1
|
Ray SK, Mukherjee S. Mechanical factors in the breast cancer microenvironment: Emphasizing functional adaptation. Biochem Biophys Res Commun 2025; 771:152048. [PMID: 40412051 DOI: 10.1016/j.bbrc.2025.152048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/11/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Breast cancer cells can disrupt microenvironments and mechanical balance, leading to significant changes in tissues and alterations in cellular signaling pathways. Recent researches explore advancements in breast cancer cell mechanobiology, focusing on the interaction between cells and their microenvironment and the regulation of cellular behavior through mechanical stress. Factors include the rigidity of the surrounding surface, the substrate's chemical and topological patterns, and the differences between two-dimensional and three-dimensional cultures. Mechanical loading scenarios, such as tensile stretch, compression, and flow-induced shear, are also reviewed to prevent metastasis. However, breast cancer does not follow a strict pattern, and its adaptability facilitated by specific proteins that form the mechanical network. These proteins exhibit modified expression in breast cancer or direct participation in cancer advancement. Directing therapeutic efforts towards the mechanical system may result in more effective therapies in the future. However, this complex task requires caution to prevent potential adverse reactions. The substrate microenvironment and mechanical signals will collaborate to regulate cancer cell advancement and spread. Mechanotransduction, the process by which cells read physical cues, plays a crucial role in breast cancer. Three mechanical stressors, stiffness, interstitial fluid pressure, and solid stress, have been supported as mechanical modifiers in breast cancer. This review presents the potential of directing therapeutic interventions toward the mechanical program to treat cancer and discusses the associated difficulties and limitations.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India.
| |
Collapse
|
2
|
van der Net A, Rahman Z, Bordoloi AD, Muntz I, ten Dijke P, Boukany PE, Koenderink GH. EMT-related cell-matrix interactions are linked to states of cell unjamming in cancer spheroid invasion. iScience 2024; 27:111424. [PMID: 39717087 PMCID: PMC11665421 DOI: 10.1016/j.isci.2024.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/25/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Epithelial-to-mesenchymal transitions (EMT) and unjamming transitions provide two distinct pathways for cancer cells to become invasive, but it is still unclear to what extent these pathways are connected. Here, we addressed this question by performing 3D spheroid invasion assays on epithelial-like (A549) and mesenchymal-like (MV3) cancer cell lines in collagen-based hydrogels, where we varied both the invasive character of the cells and matrix porosity. We found that the onset time of invasion was correlated with the matrix porosity and vimentin levels, while the spheroid expansion rate correlated with MMP1 levels. Spheroids displayed solid-like (non-invasive) states in small-pore hydrogels and fluid-like (strand-based) or gas-like (disseminating cells) states in large-pore hydrogels or for mesenchymal-like cells. Our findings are consistent with different unjamming states as a function of cell motility and matrix confinement predicted in recent models for cancer invasion, but show that cell motility and matrix confinement are coupled via EMT-related matrix degradation.
Collapse
Affiliation(s)
- Anouk van der Net
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| | - Zaid Rahman
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Ankur D. Bordoloi
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Iain Muntz
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| | - Peter ten Dijke
- Leiden University Medical Center, Department of Cell and Chemical Biology and Oncode Institute, Leiden 2333 ZC, the Netherlands
| | - Pouyan E. Boukany
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Gijsje H. Koenderink
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| |
Collapse
|
3
|
Wang C, Xu Z, Ma X, Yin Y, Cheng B, Dong Y. Exploration of Curvature and Stiffness Dual-Regulated Breast Cancer Cell Motility by a Motor-Clutch Model and Cell Traction Force Characterization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44549-44560. [PMID: 39140610 DOI: 10.1021/acsami.4c09615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The migration of breast cancer cells is the main cause of death and significantly regulated by physical factors of the extracellular matrix (ECM). To be specific, the curvature and stiffness of the ECM were discovered to effectively guide cell migration in velocity and direction. However, it is not clear what the extent of effect is when these dual-physical factors regulate cell migration. Moreover, the mechanobiology mechanism of breast cancer cell migration in the molecular level and analysis of cell traction force (CTF) are also important, but there is a lack of systematic investigation. Therefore, we employed a microfluidic platform to construct hydrogel microspheres with an independently adjustable curvature and stiffness as a three-dimensional substrate for breast cancer cell migration. We found that the cell migration velocity was negatively correlated to curvature and positively correlated to stiffness. In addition, curvature was investigated to influence the focal adhesion expression as well as the assignment of F-actin at the molecular level. Further, with the help of a motor-clutch mathematical model and hydrogel microsphere stress sensors, it was concluded that cells perceived physical factors (curvature and stiffness) to cause changes in CTF, which ultimately regulated cell motility. In summary, we employed a theoretical model (motor-clutch) and experimental strategy (stress sensors) to understand the mechanism of curvature and stiffness regulating breast cancer cell motility. These results provide evidence of force driven cancer cell migration by ECM physical factors and explain the mechanism from the perspective of mechanobiology.
Collapse
Affiliation(s)
- Cong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, P. R. China
| | - Zhao Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, P. R. China
| | - Xingquan Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, P. R. China
- School of Civil Engineering and Architecture, Xi'an University of Technology, Shaanxi 710048, P. R. China
| | - Yuting Yin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, P. R. China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, P. R. China
| | - Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Shaanxi 710049, P. R. China
| |
Collapse
|
4
|
Denisin AK, Kim H, Riedel-Kruse IH, Pruitt BL. Field Guide to Traction Force Microscopy. Cell Mol Bioeng 2024; 17:87-106. [PMID: 38737454 PMCID: PMC11082129 DOI: 10.1007/s12195-024-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Traction force microscopy (TFM) is a widely used technique to measure cell contractility on compliant substrates that mimic the stiffness of human tissues. For every step in a TFM workflow, users make choices which impact the quantitative results, yet many times the rationales and consequences for making these decisions are unclear. We have found few papers which show the complete experimental and mathematical steps of TFM, thus obfuscating the full effects of these decisions on the final output. Methods Therefore, we present this "Field Guide" with the goal to explain the mathematical basis of common TFM methods to practitioners in an accessible way. We specifically focus on how errors propagate in TFM workflows given specific experimental design and analytical choices. Results We cover important assumptions and considerations in TFM substrate manufacturing, substrate mechanical properties, imaging techniques, image processing methods, approaches and parameters used in calculating traction stress, and data-reporting strategies. Conclusions By presenting a conceptual review and analysis of TFM-focused research articles published over the last two decades, we provide researchers in the field with a better understanding of their options to make more informed choices when creating TFM workflows depending on the type of cell being studied. With this review, we aim to empower experimentalists to quantify cell contractility with confidence. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00801-6.
Collapse
Affiliation(s)
| | - Honesty Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
- Present Address: The Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158 USA
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Ingmar H. Riedel-Kruse
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Beth L. Pruitt
- Departments of Bioengineering and Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
5
|
Frascogna C, Mottareale R, La Verde G, Arrichiello C, Muto P, Netti PA, Pugliese M, Panzetta V. Role of the mechanical microenvironment on CD-44 expression of breast adenocarcinoma in response to radiotherapy. Sci Rep 2024; 14:391. [PMID: 38172135 PMCID: PMC10764959 DOI: 10.1038/s41598-023-50473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
The biological effects of ionizing radiation are exploited in the clinical practice of radiotherapy to destroy tumour cells while sparing the surrounding normal tissue. While most of the radiotherapy research focused on DNA damage and repair, recently a great attention is going to cells' interactions with the mechanical microenvironment of both malignant and healthy tissues after exposure. In fact, the stiffness of the extracellular matrix can modify cells' motility and spreading through the modulation of transmembrane proteins and surface receptors' expression, such as CD-44. CD-44 receptor has held much interest also in targeted-therapy due to its affinity with hyaluronic acid, which can be used to functionalize biodegradable nanoparticles loaded with chemotherapy drugs for targeted therapy. We evaluated changes in CD-44 expression in two mammary carcinoma cell lines (MCF10A and MDA-MB-231) after exposure to X-ray (2 or 10 Gy). To explore the role of the mechanical microenvironment, we mimicked tissues' stiffness with polyacrylamide's substrates producing two different elastic modulus values (0.5 and 15 kPa). We measured a dose dependent increase in CD-44 relative expression in tumour cells cultured in a stiffer microenvironment. These findings highlight a crucial connection between the mechanical properties of the cell's surroundings and the post-radiotherapy expression of surface receptors.
Collapse
Affiliation(s)
- Crescenzo Frascogna
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
| | - Rocco Mottareale
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Giuseppe La Verde
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Via Cinthia Ed. 6, 80126, Naples, Italy
| | - Cecilia Arrichiello
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 53, 80131, Naples, Italy
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 53, 80131, Naples, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
- Interdisciplinary Research Centre On Biomaterials CRIB, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
| | - Mariagabriella Pugliese
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cinthia, 80126, Naples, Italy.
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Via Cinthia Ed. 6, 80126, Naples, Italy.
| | - Valeria Panzetta
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
- Interdisciplinary Research Centre On Biomaterials CRIB, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
| |
Collapse
|
6
|
Gil‐Redondo JC, Weber A, Vivanco MDM, Toca‐Herrera JL. Measuring (biological) materials mechanics with atomic force microscopy. 5. Traction force microscopy (cell traction forces). Microsc Res Tech 2023; 86:1069-1078. [PMID: 37345422 PMCID: PMC10952526 DOI: 10.1002/jemt.24368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Cells generate traction forces to probe the mechanical properties of the surroundings and maintain a basal equilibrium state of stress. Traction forces are also implicated in cell migration, adhesion and ECM remodeling, and alteration of these forces is often observed in pathologies such as cancer. Thus, analyzing the traction forces is important for studies of cell mechanics in cancer and metastasis. In this primer, the methodology for conducting two-dimensional traction force microscopy (2D-TFM) experiments is reported. As a practical example, we analyzed the traction forces generated by three human breast cancer cell lines of different metastatic potential: MCF10-A, MCF-7 and MDA-MB-231 cells, and studied the effects of actin cytoskeleton disruption on those traction forces. Contrary to what is often reported in literature, lower traction forces were observed in cells with higher metastatic potential (MDA-MB-231). Implications of substrate stiffness and concentration of extracellular matrix proteins in such findings are discussed in the text. RESEARCH HIGHLIGHTS: Traction force microscopy (TFM) is suitable for studying and quantifying cell-substrate and cell-cell forces. TFM is suitable for investigating the relationship between chemical to mechanical signal transduction and vice versa. TFM can be combined with classical indentation studies providing a compact picture of cell mechanics. TFM still needs new physico-chemical (sample preparation) and computational approaches for more accurate data evaluation.
Collapse
Affiliation(s)
- Juan Carlos Gil‐Redondo
- Institute of Biophysics, Department of BionanosciencesUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Andreas Weber
- Institute of Biophysics, Department of BionanosciencesUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Maria dM. Vivanco
- Cancer Heterogeneity Lab, CIC BioGUNEBasque Research and Technology Alliance, BRTABizkaia Technology ParkDerioSpain
| | - José L. Toca‐Herrera
- Institute of Biophysics, Department of BionanosciencesUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| |
Collapse
|
7
|
Tang RZ, Liu XQ. Biophysical cues of in vitro biomaterials-based artificial extracellular matrix guide cancer cell plasticity. Mater Today Bio 2023; 19:100607. [PMID: 36960095 PMCID: PMC10027567 DOI: 10.1016/j.mtbio.2023.100607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
Clinical evidence supports a role for the extracellular matrix (ECM) in cancer plasticity across multiple tumor types. The lack of in vitro models that represent the native ECMs is a significant challenge for cancer research and drug discovery. Therefore, a major motivation for developing new tumor models is to create the artificial ECM in vitro. Engineered biomaterials can closely mimic the architectural and mechanical properties of ECM to investigate their specific effects on cancer progression, offering an alternative to animal models for the testing of cancer cell behaviors. In this review, we focused on the biomaterials from different sources applied in the fabrication of the artificial ECM and their biophysical cues to recapitulate key features of tumor niche. Furthermore, we summarized how the distinct biophysical cues guided cell behaviors of cancer plasticity, including morphology, epithelial-to-mesenchymal transition (EMT), enrichment of cancer stem cells (CSCs), proliferation, migration/invasion and drug resistance. We also discuss the future opportunities in using the artificial ECM for applications of tumorigenesis research and precision medicine, as well as provide useful messages of principles for designing suitable biomaterial scaffolds.
Collapse
Affiliation(s)
- Rui-Zhi Tang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, PR China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
8
|
Nguyen LTS, Jacob MAC, Parajón E, Robinson DN. Cancer as a biophysical disease: Targeting the mechanical-adaptability program. Biophys J 2022; 121:3573-3585. [PMID: 35505610 PMCID: PMC9617128 DOI: 10.1016/j.bpj.2022.04.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
With the number of cancer cases projected to significantly increase over time, researchers are currently exploring "nontraditional" research fields in the pursuit of novel therapeutics. One emerging area that is steadily gathering interest revolves around cellular mechanical machinery. When looking broadly at the physical properties of cancer, it has been debated whether a cancer could be defined as either stiffer or softer across cancer types. With numerous articles supporting both sides, the evidence instead suggests that cancer is not particularly regimented. Instead, cancer is highly adaptable, allowing it to endure the constantly changing microenvironments cancer cells encounter, such as tumor compression and the shear forces in the vascular system and body. What allows cancer cells to achieve this adaptability are the particular proteins that make up the mechanical network, leading to a particular mechanical program of the cancer cell. Coincidentally, some of these proteins, such as myosin II, α-actinins, filamins, and actin, have either altered expression in cancer and/or some type of direct involvement in cancer progression. For this reason, targeting the mechanical system as a therapeutic strategy may lead to more efficacious treatments in the future. However, targeting the mechanical program is far from trivial. As involved as the mechanical program is in cancer development and metastasis, it also helps drive many other key cellular processes, such as cell division, cell adhesion, metabolism, and motility. Therefore, anti-cancer treatments targeting the mechanical program must take great care to avoid potential side effects. Here, we introduce the potential of targeting the mechanical program while also providing its challenges and shortcomings as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Ly T S Nguyen
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mark Allan C Jacob
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Eleana Parajón
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
9
|
Physical Forces in Glioblastoma Migration: A Systematic Review. Int J Mol Sci 2022; 23:ijms23074055. [PMID: 35409420 PMCID: PMC9000211 DOI: 10.3390/ijms23074055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
The invasive capabilities of glioblastoma (GBM) define the cancer’s aggressiveness, treatment resistance, and overall mortality. The tumor microenvironment influences the molecular behavior of cells, both epigenetically and genetically. Current forces being studied include properties of the extracellular matrix (ECM), such as stiffness and “sensing” capabilities. There is currently limited data on the physical forces in GBM—both relating to how they influence their environment and how their environment influences them. This review outlines the advances that have been made in the field. It is our hope that further investigation of the physical forces involved in GBM will highlight new therapeutic options and increase patient survival. A search of the PubMed database was conducted through to 23 March 2022 with the following search terms: (glioblastoma) AND (physical forces OR pressure OR shear forces OR compression OR tension OR torsion) AND (migration OR invasion). Our review yielded 11 external/applied/mechanical forces and 2 tumor microenvironment (TME) forces that affect the ability of GBM to locally migrate and invade. Both external forces and forces within the tumor microenvironment have been implicated in GBM migration, invasion, and treatment resistance. We endorse further research in this area to target the physical forces affecting the migration and invasion of GBM.
Collapse
|
10
|
Mechanical transmission enables EMT cancer cells to drive epithelial cancer cell migration to guide tumor spheroid disaggregation. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2031-2049. [PMID: 35366152 DOI: 10.1007/s11427-021-2054-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
Cell phenotype heterogeneity within tumor tissue, especially which due to the emergence of epithelial-mesenchymal transition (EMT) in cancer cells, is associated with cancer invasion and metastasis. However, our understanding of the cellular mechanism(s) underlying the cooperation between EMT cell and epithelial cancer cell migration remains incomplete. Herein, heterotypic tumor spheroids containing both epithelial and EMT cancer cells were generated in vitro. We observed that EMT cells dominated the peripheral region of the self-organized heterotypic tumor spheroid. Furthermore, our results demonstrated that EMT cells could serve as leader cells to improve the collective migration efficiency of epithelial cancer cells and promote dispersion and invasion of the tumor spheroids, which was regulated by the force transition between EMT cells and epithelial cancer cells. Mechanistically, our data further suggest that force transmission is mediated by heterophilic N-cadherin/E-cadherin adhesion complexes between EMT and epithelial cancer cells. Impairment of N-cadherin/E-cadherin adhesion complex formation abrogated the ability of EMT cells to guide epithelial cancer cell migration and blocked the dispersion of tumor spheroids. Together, our data provide new insight into the mechanical interaction between epithelial and EMT cancer cells through heterophilic cadherin adhesion, which enables cooperative tumor cell migration, highlighting the role of EMT cells in tumor invasion.
Collapse
|
11
|
Spontaneous formation and spatial self-organization of mechanically induced mesenchymal-like cells within geometrically confined cancer cell monolayers. Biomaterials 2021; 281:121337. [PMID: 34979418 DOI: 10.1016/j.biomaterials.2021.121337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
There is spatiotemporal heterogeneity in cell phenotypes and mechanical properties in tumor tissues, which is associated with cancer invasion and metastasis. It is well-known that exogenous growth factors like transforming growth factor (TGF)-β, can induce epithelial-mesenchymal transition (EMT)-based phenotypic transformation and the formation of EMT patterning on geometrically confined monolayers with mechanics heterogeneity. In the absence of exogenous TGF-β stimulation, however, whether geometric confinement-caused mechanics heterogeneity of cancer cell monolayers alone can trigger the EMT-based phenotypic heterogeneity still remains mysterious. Here, we develop a micropattern-based cell monolayer model to investigate the regulation of mechanics heterogeneity on the cell phenotypic switch. We reveal that mechanics heterogeneity itself is enough to spontaneously induce the emergence of mesenchymal-like phenotype and asymmetrical activation of TGF-β-SMAD signaling. Spatiotemporal dynamics of patterned cell monolayers with mesenchymal-like phenotypes is essentially regulated by tissue-scale cell behaviors like proliferation, migration as well as heterogeneous cytoskeletal contraction. The inhibition of cell contraction abrogates the asymmetrical TGF-β-SMAD signaling activation level and the emergence of mesenchymal-like phenotype. Our work not only sheds light on the key regulation of mechanics heterogeneity caused by spatially geometric confinement on regional mesenchymal-like phenotype of cancer cell monolayers, but highlights the key role of biophysical/mechanical cues in triggering phenotypic switch.
Collapse
|
12
|
Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines 2021; 9:biomedicines9091102. [PMID: 34572287 PMCID: PMC8465203 DOI: 10.3390/biomedicines9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.
Collapse
|
13
|
Yang Q, Jiang N, Xu H, Zhang Y, Xiong C, Huang J. Integration of electrotaxis and durotaxis in cancer cells: Subtle nonlinear responses to electromechanical coupling cues. Biosens Bioelectron 2021; 186:113289. [PMID: 33975207 DOI: 10.1016/j.bios.2021.113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/21/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Cells in living organisms live in multiphysics-coupled environments. There is growing evidence indicating that both exogenous electric field (EEF) and extracellular stiffness gradient (ESG) can regulate directional movement of cells, which are known as electrotaxis and durotaxis, respectively. How single cells respond to the ubiquitous electromechanical coupling cues, however, remains mysterious. Using microfluidic chip-based methodology and finite element-based electromechanical coupling design strategies, we develope an electromechanical coupling microchip system, enabling us to quantitatively investigate polarization and directional migration governed by EEF and ESG at the single cell level. It is revealed that both of electrotaxis and durotaxis nonlinearly depend on the physiological EEF and ESG, respectively. Specific combinations of EEF and ESG can subtly modify the polarization states of single cells and thus induce hyperpolarization and depolarization. Cells can integrate electrotaxis and durotaxis in response to multi-cue microenvironments via subtle mechanisms involving cooperation and competition during cellular electrosensing and mechanosensing. The work offers a platform for quantifying migration and polarization of cells driven by electromechanical cues, which is essential not only for elucidating physiological and pathological processes like embryo development, and invasion and metastasis of cancer cells, but for manipulating cell behaviors in a controllable and programmable fashion.
Collapse
Affiliation(s)
- Qunfeng Yang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Nan Jiang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Yajun Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China; Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Jagiełło A, Lim M, Botvinick E. Dermal fibroblasts and triple-negative mammary epithelial cancer cells differentially stiffen their local matrix. APL Bioeng 2020; 4:046105. [PMID: 33305163 PMCID: PMC7719046 DOI: 10.1063/5.0021030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
The bulk measurement of extracellular matrix (ECM) stiffness is commonly used in mechanobiology. However, past studies by our group show that peri-cellular stiffness is quite heterogeneous and divergent from the bulk. We use optical tweezers active microrheology (AMR) to quantify how two phenotypically distinct migratory cell lines establish dissimilar patterns of peri-cellular stiffness. Dermal fibroblasts (DFs) and triple-negative human breast cancer cells MDA-MB-231 (MDAs) were embedded within type 1 collagen (T1C) hydrogels polymerized at two concentrations: 1.0 mg/ml and 1.5 mg/ml. We found DFs increase the local stiffness of 1.0 mg/ml T1C hydrogels but, surprisingly, do not alter the stiffness of 1.5 mg/ml T1C hydrogels. In contrast, MDAs predominantly do not stiffen T1C hydrogels as compared to cell-free controls. The results suggest that MDAs adapt to the bulk ECM stiffness, while DFs regulate local stiffness to levels they intrinsically prefer. In other experiments, cells were treated with transforming growth factor-β1 (TGF-β1), glucose, or ROCK inhibitor Y27632, which have known effects on DFs and MDAs related to migration, proliferation, and contractility. The results show that TGF-β1 alters stiffness anisotropy, while glucose increases stiffness magnitude around DFs but not MDAs and Y27632 treatment inhibits cell-mediated stiffening. Both cell lines exhibit an elongated morphology and local stiffness anisotropy, where the stiffer axis depends on the cell line, T1C concentration, and treatment. In summary, our findings demonstrate that AMR reveals otherwise masked mechanical properties such as spatial gradients and anisotropy, which are known to affect cell behavior at the macro-scale. The same properties manifest with similar magnitude around single cells.
Collapse
Affiliation(s)
- Alicja Jagiełło
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA
| | - Micah Lim
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
15
|
Todorovski V, Fox AH, Choi YS. Matrix stiffness-sensitive long noncoding RNA NEAT1 seeded paraspeckles in cancer cells. Mol Biol Cell 2020; 31:1654-1662. [PMID: 32293985 PMCID: PMC7521846 DOI: 10.1091/mbc.e20-02-0097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer progression is influenced by changes in the tumor microenvironment, such as the stiffening of the extracellular matrix. Yet our understanding of how cancer cells sense and convert mechanical stimuli into biochemical signals and physiological responses is still limited. The long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1), which forms the backbone of subnuclear "paraspeckle" bodies, has been identified as a key genetic regulator in numerous cancers. Here, we investigated whether paraspeckles, as defined by NEAT1 localization, are mechanosensitive. Using tunable polyacrylamide hydrogels of extreme stiffnesses, we measured paraspeckle parameters in several cancer cell lines and observed an increase in paraspeckles in cells cultured on soft (3 kPa) hydrogels compared with stiffer (40 kPa) hydrogels. This response to soft substrate is erased when cells are first conditioned on stiff substrate, and then transferred onto soft hydrogels, suggestive of mechanomemory upstream of paraspeckle regulation. We also examined some well-characterized mechanosensitive markers, but found that lamin A expression, as well as YAP and MRTF-A nuclear translocation did not show consistent trends between stiffnesses, despite all cell types having increased migration, nuclear, and cell area on stiffer hydrogels. We thus propose that paraspeckles may prove of use as mechanosensors in cancer mechanobiology.
Collapse
Affiliation(s)
- Vanja Todorovski
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Archa H. Fox
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
16
|
Panzetta V, La Verde G, Pugliese M, Artiola V, Arrichiello C, Muto P, La Commara M, Netti PA, Fusco S. Adhesion and Migration Response to Radiation Therapy of Mammary Epithelial and Adenocarcinoma Cells Interacting with Different Stiffness Substrates. Cancers (Basel) 2020; 12:E1170. [PMID: 32384675 PMCID: PMC7281676 DOI: 10.3390/cancers12051170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
The structural and mechanical properties of the microenvironmental context have a profound impact on cancer cell motility, tumor invasion, and metastasis formation. In fact, cells react to their mechanical environment modulating their adhesion, cytoskeleton organization, changes of shape, and, consequently, the dynamics of their motility. In order to elucidate the role of extracellular matrix stiffness as a driving force in cancer cell motility/invasion and the effects of ionizing radiations on these processes, we evaluated adhesion and migration as biophysical properties of two different mammary cell lines, over a range of pathophysiological stiffness (1-13 kPa) in a control condition and after the exposure to two different X-ray doses (2 and 10 Gy, photon beams). We concluded that the microenvironment mimicking the normal mechanics of healthy tissue has a radioprotective role on both cell lines, preventing cell motility and invasion. Supraphysiological extracellular matrix stiffness promoted tumor cell motility instead, but also had a normalizing effect on the response to radiation of tumor cells, lowering their migratory capability. This work lays the foundation for exploiting the extracellular matrix-mediated mechanism underlying the response of healthy and tumor cells to radiation treatments and opens new frontiers in the diagnostic and therapeutic use of radiotherapy.
Collapse
Affiliation(s)
- Valeria Panzetta
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy;
- Centre for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Giuseppe La Verde
- Istituto Nazionale di Fisica Nucleare, INFN sezione di Napoli, Via Cinthia ed. 6, 80126 Napoli, Italy; (G.L.V.); (M.P.); (M.L.C.)
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Montesano 49, 80131 Napoli, Italy
| | - Mariagabriella Pugliese
- Istituto Nazionale di Fisica Nucleare, INFN sezione di Napoli, Via Cinthia ed. 6, 80126 Napoli, Italy; (G.L.V.); (M.P.); (M.L.C.)
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli Federico II, Via Cinthia ed. 6, 80126 Napoli, Italy;
| | - Valeria Artiola
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli Federico II, Via Cinthia ed. 6, 80126 Napoli, Italy;
| | - Cecilia Arrichiello
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Via Semmola, 53, 80131 Naples, Italy; (C.A.); (P.M.)
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Via Semmola, 53, 80131 Naples, Italy; (C.A.); (P.M.)
| | - Marco La Commara
- Istituto Nazionale di Fisica Nucleare, INFN sezione di Napoli, Via Cinthia ed. 6, 80126 Napoli, Italy; (G.L.V.); (M.P.); (M.L.C.)
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Montesano 49, 80131 Napoli, Italy
| | - Paolo A. Netti
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy;
- Centre for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Sabato Fusco
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy;
- Centre for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| |
Collapse
|
17
|
Anisotropic stiffness gradient-regulated mechanical guidance drives directional migration of cancer cells. Acta Biomater 2020; 106:181-192. [PMID: 32044461 DOI: 10.1016/j.actbio.2020.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Interfacial interactions between cancer cells and surrounding microenvironment involve complex mechanotransduction mechanisms that are directly associated with tumor invasion and metastasis. Matrix remodeling triggers heterogeneity of stiffness in tumor microenvironment and thus generates anisotropic stiffness gradient (ASG). The migration of cancer cells mediated by ASG, however, still remains elusive. Based on a multi-layer polymerization method of microstructured hydrogels with surface topology, we develop an in vitro experimental platform for mechanical interactions of cancer cells with ASG matrix microenvironment. We show that mechanical guidance of mesenchymal cells is essentially modulated by ASG, leading to a spontaneous directional migration along the orientation parallel to the maximum stiffness although there is no stiffness gradient in the direction. The ASG-regulated mechanical guidance presents an alternative way of cancer cell directional migration. Further, our findings indicate that the mechanical guidance occurs only in mesenchymal cancer cells, but not in epithelial cancer cells, implying that cell contractility may contribute to ASG-regulated migration of cells. This work is not only helpful for elucidating the role of matrix remodeling in mediating tumor cell invasion and metastasis, but has potential implications for developing specific cancer treatments. STATEMENT OF SIGNIFICANCE: Local extracellular matrix (ECM) stiffening triggers mechanical heterogeneity in tumor microenvironment, which can exert a crucial impact on interfacial interactions between tumor cells and surrounding ECM. The underlying mechanobiological mechanism that tumor cells are modulated by mechanically heterogeneous ECM, however, still remains mysterious to a great extent. Through our established in vitro platform and analysis, we have demonstrated that anisotropic stiffness gradient (ASG) has the ability to elicit directional migration of cells, essentially depending on local stiffness gradients and the corresponding absolute stiffness values. This study is not only crucial for revealing the role of matrix remodeling in regulating tumor invasion and metastasis, but also offers a valuable guidance for developing anti-tumor therapies from the biomechanical perspective.
Collapse
|
18
|
Hanumantharao SN, Que CA, Vogl BJ, Rao S. Engineered Three-Dimensional Scaffolds Modulating Fate of Breast Cancer Cells Using Stiffness and Morphology Related Cell Adhesion. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:41-48. [PMID: 35402960 PMCID: PMC8979620 DOI: 10.1109/ojemb.2020.2965084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 11/25/2022] Open
Abstract
Goal: Artificially engineering the tumor microenvironment in vitro as a vital tool for understanding the mechanism of tumor progression. In this study, we developed three-dimensional cell scaffold systems with different topographical features and mechanical properties but similar surface chemistry. The cell behavior was modulated by the topography and mechanical properties of the scaffold. Methods: Adenocarcinoma (MCF7), triple-negative (MDA-MB-231) and premalignant (MCF10AneoT) breast cancer cells were seeded on the scaffold systems. The cell viability, cell-cell interaction and cell-matrix interactions were analyzed. The preferential growth and alignment of specific population of cells were demonstrated. Results: Among the different scaffolds, triple-negative breast cancer cells preferred honeycomb scaffolds while adenocarcinoma cells favored mesh scaffolds and premalignant cells preferred the aligned scaffolds. Conclusions: The 3D model system developed here can be used to support growth of only specific cell populations or for the growth of tumors. This model can be used for understanding the topographical and mechanical features affecting tumorigenesis, cancer cell growth and migration behavior of malignant and metastatic cancer cells.
Collapse
Affiliation(s)
| | | | | | - Smitha Rao
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMI49931USA
| |
Collapse
|
19
|
Zhao L, Mok S, Moraes C. Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Biofabrication 2019; 11:045013. [DOI: 10.1088/1758-5090/ab30b4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Huang J, Lin F, Xiong C. Mechanical characterization of single cells based on microfluidic techniques. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Lin F, Shao Y, Xue X, Zheng Y, Li Z, Xiong C, Fu J. Biophysical phenotypes and determinants of anterior vs. posterior primitive streak cells derived from human pluripotent stem cells. Acta Biomater 2019; 86:125-134. [PMID: 30641291 DOI: 10.1016/j.actbio.2019.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 01/07/2023]
Abstract
Formation of the primitive streak (PS) marks one of the most important developmental milestones in embryonic development. However, our understanding of cellular mechanism(s) underlying cell fate diversification along the anterior-posterior axis of the PS remains incomplete. Furthermore, differences in biophysical phenotypes between anterior and posterior PS cells, which could affect their functions and regulate their fate decisions, remain uncharacterized. Herein, anterior and posterior PS cells were derived using human pluripotent stem cell (hPSC)-based in vitro culture systems. We observed that anterior and posterior PS cells displayed significantly different biophysical phenotypes, including cell morphology, migration, and traction force generation, which was further regulated by different levels of Activin A- and BMP4-mediated developmental signaling. Our data further suggested that intracellular cytoskeletal contraction could mediate anterior and posterior PS differentiation and phenotypic bifurcation through its effect on Activin A- and BMP4-mediated intracellular signaling events. Together, our data provide new information about biophysical phenotypes of anterior and posterior PS cells and reveal an important role of intracellular cytoskeletal contractility in regulating anterior and posterior PS differentiation of hPSCs. STATEMENT OF SIGNIFICANCE: Formation of the primitive streak (PS) marks one of the most important developmental milestones in embryonic development. However, molecular and cellular mechanism(s) underlying functional diversification of embryonic cells along the anterior-posterior axis of the PS remains incompletely understood. This work describes the first study to characterize the biophysical properties of anterior and posterior PS cells derived from human pluripotent stem cells (hPSCs). Importantly, our data showing the important role of cytoskeleton contraction in controlling anterior vs. posterior PS cell phenotypic switch (through its effect on intracellular Smad signaling activities downstream of Activin A and BMP4) should shed new light on biomechanical regulations of the development and anterior-posterior patterning of the PS. Our work will contribute significantly to uncovering new biophysical principles and cellular mechanisms driving cell lineage diversification and patterning during the PS formation.
Collapse
|
22
|
Contractility of Airway Smooth Muscle Cell in Response to Zinc Oxide Nanoparticles by Traction Force Microscopy. Ann Biomed Eng 2018; 46:2000-2011. [PMID: 30051243 DOI: 10.1007/s10439-018-2098-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have been widely used in engineering and biomedicine. However, their adverse pathological effects and mechanisms, especially the biomechanical effects on respiratory system where airway smooth muscle cell (ASMC) contractility regulates the airway response and lung function, are not fully understood. Herein, we used traction force microscopy (TFM) method to investigate whether ZnO-NPs of different concentrations (0.1-10 μg/mL) can alter ASMC contractility (basal and agonist-stimulated) after a short-term exposure and the potential mechanisms. We found that ZnO-NPs exposure led to a decrease of ASMC viability in a dose-dependent manner. Notably, basal contractility was enhanced when the concentration of ZnO-NPs was less than 0.1 μg/mL and decreased afterwards, while KCl-stimulated contractility was reduced in all cases of ZnO-NPs treated groups. Cytoskeleton structure was also found to be significantly altered in ASMC with the stimulation of ZnO-NPs. More importantly, it seems that ZnO-NPs with low concentration (< 0.1 μg/mL) would change ASMC contractility without any apparent cytotoxicity through disruption of the microtubule assembly. Moreover, our results also emerged that ASMC contractility responses were regulated by clathrin-mediated endocytosis and cytoskeleton remodeling. Together, these findings indicate the susceptibility of cell mechanics to NPs exposure, suggesting that cell mechanical testing will contribute to uncover the pathological mechanisms of NPs in respiratory diseases.
Collapse
|