1
|
Chakrabarti A, Oladele R, Hermsen E, Novis de Figueiredo ML, Muñoz P, Johnson M. Building upon the core elements of antifungal stewardship: practical recommendations for effective antifungal stewardship in resource-limited settings. Expert Rev Anti Infect Ther 2025:1-19. [PMID: 40074556 DOI: 10.1080/14787210.2025.2479011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Despite the crucial importance of effective AFS in resource-limited settings, such settings remain comparatively underserved and underrepresented in terms of resource-setting-specific guidance and research. Further practical contextualization and application of current AFS best practices is thus necessary. AREAS COVERED A panel of leading experts from diverse countries (India, Nigeria, Spain, and the US) was brought together to provide recommendations for practical and effective implementation of AFS in resource-limited settings. We have adapted and contextualized the Centers for Disease Control and Prevention's (CDC) seven core elements and the Mycoses Study Group Education and Research Consortium's (MSGERC) recommendations for facilities in resource-limited settings through a resource-stratified approach. Where relevant to facilities based on their context and respective resources across multiple dimensions, facilities may choose to prioritize certain recommendations that may be more immediately actionable before implementing others. EXPERT OPINION We recommend future studies to examine the efficacy, cost-effectiveness, and practicality of our recommendations in resource-limited settings to enable them to effectively prioritize, channel or gradually increase resource capacity at hand. AFS interventions should be integrated within a larger systemic framework (e.g. city, state, national, regional, international) with collaboration among institutional leadership, ID specialists, healthcare workers, public, policymakers, and pharmaceutical industry.
Collapse
Affiliation(s)
| | - Rita Oladele
- College of Medicine, University of Lagos, Lagos, Nigeria
| | | | | | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Melissa Johnson
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
2
|
Denning DW, Perfect JR, Milevska-Kostova N, Haderi A, Armstrong H, Hardenberg MC, Chavez E, Altevogt B, Holmes P, Aram JA. Antifungal Policy and Practice Across Five Countries: A Qualitative Review. J Fungi (Basel) 2025; 11:162. [PMID: 39997456 PMCID: PMC11856614 DOI: 10.3390/jof11020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
The burden of invasive fungal infections (IFIs) is increasing worldwide. National, regional, and local policies on IFI management should respond to the changing landscape. We assessed antifungal policies from five countries of varying size, IFI burden, and geography: the Netherlands, Italy, South Korea, China, and India. These countries were selected as a representative sample reflecting different types of economic and health systems that patients and providers access worldwide. This assessment focused on a comprehensive range of antifungal policy elements, including recognition and prioritization, awareness and education, prevention and monitoring, diagnosis and coordinated care, access to appropriate treatment, and diagnostic and treatment innovation. Although countries in this analysis all have some form of policy for IFI management, we have identified substantial gaps, including low prioritization of IFI diagnostics, omission of fungal pathogens from antimicrobial resistance policies, and a general lack of awareness and healthcare professional (HCP) training on IFI management. The gaps identified are intended to inform HCPs and policy- and decision-makers about aspects to consider in reducing the IFI burden for patients and health systems while demonstrating responsible antifungal stewardship.
Collapse
Affiliation(s)
- David W. Denning
- Manchester Fungal Infection Group, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Neda Milevska-Kostova
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Patients for Patient Safety Observatory, Rue de Chantepoulet 10, 1201 Geneva, Switzerland
| | - Artes Haderi
- Charles River Associates, London EC2M 7EA, UK; (A.H.); (H.A.); (M.C.H.)
| | - Hannah Armstrong
- Charles River Associates, London EC2M 7EA, UK; (A.H.); (H.A.); (M.C.H.)
| | | | - Emily Chavez
- Pfizer Inc., New York, NY 10001, USA; (E.C.); (P.H.)
| | - Bruce Altevogt
- Biomerieux, 100 Rue Louis Pasteur, 69280 Marcy-l’Étoile, France;
| | | | | |
Collapse
|
3
|
Štěpánek O, Parigger M, Procházková E, Čmoková A, Kolařík M, Dračínská H, Černá V, Kalíková K, Grobárová V, Černý J, Scheler J, Schweiger G, Binder U, Baszczyňski O. Prodrugging fungicidal amphotericin B significantly decreases its toxic effects. Eur J Med Chem 2025; 283:117157. [PMID: 39673865 DOI: 10.1016/j.ejmech.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Amphotericin B (AmB) is one of the most effective antifungal drugs, with a strong, dose-dependent activity against most Candida and Aspergillus species responsible for life-threatening infections. However, AmB is severely toxic, which hinders its broad use. In this proof-of-concept study, we demonstrate that prodrugging AmB considerably decreases AmB toxicity without affecting its fungicidal activity. For this purpose, we modified the AmB structure by attaching a designer phosphate promoiety, thereby switching off its mode of action and preventing its toxic effects. The original fungicidal activity of AmB was then restored upon prodrug activation by host plasma enzymes. These AmB prodrugs showed a safer toxicity profile than commercial AmB deoxycholate in Candida and Aspergillus species and significantly prolonged larval survival of infected Galleria mellonella larvae. Based on these findings, prodrugging toxic antifungals may be a viable strategy for broadening the antifungal arsenal, opening up opportunities for targeted prodrug design.
Collapse
Affiliation(s)
- Ondřej Štěpánek
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Marie Parigger
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo Nám. 542/2, Prague, 160 00, Czech Republic
| | - Adéla Čmoková
- Institute of Microbiology, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Helena Dračínská
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Valéria Grobárová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 1594/7, Prague, 128 00, Czech Republic
| | - Jan Černý
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 1594/7, Prague, 128 00, Czech Republic
| | - Jakob Scheler
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria
| | - Gottfried Schweiger
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria
| | - Ulrike Binder
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria.
| | - Ondřej Baszczyňski
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic; Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo Nám. 542/2, Prague, 160 00, Czech Republic.
| |
Collapse
|
4
|
Souza CMD, Bezerra BT, Mellon DA, de Oliveira HC. The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100341. [PMID: 39897698 PMCID: PMC11786858 DOI: 10.1016/j.crmicr.2025.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Fungal infections kill more than 3 million people every year. This high number reflects the significant challenges that treating these diseases worldwide presents. The current arsenal of antifungal drugs is limited and often accompanied by high toxicity to patients, elevated treatment costs, increased frequency of resistance rates, and the emergence of naturally resistant species. These treatment challenges highlight the urgency of developing new antifungal therapies, which could positively impact millions of lives each year globally. Our review offers an overview of the antifungal drugs currently available for treatment, presents the status of new antifungal drugs under clinical study, and explores ahead to future candidates that aim to help address this important global health issue.
Collapse
Affiliation(s)
| | | | - Daniel Agreda Mellon
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Haroldo Cesar de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
5
|
Jia K, Zhang Y, Jiang M, Cui M, Wang J, Zhang J, Wang H, Zhao H, Li M, Zou Q, Zeng H. Dual-antigen fusion protein vaccination induces protective immunity against Candida albicans infection in mice. Hum Vaccin Immunother 2024; 20:2406065. [PMID: 39327639 PMCID: PMC11441037 DOI: 10.1080/21645515.2024.2406065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Candida albicans Is a leading cause of nosocomial bloodstream infections, particularly in immunocompromised patients. Current therapeutic strategies are insufficient, highlighting the need for effective vaccines. This study aimed to evaluate the efficacy of a dual-antigen fusion protein vaccine (AH) targeting the Als3 and Hyr1 proteins of C. albicans, using AlPO4 as an adjuvant. The AH vaccine was constructed by fusing Als317-432 and Hyr125-350 proteins, and its immunogenicity was tested in BALB/c mice and New Zealand white rabbits. Mice received three intramuscular doses of the vaccine combined with AlPO4, followed by a lethal challenge with C. albicans SC5314. Survival rates, antibody responses, cytokine production, fungal burdens, and organ pathology were assessed. The vaccine's efficacy was also validated using rabbit serum. Mice vaccinated with the AH-AlPO4 combination exhibited significantly higher antibody titers, particularly IgG and its subclasses, compared to controls (p < .001). The survival rate of vaccinated mice was 80% post-infection, significantly higher than the control group (p < .01). Vaccinated mice showed reduced fungal loads in the blood, kidneys, spleen, and liver (p < .05). Increased levels of interferon gamma and interleukin (IL)-17A were observed, indicating robust T helper (Th) 1 and Th17 cell responses. Vaccination mitigated organ damage, with kidney and liver pathology scores significantly lower than those of unvaccinated mice (p < .05). Rabbit serum with polyclonal antibodies demonstrated effective antifungal activity, confirming vaccine efficacy across species. The AH-AlPO4 vaccine effectively induced strong immune responses, reduced fungal burden, and protected against organ pathology in C. albicans infections. These findings support further development of dual-antigen vaccine strategies.
Collapse
Affiliation(s)
- Keran Jia
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Yanhao Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Mengyu Jiang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Mengge Cui
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Jia Wang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Jiajia Zhang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Hua Wang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Huihai Zhao
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Mengyan Li
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Brittin NJ, Aceti DJ, Braun DR, Anderson JM, Ericksen SS, Rajski SR, Currie CR, Andes DR, Bugni TS. Dereplication of Natural Product Antifungals via Liquid Chromatography-Tandem Mass Spectrometry and Chemical Genomics. Molecules 2024; 30:77. [PMID: 39795134 PMCID: PMC11721837 DOI: 10.3390/molecules30010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
Recently expanded reports of multidrug-resistant fungal infections underscore the need to develop new and more efficient methods for antifungal drug discovery. A ubiquitous problem in natural product drug discovery campaigns is the rediscovery of known compounds or their relatives; accordingly, we have integrated Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for structural dereplication and Yeast Chemical Genomics for bioprocess evaluation into a screening platform to identify such compounds early in the screening process. We identified 450 fractions inhibiting Candida albicans and the resistant strains of C. auris and C. glabrata among more than 40,000 natural product fractions. LC-MS/MS and chemical genomics were then used to identify those with known chemistry and mechanisms of action. The parallel deployment of these orthogonal methods improved the detection of unwanted compound classes over the methods applied individually.
Collapse
Affiliation(s)
- Nathaniel J. Brittin
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Aceti
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Josephine M. Anderson
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Spencer S. Ericksen
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Cameron R. Currie
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David R. Andes
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, WI 53705, USA
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| |
Collapse
|
7
|
Mustafa ZU, Suleman A, Masood MF, Salman M, Nazir A, Mallhi TH, Khan YH, Mudenda S, Meyer JC, Godman B, Seaton RA. Predictors and outcomes of patients with COVID-19 admitted to intensive care units in Pakistan and the development of nosocomial fungal infections: Findings and implications. IJID REGIONS 2024; 13:100445. [PMID: 39435376 PMCID: PMC11492131 DOI: 10.1016/j.ijregi.2024.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024]
Abstract
Objectives Patients with COVID-19 admitted to intensive care units (ICUs) typically have many complications and co-morbidities, including secondary bacterial and fungal infections, which increase morbidity and mortality. The first step to address this is to measure the prevalence rates, predictors of fungal infections, and outcomes of patients with COVID-19 admitted to ICUs in Pakistan. Methods Retrospective review of medical records of patients admitted with COVID-19 to the ICUs of six tertiary care hospitals in Pakistan between March 2020 and June 2023. Results A total of 636 patients were included; 68.9% were aged ≥50 years and 62.6% were male. Diabetes mellitus was the commonest co-morbidity (23.7%). A total of 67.8% of patients had severe COVID-19, with 23% critical cases. Antibiotics and antipyretics (all patients) were the most frequently prescribed medicines, along with corticosteroids (72.5%). A total of 63 nosocomial fungal infections developed in 53 patients, with mechanical ventilation and tracheal intubation being significant predictors of secondary fungal infections among patients with COVID-19. The mortality rate was 4.9%, with secondary fungal infections significantly associated with higher mortality. Conclusions Approximately 8% of patients with COVID-19 admitted to the ICUs of tertiary developed secondary fungal infections associated with greater mortality. The key factors associated with secondary fungal infections need to be carefully monitored to reduce future mortality in these patients. We will continue to monitor the situation.
Collapse
Affiliation(s)
- Zia Ul Mustafa
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- Department of Pharmacy Services, District Headquarter (DHQ) Hospital, Pakpattan, Pakistan
| | - Aneeqa Suleman
- Department of Medicine, Tehsil Head Quarter Hospital, Darya Khan, District Bhakkar, Pakistan
| | | | - Muhammad Salman
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Aftab Nazir
- Department of Community Medicine, Niazi Medical and Dental College, Sargodha, Pakistan
| | - Tauqeer Hussain Mallhi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Yusra Habib Khan
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Johanna C. Meyer
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- South African Vaccination and Immunisation Centre, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Brian Godman
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- Strathclyde Institute of Pharmacy and Biomedical Science (SIPBS), University of Strathclyde, Glasgow, UK
| | - R. Andrew Seaton
- Queen Elizabeth University Hospital, Glasgow, UK
- Scottish Antimicrobial Prescribing Group, Healthcare Improvement Scotland, Glasgow, UK
| |
Collapse
|
8
|
Wolfgruber S, Salmanton-García J, Kuate MPN, Hoenigl M, Brunelli JGP. Antifungal pipeline: New tools for the treatment of mycoses. Rev Iberoam Micol 2024; 41:68-78. [PMID: 40023755 DOI: 10.1016/j.riam.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/16/2024] [Accepted: 11/29/2024] [Indexed: 03/04/2025] Open
Abstract
Fungal infections are becoming an escalating public health challenge, particularly among immunocompromised individuals. The partially limited efficacy of current antifungal treatments, their potential adverse effects, and the increasing problem of resistance emphasize the need for new treatment options. Existing antifungal classes-allylamines, azoles, echinocandins, polyenes, and pyrimidine analogs-face challenges due to their similarity with human cells and rising resistance. New antifungal agents, such as ibrexafungerp, rezafungin, oteseconazole, and miltefosine, offer novel mechanisms of action along with reduced toxicity. While antifungal resistance is a growing global concern, fungal infections in low- and middle-income countries (LMICs) present specific challenges with high rates of opportunistic infections like cryptococcosis and endemic mycoses such as histoplasmosis. The World Health Organization's fungal priority pathogens list highlights the prevalence of these infections in LMICs, where limited access to antifungal drugs and misuse are common. This review provides a comprehensive overview of these new agents and their mechanisms, and explores the challenges and roles of antifungal drugs in LMICs, where the burden of fungal infections is high. Continued research and development are essential to address the rising incidence and resistance of fungal infections globally.
Collapse
Affiliation(s)
- Stella Wolfgruber
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria; Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria.
| | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria; Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | | |
Collapse
|
9
|
Sathiyamoorthy J, Rathore SS, Mohan S, Uma Maheshwari C, Ramakrishnan J. Elucidation of furanone as ergosterol pathway inhibitor in Cryptococcus neoformans. J Biomol Struct Dyn 2024; 42:6013-6026. [PMID: 37403490 DOI: 10.1080/07391102.2023.2230301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
In the era of antiretroviral therapy, the prevalence of Cryptococcal infection among HIV patients in developed countries has decreased considerably. However, C. neoformans ranks top among the critical priority pathogen that affects a wide range of immunocompromised individuals. The threat of C. neoformans is because of its incredibly multifaceted intracellular survival capabilities. Cell membrane sterols especially ergosterol and enzymes of its biosynthetic pathway are considered fascinating drug targets because of their structural stability. In this study, the ergosterol biosynthetic enzymes were modeled and docked with furanone derivatives. Among the tested ligands Compound 6 has shown a potential interaction with Lanosterol 14 α-demethylase. This best-docked protein-ligand complex was taken further to molecular dynamics simulation. In addition, Compound 6 was synthesized and an in vitro study was conducted to quantify the ergosterol in Compound 6 treated cells. Altogether the computational and in vitro study demonstrates that Compound 6 has anticryptococcal activity by targeting the biosynthetic pathway of ergosterol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jananishree Sathiyamoorthy
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Suma Mohan
- Computational Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - C Uma Maheshwari
- Organic Synthesis Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Jayapradha Ramakrishnan
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
10
|
Soto ER, Rus F, Ostroff GR. Yeast Particle Encapsulation of Azole Fungicides for Enhanced Treatment of Azole-Resistant Candida albicans. J Funct Biomater 2024; 15:203. [PMID: 39194641 DOI: 10.3390/jfb15080203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Addressing the growing problem of antifungal resistance in medicine and agriculture requires the development of new drugs and strategies to preserve the efficacy of existing fungicides. One approach is to utilize delivery technologies. Yeast particles (YPs) are 3-5 µm porous, hollow microspheres, a byproduct of food-grade Saccharomyces cerevisiae yeast extract manufacturing processes and an efficient and flexible drug delivery platform. Here, we report the use of YPs for encapsulation of tetraconazole (TET) and prothioconazole (PRO) with high payload capacity and stability. The YP PRO samples were active against both sensitive and azole-resistant strains of Candida albicans. The higher efficacy of YP PRO versus free PRO is due to interactions between PRO and saponifiable lipids in the YPs. Encapsulation of PRO in glucan lipid particles (GLPs), a highly purified form of YPs that do not contain saponifiable lipids, did not result in enhanced PRO activity. We evaluated the co-encapsulation of PRO with a mixture of the terpenes: geraniol, eugenol, and thymol. Samples co-encapsulating PRO and terpenes in YPs or GLPs were active on both sensitive and azole-resistant C. albicans. These approaches could lead to the development of more effective drug combinations co-encapsulated in YPs for agricultural or GLPs for pharmaceutical applications.
Collapse
Affiliation(s)
- Ernesto R Soto
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Florentina Rus
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gary R Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Liu T, Pyle AM. Highly Reactive Group I Introns Ubiquitous in Pathogenic Fungi. J Mol Biol 2024; 436:168513. [PMID: 38447889 DOI: 10.1016/j.jmb.2024.168513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Systemic fungal infections are a growing public health threat, and yet viable antifungal drug targets are limited as fungi share a similar proteome with humans. However, features of RNA metabolism and the noncoding transcriptomes in fungi are distinctive. For example, fungi harbor highly structured RNA elements that humans lack, such as self-splicing introns within key housekeeping genes in the mitochondria. However, the location and function of these mitochondrial riboregulatory elements has largely eluded characterization. Here we used an RNA-structure-based bioinformatics pipeline to identify the group I introns interrupting key mitochondrial genes in medically relevant fungi, revealing their fixation within a handful of genetic hotspots and their ubiquitous presence across divergent phylogenies of fungi, including all highest priority pathogens such as Candida albicans, Candida auris, Aspergillus fumigatus and Cryptococcus neoformans. We then biochemically characterized two representative introns from C. albicans and C. auris, demonstrating their exceptionally efficient splicing catalysis relative to previously-characterized group I introns. Indeed, the C. albicans mitochondrial intron displays extremely rapid catalytic turnover, even at ambient temperatures and physiological magnesium ion concentrations. Our results unmask a significant new set of players in the RNA metabolism of pathogenic fungi, suggesting a promising new type of antifungal drug target.
Collapse
Affiliation(s)
- Tianshuo Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Mudenda S, Matafwali SK, Mukosha M, Daka V, Chabalenge B, Chizimu J, Yamba K, Mufwambi W, Banda P, Chisha P, Mulenga F, Phiri M, Mfune RL, Kasanga M, Sartelli M, Saleem Z, Godman B. Antifungal resistance and stewardship: a knowledge, attitudes and practices survey among pharmacy students at the University of Zambia; findings and implications. JAC Antimicrob Resist 2023; 5:dlad141. [PMID: 38130703 PMCID: PMC10733812 DOI: 10.1093/jacamr/dlad141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Antifungal resistance (AFR) is a growing global public health concern. Little is currently known about knowledge, attitudes and practices regarding AFR and antifungal stewardship (AFS) in Zambia, and across the globe. To address this evidence gap, we conducted a study through a questionnaire design starting with pharmacy students as they include the next generation of healthcare professionals. Methods A cross-sectional study among 412 pharmacy students from June 2023 to July 2023 using a structured questionnaire. Multivariable analysis was used to determine key factors of influence. Results Of the 412 participants, 55.8% were female, with 81.6% aged between 18 and 25 years. Most students had good knowledge (85.9%) and positive attitudes (86.7%) but sub-optimal practices (65.8%) towards AFR and AFS. Overall, 30.2% of students accessed antifungals without a prescription. Male students were less likely to report a good knowledge of AFR (adjusted OR, AOR = 0.55, 95% CI: 0.31-0.98). Similarly, students residing in urban areas were less likely to report a positive attitude (AOR = 0.35, 95% CI: 0.13-0.91). Fourth-year students were also less likely to report good practices compared with second-year students (AOR = 0.48, 95% CI: 0.27-0.85). Conclusions Good knowledge and positive attitudes must translate into good practices toward AFR and AFS going forward. Consequently, there is a need to provide educational interventions where students have low scores regarding AFR and AFS. In addition, there is a need to implement strategies to reduce inappropriate dispensing of antifungals, especially without a prescription, to reduce AFR in Zambia.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Moses Mukosha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Victor Daka
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola PO Box 71191, Zambia
| | - Billy Chabalenge
- Department of Medicines Control, Zambia Medicines Regulatory Authority, Lusaka PO Box 31890, Zambia
| | - Joseph Chizimu
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| | - Kaunda Yamba
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| | - Webrod Mufwambi
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Patrick Banda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Patience Chisha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Florence Mulenga
- Conservation Department, World Wide Fund For Nature (WWF Zambia Country Office), Lusaka PO Box 50551, Zambia
| | - McLawrence Phiri
- Department of Pharmacy, Maina Soko Medical Center, Woodlands, Lusaka PO Box 320091, Zambia
| | - Ruth Lindizyani Mfune
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Maisa Kasanga
- Department of Epidemiology and Biostatistics, Zhengzhou University, College of Public Health, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | | | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Brian Godman
- School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria 0208, South Africa
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow G4 0RE, UK
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| |
Collapse
|
13
|
Reguera-Gomez M, Dores MR, Martinez LR. Innovative and potential treatments for fungal central nervous system infections. Curr Opin Microbiol 2023; 76:102397. [PMID: 37898052 DOI: 10.1016/j.mib.2023.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/30/2023]
Abstract
Fungal infections of the central nervous system (FI-CNS) are a problematic and important medical challenge considering that those most affected are immunocompromised. Individuals with systemic cryptococcosis (67-84%), candidiasis (3-64%), blastomycosis (40%), coccidioidomycosis (25%), histoplasmosis (5-20%), mucormycosis (12%), and aspergillosis (4-6%) are highly susceptible to develop CNS involvement, which often results in high mortality (15-100%) depending on the mycosis and the affected immunosuppressed population. Current antifungal drugs are limited, prone to resistance, present host toxicity, and show reduced brain penetration, making FI-CNS very difficult to treat. Given these limitations and the rise in FI-CNS, there is a need for innovative strategies for therapeutic development and treatments to manage FI-CNS in at-risk populations. Here, we discuss standards of care, antifungal drug candidates, and novel molecular targets in the blood-brain barrier, which is a protective structure that regulates movement of particles in and out of the brain, to prevent and combat FI-CNS.
Collapse
Affiliation(s)
- Marta Reguera-Gomez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Michael R Dores
- Department of Biology, Hofstra University, Hempstead, NY, USA
| | - Luis R Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Center for Immunology and Transplantation, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Starosta R, de Almeida RFM, Puchalska M, Suchodolski J, Derkacz D, Krasowska A. Anticandidal Cu(I) complexes with neocuproine and 1-(4-methoxyphenyl)piperazine based diphenylaminomethylphosphine: Is Cu-diimine moiety a pharmacophore? J Inorg Biochem 2023; 248:112355. [PMID: 37579689 DOI: 10.1016/j.jinorgbio.2023.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
The studies on metal complexes as potential antifungals are of growing interest because they may be the answer to increasingly effective defense mechanisms. Herein we present two new copper(I) iodide or thiocyanide complexes with 2,9-dimethyl-1,10-phenanthroline (dmp) and diphenylphosphine derivative of 1-(4-methoxyphenyl)piperazine (4MP): [CuI(dmp)4MP] (1-4MP) and [CuNCS(dmp)4MP] (2-4MP) - their synthesis, as well as structural and spectroscopic characteristics. Interestingly, while 4MP and its oxide derivative (4MOP) show a very low or no activity against all tested Candida albicans strains (MIC50 ≥ 200 μM against CAF2-1 - laboratory control strain, DSY1050 - mutant without transporters Cdr1, Cdr2, Mdr1; isogenic for CAF2-1, and fluconazole resistant clinical isolates), for 1-4MP and 2-4MP MIC50 values were 0.4 μM, independently on the complex and strain tested. Determination of the viability of NHDF-Ad (Normal Adult Human Dermal Fibroblasts) cell line treated with 1-4MP and 2-4MP showed that for both complexes there was only a 20% reduction in the concentration range ¼ to 2 × MIC50 and the 70% at 4 × MIC50. Subsequently, the MLCT based luminescence of the complexes in aqueous media allowed to record the confocal micrographs of 1-4MP in the cells. The results show that it is situated most likely in the vacuoles (C. albicans) or lysosomes (NHDF-Ad).
Collapse
Affiliation(s)
- Radosław Starosta
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Małgorzata Puchalska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Jakub Suchodolski
- Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63, 51-148 Wrocław, Poland; Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Daria Derkacz
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Anna Krasowska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| |
Collapse
|
15
|
Zhang JY, Wang YT, Sun L, Wang SQ, Chen ZS. Synthesis and clinical application of new drugs approved by FDA in 2022. MOLECULAR BIOMEDICINE 2023; 4:26. [PMID: 37661221 PMCID: PMC10475455 DOI: 10.1186/s43556-023-00138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
The pharmaceutical industry had a glorious year in 2022, with a total of 37 new drugs including 20 new chemical entities (NCEs) and 17 new biological entities (NBEs) approved by the Food and Drug Administration (FDA). These drugs are mainly concentrated in oncology, central nervous system, antiinfection, hematology, cardiomyopathy, dermatology, digestive system, ophthalmology, MRI enhancer and other therapeutic fields. Of the 37 drugs, 25 (68%) were approved through an expedited review pathway, and 19 (51%) were approved to treat rare diseases. These newly listed drugs have unique structures and new mechanisms of action, which can serve as lead compounds for designing new drugs with similar biological targets and enhancing therapeutic efficacy. This review aims to outline the clinical applications and synthetic methods of 19 NCEs newly approved by the FDA in 2022, but excludes contrast agent (Xenon Xe-129). We believe that an in-depth understanding of the synthetic methods of drug molecules will provide innovative and practical inspiration for the development of new, more effective, and practical synthetic techniques. According to the therapeutic areas of these 2022 FDA-approved drugs, we have classified these 19 NCEs into seven categories and will introduce them in the order of their approval for marketing.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lu Sun
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
- Zhongshan Hospital Affiliated to Dalian University, Dalian, 116001, China.
| | - Sai-Qi Wang
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|