials, Faculty of Engineering Science, Prof.-Rüdiger-Bormann-Str. 1, University of Bayreuth, 95447, Bayreuth, Germany
| | - Hendrik Bargel
- Department of Biomaterials, Faculty of Engineering Science, Prof.-Rüdiger-Bormann-Str. 1, University of Bayreuth, 95447, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Science, Prof.-Rüdiger-Bormann-Str. 1, University of Bayreuth, 95447, Bayreuth, Germany.,Bayreuth Center for Material Science and Engineering (BayMAT), Bavarian Polymer Institute (BPI), Bayreuth Center for Colloids and Interfaces (BZKG), Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
25
|
Rodríguez‐Alba E, Huerta L, Ortega A, Burillo G. Surface Modification of Polypropylene with Primary Amines by Acrylamide Radiation Grafting and Hofmann's Transposition Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201901473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Efraín Rodríguez‐Alba
- Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoCircuito Exterior Ciudad Universitaria, C.P. 04510 Ciudad de México México
| | - Lázaro Huerta
- Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior Ciudad Universitaria, C.P. 04510 Ciudad de México México
| | - Alejandra Ortega
- Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoCircuito Exterior Ciudad Universitaria, C.P. 04510 Ciudad de México México
| | - Guillermina Burillo
- Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoCircuito Exterior Ciudad Universitaria, C.P. 04510 Ciudad de México México
| |
Collapse
|
26
|
Herold HM, Aigner TB, Grill CE, Krüger S, Taubert A, Scheibel T. SpiderMAEn: recombinant spider silk-based hybrid materials for advanced energy technology. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | - Stefanie Krüger
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
27
|
Joseph E, Patil A, Hirlekar S, Shete A, Parekh N, Prabhune A, Nisal A. Glycomonoterpene-Functionalized Crack-Resistant Biocompatible Silk Fibroin Coatings for Biomedical Implants. ACS APPLIED BIO MATERIALS 2019; 2:675-684. [DOI: 10.1021/acsabm.8b00515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Emmanuel Joseph
- Polymer Science and Engineering Division, CSIR-NCL, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrita Patil
- Biochemical Sciences Division, CSIR-NCL, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Abhijit Shete
- Polymer Science and Engineering Division, CSIR-NCL, Pune 411008, India
| | - Nimisha Parekh
- Polymer Science and Engineering Division, CSIR-NCL, Pune 411008, India
| | - Asmita Prabhune
- Biochemical Sciences Division, CSIR-NCL, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anuya Nisal
- Polymer Science and Engineering Division, CSIR-NCL, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
28
|
Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:187-221. [PMID: 31713200 DOI: 10.1007/978-981-13-9791-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extraordinary mechanical properties of spider silk fibers result from the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Genetic approaches enabled the biotechnological production of recombinant spidroins which have been employed to unravel the self-assembly and spinning process. Various processing conditions allowed to explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. Recombinant spider silk proteins and materials made thereof can be utilized for biomedical applications, such as drug delivery, tissue engineering or 3D-biomanufacturing.
Collapse
|
29
|
Zhang L, Liu X, Li G, Wang P, Yang Y. Tailoring degradation rates of silk fibroin scaffolds for tissue engineering. J Biomed Mater Res A 2018; 107:104-113. [DOI: 10.1002/jbm.a.36537] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Luzhong Zhang
- Key Laboratory of Neuroregeneration, Neural Regeneration Co-Innovation Center of Jiangsu Province; Nantong University; Nantong, 226001 People's Republic of China
- Department of Chemistry; Brandeis University; 415 South Street, Waltham Massachusetts, 02454
| | - Xin Liu
- Key Laboratory of Neuroregeneration, Neural Regeneration Co-Innovation Center of Jiangsu Province; Nantong University; Nantong, 226001 People's Republic of China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Neural Regeneration Co-Innovation Center of Jiangsu Province; Nantong University; Nantong, 226001 People's Republic of China
| | - Peiyuan Wang
- Institute of Imaging, Yantai Affiliated Hospital of Binzhou Medical University; Yantai Shandong People's Republic of China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Neural Regeneration Co-Innovation Center of Jiangsu Province; Nantong University; Nantong, 226001 People's Republic of China
| |
Collapse
|
30
|
Aigner TB, DeSimone E, Scheibel T. Biomedical Applications of Recombinant Silk-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704636. [PMID: 29436028 DOI: 10.1002/adma.201704636] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/26/2017] [Indexed: 05/18/2023]
Abstract
Silk is mostly known as a luxurious textile, which originates from silkworms first cultivated in China. A deeper look into the variety of silk reveals that it can be used for much more, in nature and by humanity. For medical purposes, natural silks were recognized early as a potential biomaterial for surgical threads or wound dressings; however, as biomedical engineering advances, the demand for high-performance, naturally derived biomaterials becomes more pressing and stringent. A common problem of natural materials is their large batch-to-batch variation, the quantity available, their potentially high immunogenicity, and their fast biodegradation. Some of these common problems also apply to silk; therefore, recombinant approaches for producing silk proteins have been developed. There are several research groups which study and utilize various recombinantly produced silk proteins, and many of these have also investigated their products for biomedical applications. This review gives a critical overview over of the results for applications of recombinant silk proteins in biomedical engineering.
Collapse
Affiliation(s)
| | - Elise DeSimone
- University Bayreuth, Lehrstuhl Biomaterialien, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Thomas Scheibel
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Bio-Makromoleküle (bio-mac), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI), University Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| |
Collapse
|
31
|
Affiliation(s)
| | - Hongbin Li
- Department of Chemistry, University of British Columbia
| |
Collapse
|
32
|
Harris TI, Gaztambide DA, Day BA, Brock CL, Ruben AL, Jones JA, Lewis RV. Sticky Situation: An Investigation of Robust Aqueous-Based Recombinant Spider Silk Protein Coatings and Adhesives. Biomacromolecules 2016; 17:3761-3772. [PMID: 27704788 DOI: 10.1021/acs.biomac.6b01267] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mechanical properties and biocompatibility of spider silks have made them one of the most sought after and studied natural biomaterials. A biomimetic process has been developed that uses water to solvate purified recombinant spider silk proteins (rSSps) prior to material formation. The absence of harsh organic solvents increases cost effectiveness, safety, and decreases the environmental impact of these materials. This development allows for the investigation of aqueous-based rSSps as coatings and adhesives and their potential applications. In these studies it was determined that fiber-based rSSps in nonfiber formations have the capability to coat and adhere numerous substrates, whether rough, smooth, hydrophobic, or hydrophilic. Further, these materials can be functionalized for a variety of processes. Drug-eluting coatings have been made with the capacity to release a variety of compounds in addition to their inherent ability to prevent blood clotting and biofouling. Additionally, spider silk protein adhesives are strong enough to outperform some conventional glues and still display favorable tissue implantation properties. The physical properties, corresponding capabilities, and potential applications of these nonfibrous materials were characterized in this study. Mechanical properties, ease of manufacturing, biodegradability, biocompatibility, and functionality are the hallmarks of these revolutionary spider silk protein materials.
Collapse
Affiliation(s)
- Thomas I Harris
- Departments of Biological Engineering, §Biology, and ∥Nutrition, Dietetics, and Food Sciences, Utah State University , Logan, Utah 84322, United States
| | - Danielle A Gaztambide
- Departments of Biological Engineering, §Biology, and ∥Nutrition, Dietetics, and Food Sciences, Utah State University , Logan, Utah 84322, United States
| | - Breton A Day
- Departments of Biological Engineering, §Biology, and ∥Nutrition, Dietetics, and Food Sciences, Utah State University , Logan, Utah 84322, United States
| | - Cameron L Brock
- Departments of Biological Engineering, §Biology, and ∥Nutrition, Dietetics, and Food Sciences, Utah State University , Logan, Utah 84322, United States
| | - Ashley L Ruben
- Departments of Biological Engineering, §Biology, and ∥Nutrition, Dietetics, and Food Sciences, Utah State University , Logan, Utah 84322, United States
| | - Justin A Jones
- Departments of Biological Engineering, §Biology, and ∥Nutrition, Dietetics, and Food Sciences, Utah State University , Logan, Utah 84322, United States
| | - Randolph V Lewis
- Departments of Biological Engineering, §Biology, and ∥Nutrition, Dietetics, and Food Sciences, Utah State University , Logan, Utah 84322, United States
| |
Collapse
|