1
|
Joseph J, Ramesh P, Sayooj K, Unnikrishnan M, Unnikrishnan G. Functionalized Polyvinyl Alcohol-Gelatin Graft for the Treatment of Tympanic Membrane Perforations. J Biomed Mater Res A 2025; 113:e37818. [PMID: 39474709 DOI: 10.1002/jbm.a.37818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 12/26/2024]
Abstract
The majority of issues related to patients suffering from conductive hearing loss and repeated otitis media are due to chronic tympanic membrane perforations. This generally requires a surgical procedure called tympanoplasty to seal the perforation where autologous grafts are used to reconstruct the membrane. However, the limitations associated with surgical procedures and the limited graft-material availability often cause difficulties in this route; demanding novel procedures or materials. The basic requirements for a synthetic graft-material for this application cover excellent cell adherence with no immune response and inflammatory actions at the site of implantation along with wound-healing characteristics and sufficient acoustic and mechanical properties. With this aim, an innovative graft material has been developed with polyvinyl alcohol (PVA) as the base component through this work. To ensure better cell adhesion and proliferation, a natural polymer, gelatin, has been cross-linked with PVA through a maleic anhydride (MA) intermediate; with a two-step synthesis protocol. The mechanical strength of graft material has been found to be tunable by adjusting the ratio of gelatin with PVA. Laser Doppler Vibrometry (LDV) has been employed to evaluate its acoustic properties upon exposure to a frequency sweep of 10-8000 Hz. The in vitro biocompatibility assays using L929 and RPMI 2650 cells substantiate the material's compatibility; ensuring its potential clinical applications toward chronic tympanic membrane perforations.
Collapse
Affiliation(s)
- Jasmin Joseph
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, India
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - P Ramesh
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - K Sayooj
- Advanced Dynamic and Control Lab, Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananthapuram, India
| | - M Unnikrishnan
- Advanced Dynamic and Control Lab, Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananthapuram, India
| | - G Unnikrishnan
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, India
| |
Collapse
|
2
|
Barman S, Kurnaz LB, Leighton R, Hossain MW, Decho AW, Tang C. Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters. Biomaterials 2024; 311:122690. [PMID: 38976935 PMCID: PMC11298303 DOI: 10.1016/j.biomaterials.2024.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/13/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The escalating rise in antimicrobial resistance (AMR) coupled with a declining arsenal of new antibiotics is imposing serious threats to global public health. A pervasive aspect of many acquired AMR infections is that the pathogenic microorganisms exist as biofilms, which are equipped with superior survival strategies. In addition, persistent and recalcitrant infections are seeded with bacterial persister cells at infection sites. Together, conventional antibiotic therapeutics often fail in the complete treatment of infections associated with bacterial persisters and biofilms. Novel therapeutics have been attempted to tackle AMR, biofilms, and persister-associated complex infections. This review focuses on the progress in designing molecular biomaterials and therapeutics to address acquired and intrinsic AMR, and the fundamental microbiology behind biofilms and persisters. Starting with a brief introduction of AMR basics and approaches to tackling acquired AMR, the emphasis is placed on various biomaterial approaches to combating intrinsic AMR, including (1) semi-synthetic antibiotics; (2) macromolecular or polymeric biomaterials mimicking antimicrobial peptides; (3) adjuvant effects in synergy; (4) nano-therapeutics; (5) nitric oxide-releasing antimicrobials; (6) antimicrobial hydrogels; (7) antimicrobial coatings. Particularly, the structure-activity relationship is elucidated in each category of these biomaterials. Finally, illuminating perspectives are provided for the future design of molecular biomaterials to bypass AMR and cure chronic multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Md Waliullah Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States.
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
3
|
Yang Y, Zhang J, Wu S, Deng Y, Wang S, Xie L, Li X, Yang L. Exosome/antimicrobial peptide laden hydrogel wound dressings promote scarless wound healing through miR-21-5p-mediated multiple functions. Biomaterials 2024; 308:122558. [PMID: 38581764 DOI: 10.1016/j.biomaterials.2024.122558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Mesenchymal stem cell (MSC)-based therapy is an effective strategy for regenerative therapy. However, safety and ease of use are still issues to be overcome in clinical applications. Exosomes are naturally derived nanoparticles containing bioactive molecules, which serve as ideal cell-free therapeutic modalities. However, issues such as delivery, long-term preservation and activity maintenance of exosomes are other problems that limit their application. In this study, we proposed the use of rapid freeze-dry-thaw macroporous hydrogels for the encapsulation of HucMSC-derived exosomes (HucMSC-Exos) combined with an antimicrobial peptide coating. This exosome-encapsulated hyaluronic acid macroporous hydrogel HD-DP7/Exo can achieve long-term storage and transport by lyophilization and can be rapidly redissolved for treatment. After comprehensively comparing the therapeutic effects of HucMSC-Exos and HucMSC-loaded hydrogels, we found that HucMSC-Exos could also effectively regulate fibroblasts, vascular endothelial cells, and macrophages and inhibit myofibroblast-mediated fibrosis, thus promoting tissue regeneration and inhibiting scar formation in a mouse model of deep second-degree burn infection healing. These properties of lyophilized storage and whole-process-repair make HD-DP7/Exo have potential application value and application prospects.
Collapse
Affiliation(s)
- YuLing Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - JiaNi Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - SiWen Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Deng
- Hangzhou Wutong Tree Pharmaceutical Co., Ltd., Hangzhou, 310018, China
| | - ShiHan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - XiaoPeng Li
- Hangzhou Wutong Tree Pharmaceutical Co., Ltd., Hangzhou, 310018, China.
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Mutreja I, Lan C, Li Q, Aparicio C. Chemoselective Coatings of GL13K Antimicrobial Peptides for Dental Implants. Pharmaceutics 2023; 15:2418. [PMID: 37896178 PMCID: PMC10609907 DOI: 10.3390/pharmaceutics15102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Dental implant-associated infection is a clinical challenge which poses a significant healthcare and socio-economic burden. To overcome this issue, developing antimicrobial surfaces, including antimicrobial peptide coatings, has gained great attention. Different physical and chemical routes have been used to obtain these biofunctional coatings, which in turn might have a direct influence on their bioactivity and functionality. In this study, we present a silane-based, fast, and efficient chemoselective conjugation of antimicrobial peptides (Cys-GL13K) to coat titanium implant surfaces. Comprehensive surface analysis was performed to confirm the surface functionalization of as-prepared and mechanically challenged coatings. The antibacterial potency of the evaluated surfaces was confirmed against both Streptococcus gordonii and Streptococcus mutans, the primary colonizers and pathogens of dental surfaces, as demonstrated by reduced bacteria viability. Additionally, human dental pulp stem cells demonstrated long-term viability when cultured on Cys-GL13K-grafted titanium surfaces. Cell functionality and antimicrobial capability against multi-species need to be studied further; however, our results confirmed that the proposed chemistry for chemoselective peptide anchoring is a valid alternative to traditional site-unspecific anchoring methods and offers opportunities to modify varying biomaterial surfaces to form potent bioactive coatings with multiple functionalities to prevent infection.
Collapse
Affiliation(s)
- Isha Mutreja
- MDRCBB−Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, MN 55455, USA; (I.M.); (Q.L.)
| | - Caixia Lan
- MDRCBB−Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, MN 55455, USA; (I.M.); (Q.L.)
| | - Qishun Li
- MDRCBB−Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, MN 55455, USA; (I.M.); (Q.L.)
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang 330000, China
| | - Conrado Aparicio
- MDRCBB−Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, MN 55455, USA; (I.M.); (Q.L.)
- Faculty of Odontology, UIC Barcelona−International University of Catalonia, 08198 Sant Cugat del Vallès, Spain
- IBEC Institute for Bioengineering of Catalonia, 08170 Barcelona, Spain
| |
Collapse
|
5
|
Li J, Cui X, Lindberg G, Alcala-Orozco CR, Hooper GJ, Lim K, Woodfield TBF. Hybrid fabrication of photo-clickable vascular hydrogels with additive manufactured titanium implants for enhanced osseointegration and vascularized bone formation. Biofabrication 2022; 14. [PMID: 35320796 DOI: 10.1088/1758-5090/ac6051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Bone regeneration of critical-sized bone defects, bone fractures or joint replacements remains a significant unmet clinical challenge. Although there has been rapid advancement in both the fields of bone tissue engineering and additive manufacturing (AM), functional bone implants with rapid vascularization capacity to ensure osseointegration and long-term biological fixation in large bone defects remains limited in clinics. In this study, we developed an in vitro vascularized bone implant by combining cell-laden hydrogels with direct metal printed (DMP) porous titanium alloys (Ti-6Al-4V). 5wt% allylated gelatin (GelAGE), was utilized to co-encapsulate human mesenchymal stromal cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) to investigate concurrent osteogenic and vasculogenic performance. DMP macro-porous Ti-6Al-4V scaffolds were subsequently infused/enriched with cell-laden GelAGE to examine the feasibility to deliver cells and engineer vascular-like networks in the hybrid implant. Furthermore, as a proof of concept, a full-scale porous Ti-6Al-4V acetabular cup was impregnated with cell-laden hydrogel to validate the clinical potential of this strategy. The vasculogenic potential was evaluated by examining micro-capillary formation coupled with capillary network maturation and stabilization. Osteogenic differentiation was assessed via ALP activity as well as osteocalcin and osteopontin expression. Our results suggested that GelAGE supported HUVECs spreading and vascular-like network formation, along with osteogenesis of hMSCs. Titanium hybrid constructs with cell-laden hydrogel demonstrated enhanced osteogenesis with similar vasculogenic capability compared to the cell-laden hydrogel alone constructs. The full-scale implant with cell-laden hydrogel coating similarly showed cell distribution and spreading, implying the potential for further clinical application. Our study presents the feasibility of integrating bio-functional hydrogels with porous titanium implants to fabricate a vascularized hybrid construct with both mechanical support and preferable biological functionality (osteogenesis/vasculogenesis), which paves the way for improved strategies to enhance bone regeneration in complex large bone defects achieving long-term bone-implant fixation.
Collapse
Affiliation(s)
- Jun Li
- Dept. of Orthopaedic Surgery , University of Otago, 2 Riccarton Avenue, Christchurch, Christchurch, Canterbury, 8011, NEW ZEALAND
| | - Xiaolin Cui
- University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8011, NEW ZEALAND
| | - Gabriella Lindberg
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8011, NEW ZEALAND
| | - Cesar R Alcala-Orozco
- Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, 2 Riccarton Avenue, Christchurch, Christchurch, 8011, NEW ZEALAND
| | - Gary J Hooper
- Christchurch Regenerative Medicine and Tissue Engineering Group Department of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, PO Box 4345, Christchurch 8140, Christchurch, 8140, NEW ZEALAND
| | - Khoon Lim
- Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, 2 Riccarton Avenue, Christchurch, 8011, NEW ZEALAND
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering Group Department of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, PO Box 4345, Christchurch 8140, Christchurch, 8140, NEW ZEALAND
| |
Collapse
|
6
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
7
|
Ye Z, Zhu X, Mutreja I, Boda SK, Fischer NG, Zhang A, Lui C, Qi Y, Aparicio C. Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioact Mater 2021; 6:2250-2260. [PMID: 33553813 PMCID: PMC7829078 DOI: 10.1016/j.bioactmat.2020.12.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Infection in hard tissue regeneration is a clinically-relevant challenge. Development of scaffolds with dual function for promoting bone/dental tissue growth and preventing bacterial infections is a critical need in the field. Here we fabricated hybrid scaffolds by intrafibrillar-mineralization of collagen using a biomimetic process and subsequently coating the scaffold with an antimicrobial designer peptide with cationic and amphipathic properties. The highly hydrophilic mineralized collagen scaffolds provided an ideal substrate to form a dense and stable coating of the antimicrobial peptides. The amount of hydroxyapatite in the mineralized fibers modulated the rheological behavior of the scaffolds with no influence on the amount of recruited peptides and the resulting increase in hydrophobicity. The developed scaffolds were potent by contact killing of Gram-negative Escherichia coli and Gram-positive Streptococcus gordonii as well as cytocompatible to human bone marrow-derived mesenchymal stromal cells. The process of scaffold fabrication is versatile and can be used to control mineral load and/or intrafibrillar-mineralized scaffolds made of other biopolymers. A biomimetic intrafibrillar-mineralized scaffold was prepared using a non-classical pathway for mineralization. The mineralized scaffold was stably coated with designer antimicrobial peptide GL13K. The hybrid scaffold was cytocompatible and potent against biofilms of model Gram-positive and Gram-negative bacteria. The mineral content affected the rheological properties of the scaffolds, but not the loading of antimicrobial peptides.
Collapse
Affiliation(s)
- Zhou Ye
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Xiao Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Isha Mutreja
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Sunil Kumar Boda
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Anqi Zhang
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Christine Lui
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Yipin Qi
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510000, China
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| |
Collapse
|
8
|
Li J, Cui X, Hooper GJ, Lim KS, Woodfield TB. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. J Mech Behav Biomed Mater 2020; 105:103671. [DOI: 10.1016/j.jmbbm.2020.103671] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
|
9
|
Li J, Mutreja I, Tredinnick S, Jermy M, Hooper GJ, Woodfield TBF. Hydrodynamic control of titania nanotube formation on Ti-6Al-4V alloys enhances osteogenic differentiation of human mesenchymal stromal cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110562. [PMID: 32229001 DOI: 10.1016/j.msec.2019.110562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/04/2019] [Accepted: 12/14/2019] [Indexed: 01/15/2023]
Abstract
In order to obtain bioactive bone-implant interfaces with enhanced osteogenic capacity, various approaches have been developed to modify surface physicochemical properties of bio-inert titanium and titanium alloys. One promising strategy involves fabricating highly ordered nanotubes (NT) on implant surfaces via electrochemical anodization. However, few studies have applied this technique to Ti-6Al-4V alloys most commonly adopted for the fabrication of osteo-integrated surfaces on orthopedic implants. In this study, we investigated the influence of electrolyte hydrodynamics to NT fabrication on Ti-6Al-4V in ethylene glycol based electrolyte and evaluated the osteogenic differentiation capacity of human mesenchymal stromal cells (hMSCs) on different diameter NT surfaces. Computational Fluid Dynamics (CFD) analysis was used to simulate electrolyte flow profiles under various stirring conditions (e.g. stirrer bar location and flow direction) and their correlation to NT formation. Polished Ti-6Al-4V disks (240 grit) were anodized at 20 and 40 V under optimal electrolyte flow conditions for comparison of NT diameter-controlled osteogenic differentiation and mineralization potential of hMSCs over 21 days culture in osteogenic media. Ti-6Al-4V surfaces anodized with 20 and 40 V resulted with NTs diameter approx. 39 and 83 nm, respectively. Electrolyte hydrodynamics (flow profile) significantly influenced the uniformity of NT formation. Here, a uniform velocity and shear stress profile at the surface promoted homogeneous NT growth, whereas large variation in either flow velocity or shear stress to the surface impaired mature NT formation. After 21 days of culture, fluorescence staining demonstrated significantly greater osteocalcin and osteopontin expression, and increased mineralized deposits (xylenol orange staining) on fluctuating NT surfaces anodized under 20 V (Ø 39 nm) relative to flat NT layer anodized with 40 V (Ø 83 nm) and polished controls. This study provides a systematic investigation of NT formation with respect to the electrolyte hydrodynamic effects to NT growth on Ti-6Al-4V alloys, demonstrating the feasibility of a one-step anodization process for generating uniform NT under optimal hydrodynamics. Optimized wavy micro-/nano-topography with Ø 39 nm NT stimulated osteogenic differentiation capacity of hMSCs on Ti-6Al-4V alloys and confirmed the potential application of anodization to improve osteo-integrative surfaces in orthopedic implants.
Collapse
Affiliation(s)
- J Li
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - I Mutreja
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - S Tredinnick
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - M Jermy
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - G J Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - T B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand; Department of Mechanical Engineering, University of Canterbury, New Zealand; Medical Technologies Centre of Research Excellence (MedTech CoRE), New Zealand.
| |
Collapse
|