1
|
Li N, Liu B, Zhang Z, Feng Y, Wang Z, Arramel A, Zhou X, Li X. Unveiling the electrochemical nitrogen reduction reaction mechanism in heteroatom-decorated-Mo 2CS 2-MXene: the synergistic effect of single-atom Fe and heteroatom. MATERIALS HORIZONS 2025; 12:2945-2956. [PMID: 39851004 DOI: 10.1039/d4mh01568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Conversion of nitrogen (N2) to ammonia (NH3) is a significant process that occurs in environment and in the field of chemistry, but the traditional NH3 synthesis method requires high energy and pollutes the environment. In this work, the charge, orbital and spin order of the single-atom Fe loaded on heteroatom (X) doped-Mo2CS2 (X = B, N, O, F, P and Se) and its synergistic effect on electrochemical nitrogen reduction reaction (eNRR) were investigated using well-defined density functional theory (DFT) calculations. Results revealed that the X-element modified the charge loss capability of Fe atoms and thereby introduced a net spin through heteroatom doping, resulting in the magnetic moment modulation of Fe. Upon incorporating N2 molecule vertically into Fe@P-doped-Mo2CS2, the strongest eNRR performance and activation ability for the NN were achieved. This was due to the 1πu antibonding orbitals being filled with extra charges from Fe atoms and the σ2s bonding orbitals experiencing a splitting phenomenon as a result of net spin injection from P atoms. Thus, this work provides rational design principles for the development of non-noble metal eNRR electrocatalysts by ingeniously manipulating their spin order and local environments.
Collapse
Affiliation(s)
- Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, China
| | - Bin Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
| | - Zhongyong Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
| | - Yucheng Feng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Zheng Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
| | - Arramel Arramel
- Nano Center Indonesia, Jalen Raya PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia
| | - Xing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Xin Li
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
2
|
Li M, Qi C, Xu J, Zou R, Wang L, Jiang W, Fan Y, Qiu P, Luo W. Integrated Three-in-one to Boost Nitrate Electroreduction to Ammonia Utilizing a 1D Mesoporous Carbon Cascade Nanoreactor. ACS NANO 2025; 19:11309-11322. [PMID: 40064864 DOI: 10.1021/acsnano.5c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The electrochemical reduction of nitrate (NO3-) offers a promising waste-to-value strategy for synthesizing ammonia (NH3), yet it involves a complex multi-interface system with several stages such as mass transport, species enrichment, and interfacial transformation. This complexity necessitates catalysts with diverse structural characteristics across multiple temporal and spatial scales. Herein, a three-in-one nanoreactor system is designed with 1D geometry, open mesochannels, and synergistic active sites for optimized NH3 synthesis. Guided by finite element simulations, a 1D mesoporous carbon carrier is engineered to create a distinctive microenvironment that enhances NO3- transfer and adsorption while confining reaction intermediates. Meanwhile, iron single atomic sites (Fe-N4 SAs) and iron nanoclusters (Fe4 NCs) are embedded in situ into the carbon carrier, yielding an efficient cascade nanoreactor. This design demonstrates large Faraday efficiencies, rapid NO3- removal rates, and impressive NH3 yield rates under both neutral and alkaline conditions. Detailed in situ experimental results and theoretical analysis reveal that Fe-N4 SAs and Fe4 NCs can adapt their electronic structures in tandem, allowing the Fe-N4 SAs to effectively reduce NO3- and Fe4 NCs to oxidize H2O. As a demonstration, the assembled Zn-NO3- battery achieves a power density of 20.12 mW cm-2 coupled with excellent rechargeability.
Collapse
Affiliation(s)
- Minghao Li
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Chunhong Qi
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Jingsan Xu
- School of Chemistry and Physics & Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Rujia Zou
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Lianjun Wang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Wan Jiang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Yuchi Fan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Pengpeng Qiu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Wei Luo
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Xie L, Zhou W, Qu Z, Huang Y, Li L, Yang C, Li J, Meng X, Sun F, Gao J, Zhao G. Edge-doped substituents as an emerging atomic-level strategy for enhancing M-N 4-C single-atom catalysts in electrocatalysis of the ORR, OER, and HER. NANOSCALE HORIZONS 2025; 10:322-335. [PMID: 39552526 DOI: 10.1039/d4nh00424h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
M-N4-C single-atom catalysts (MN4) have gained attention for their efficient use at the atomic level and adjustable properties in electrocatalytic reactions like the ORR, OER, and HER. Yet, understanding MN4's activity origin and enhancing its performance remains challenging. Edge-doped substituents profoundly affect MN4's activity, explored in this study by investigating their interaction with MN4 metal centers in ORR/OER/HER catalysis (Sub@MN4, Sub = B, N, O, S, CH3, NO2, NH2, OCH3, SO4; M = Fe, Co, Ni, Cu). The results show overpotential variations (0 V to 1.82 V) based on Sub and metal centers. S and SO4 groups optimize FeN4 for peak ORR activity (overpotential at 0.48 V) and reduce OER overpotentials for NiN4 (0.48 V and 0.44 V). N significantly reduces FeN4's HER overpotential (0.09 V). Correlation analysis highlights the metal center's key role, with ΔG*H and ΔG*OOH showing mutual predictability (R2 = 0.92). Eg proves a reliable predictor for Sub@CoN4 (ΔG*OOH/ΔG*H, R2 = 0.96 and 0.72). Machine learning with the KNN model aids catalyst performance prediction (R2 = 0.955 and 0.943 for ΔG*OOH/ΔG*H), emphasizing M-O/M-H and the d band center as crucial factors. This study elucidates edge-doped substituents' pivotal role in MN4 activity modulation, offering insights for electrocatalyst design and optimization.
Collapse
Affiliation(s)
- Liang Xie
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Yuming Huang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Longhao Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Chaowei Yang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Junfeng Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Fei Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Guangbo Zhao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| |
Collapse
|
4
|
Li H, Li H, Du M, Zhou E, Leow WR, Liu M. A perspective on field-effect in energy and environmental catalysis. Chem Sci 2025; 16:1506-1527. [PMID: 39759941 PMCID: PMC11694487 DOI: 10.1039/d4sc07740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO2 reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling. Field-effect catalysis offers multiple advantages, such as enhancing localized reactant concentration, facilitating mass transfer, improving reactant adsorption, modifying electronic excitation and work functions, and enabling efficient charge transfer and separation. This review begins by defining and classifying field effects in catalysis, followed by an in-depth discussion on their roles and potential to guide further exploration of field-effect catalysis. To elucidate the theory-structure-activity relationship, we explore corresponding reaction mechanisms, modification strategies, and catalytic properties, highlighting their relevance to sustainable energy and environmental catalysis applications. Lastly, we offer perspectives on potential challenges that field-effect catalysis may face, aiming to provide a comprehensive understanding and future direction for this emerging area.
Collapse
Affiliation(s)
- HuangJingWei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
| | - Mengzhen Du
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 P. R. China
- College of Chemical and Materials Engineering, Xuchang University Xuchang Henan 461000 P. R. China
| | - Erjun Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 P. R. China
| | - Wan Ru Leow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
| |
Collapse
|
5
|
Yan D, Kong L, Xu B, Yang B. One-Step Synthesis Strategy for a Platinum-Based Alloy Catalyst Designed via Crystal-Structure Prediction. Molecules 2024; 29:5634. [PMID: 39683794 DOI: 10.3390/molecules29235634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
The industrial application of polymer electrolyte membrane fuel cells is limited by the high cost of platinum catalysts. In this study, we developed a one-step synthesis strategy for low-platinum alloy catalysts based on crystal-structure predictions. Using this method, we successfully prepared a low-platinum alloy catalyst, i.e., CaPt2, which exhibits the same structure as its theoretically predicted counterpart in a single step via arc melting. There was no hazardous waste emission during the preparation of the alloy catalyst. Electrons were successfully enriched on the surfaces of platinum atoms, and the electronic structures of the platinum atoms were adjusted. The migration of oxygen intermediates during oxygen reduction was determined via an extensive oxygen-intermediate adsorption site test. The reaction path for the oxygen reduction process was determined. Electronic-structure analysis revealed the interaction mechanism between the oxygen intermediate and the platinum atom on the catalyst surface. The incorporation of calcium atoms into the alloy catalyst effectively improved the adsorption/dissociation state of the oxygen intermediates on the catalyst surface. Meanwhile, the molar fraction of platinum atoms in the CaPt2 alloy catalyst reduced by 33%, thus decreasing the feedstock cost of the catalyst. The double reduction in raw materials and manufacturing costs is conducive to the popularization and application of alloy catalysts. This study provides a reference for the design and production of other functional catalysts.
Collapse
Affiliation(s)
- Dengjie Yan
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Lingxin Kong
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Baoqiang Xu
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Bin Yang
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
6
|
Shen M, Liu Q, Sun J, Liang C, Xiong C, Hou C, Huang J, Cao L, Feng Y, Shang Z. Vapor deposition strategy for implanting isolated Fe sites into papermaking nanofibers-derived N-doped carbon aerogels for liquid Electrolyte-/All-Solid-State Zn-Air batteries. J Colloid Interface Sci 2024; 673:453-462. [PMID: 38878379 DOI: 10.1016/j.jcis.2024.06.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/26/2024]
Abstract
Single-atom catalysts (SACs), with precisely controlled metal atom distribution and adjustable coordination architecture, have gained intensive concerns as efficient oxygen reduction reaction (ORR) electrocatalysts in Zn-air batteries (ZAB). The attainment of a monodispersed state for metallic atoms anchored on the carbonaceous substrate remains the foremost research priority; however, the persistent challenges lie in the relatively weak metal-support interactions and the instability of captured single atom active sites. Furthermore, in order to achieve rapid transport of O2 and other reactive substances within the carbon matrix, manufacturing SACs based on multi-stage porous carbon substrates is highly anticipated. Here, we propose a methodology for the fabrication of carbon aerogels (CA)-supported SACs utilizing papermaking nanofibers, which incorporates advanced strategies for N-atom self-doping, defect/vacancy introduction, and single-atom interface engineering. Specifically, taking advantages of using green and energy-efficient feedstocks, combining with a direct pore-forming template volatilization and chemical vapor deposition approach, we successfully developed N-doped carbon aerogels immobilized with separated iron sites (Fe-SAC@N/CA-Cd). The obtained Fe-SAC@N/CA-Cd exhibited substantially large specific surface area (SBET = 1173 m2/g) and a multi-level pore structure, which can effectively mitigate the random aggregation of Fe atoms during pyrolysis. As a result, it demonstrated appreciable activity and stability in catalyzing the ORR progress (E1/2 = 0.88 V, Eonset = 0.96 V). Furthermore, the assembled liquid electrolyte-state Zn-air batteries (LES-ZAB) and all-solid-state Zn-air battery (ASS-ZAB) also provides encouraging performance, with a peak power density of 169 mW cm-2 for LES-ZAB and a maximum power density of 124 mW cm-2 for ASS-ZAB.
Collapse
Affiliation(s)
- Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Qingqing Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaojiao Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chanjuan Liang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chuanyin Xiong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chen Hou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liyun Cao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhen Shang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Sun S, Zhang Y, Shi X, Sun W, Felser C, Li W, Li G. From Charge to Spin: An In-Depth Exploration of Electron Transfer in Energy Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312524. [PMID: 38482969 DOI: 10.1002/adma.202312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/24/2024] [Indexed: 05/01/2024]
Abstract
Catalytic materials play crucial roles in various energy-related processes, ranging from large-scale chemical production to advancements in renewable energy technologies. Despite a century of dedicated research, major enduring challenges associated with enhancing catalyst efficiency and durability, particularly in green energy-related electrochemical reactions, remain. Focusing only on either the crystal structure or electronic structure of a catalyst is deemed insufficient to break the linear scaling relationship (LSR), which is the golden rule for the design of advanced catalysts. The discourse in this review intricately outlines the essence of heterogeneous catalysis reactions by highlighting the vital roles played by electron properties. The physical and electrochemical properties of electron charge and spin that govern catalysis efficiencies are analyzed. Emphasis is placed on the pronounced influence of external fields in perturbing the LSR, underscoring the vital role that electron spin plays in advancing high-performance catalyst design. The review culminates by proffering insights into the potential applications of spin catalysis, concluding with a discussion of extant challenges and inherent limitations.
Collapse
Affiliation(s)
- Shubin Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xin Shi
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Chemical Engineering, Ningbo University, 818 A Fenghua Rd, Jiangbei District, Ningbo, 315211, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Claudia Felser
- Topological Quantum Chemistry, Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
8
|
Xu Q, Hu J, Yao H, Lei J, Zhou C, Zhang L, Pang H. Pyridinic-N Regulated Electron Injection to Modulate *OH Adsorption at Fe-N-C Sites for an Efficient Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42352-42362. [PMID: 39080825 DOI: 10.1021/acsami.4c10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
To enhance the efficiency of oxygen reduction reaction (ORR) catalysts, precise control over the adsorption/desorption energy barriers of oxygen intermediates at atomically dispersed Fe-N-C sites is essential yet challenging. Addressing this, we employed a pyrolysis approach using a nitrogen-containing polymer to fabricate Fe single-atom (SA) catalysts embedded in a pyridinic-N enriched carbon matrix. This synthesis strategy yielded Fe SAs that demonstrated a superior electrochemical ORR performance, evidenced by an impressive half-wave potential of 0.941 V and a high limiting current density of 5.72 mA/cm2. Moreover, when applied in homemade Zn-air batteries, this premier catalyst exhibited exceptional specific capacity (720 mAh/gZn), peak power density (253 mW/cm2), and notable long-term stability. Theoretical insights revealed that the increased pyridinic-N content in the catalyst facilitated efficient electron transfer from N atoms to the Fe active sites, thus fine-tuning the d-band center and effectively controlling the adsorption energy barrier of *OH species. These mechanisms synergistically improve the ORR performance. Crucially, this fabrication method shows promise for adaptation to other transition metal-based SAs, including Co, Ni, and Cu, potentially establishing a versatile synthesis route for developing atomically dispersed catalyst systems in future applications.
Collapse
Affiliation(s)
- Qiaoling Xu
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Jinsong Hu
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei Anhui 230031, PR China
| | - Huiying Yao
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Jie Lei
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Chunhui Zhou
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Lei Zhang
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, PR China
| |
Collapse
|
9
|
Liu L, Sun X, Li Y, Zhang XD. Nonmetal Doping Modulates Fe Single-Atom Catalysts for Enhancement in Peroxidase Mimicking via Symmetry Disruption, Distortion, and Charge Transfer. ACS OMEGA 2024; 9:35144-35153. [PMID: 39157134 PMCID: PMC11325499 DOI: 10.1021/acsomega.4c04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Developing biomimetic catalysts with excellent peroxidase (POD)-like activity has been a long-standing goal for researchers. Doping nonmetallic atoms with different electronegativity to boost the POD-like activity of Fe-N-C single-atom catalysts (SACs) has been successfully realized. However, the introduction of heteroatoms to regulate the coordination environment of the central Fe atom and thus influence the activation of the H2O2 molecule in the POD-like reaction has not been extensively explored. Herein, the effect of different doping sites and numbers of heteroatoms (P, S, B, and N) on the adsorption and activation of H2O2 molecules of Fe-N sites is thoroughly investigated by density functional theory (DFT) calculations. In general, alternation in the catalytic efficiency directly depends on the transfer of electrons and the geometrical shifts near the Fe-N site. First, the symmetry disruption of the Fe-N4 site by P, S, and B doping is beneficial to the activation of H2O2 due to a significant reduction in the adsorption energies. In some cases, without Fe-N4 site disruption, the configurations fail to modulate the adsorption behavior of H2O2. Second, Fe-N-P/S configurations exhibit a stronger affinity for H2O2 molecules due to the significant out-of-plane distortions induced by larger atomic radii of P and S. Moreover, the synergistic effects of Fe and doping atoms P, S, and B with weaker electronegativity than that of N atoms promote electron donation to generated oxygen-containing intermediates, thus facilitating subsequent electron transfer with other substrates. This work demonstrates the critical role of tuning the coordinating environment of Fe-N active centers by heteroatom doping and provides theoretical guidance for controlling the types by breaking the symmetry of SACs to achieve optimal POD-like catalytic activity and selectivity.
Collapse
Affiliation(s)
- Ling Liu
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xin Sun
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yonghui Li
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
10
|
Fang SY, Chen YJ, Chen WX, Zhuang GL. Magnetic Order Transition of a Two-Dimensional Square-Lattice Electrocatalyst Assembled by Fe-N 4 Units: Crucial Role on Oxygen Reduction. J Phys Chem Lett 2024; 15:5887-5895. [PMID: 38804881 DOI: 10.1021/acs.jpclett.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Herein, we theoretically investigate the effect of magnetic orders on electrocatalytic oxygen reduction reaction (ORR) properties on the Fe-N4 site-embedded two-dimensional (2D) covalent organic framework (Fe-N4@COF-C3N2) under realistic environments. The Fe-N4@COF-C3N2 shows a 2D square-lattice (sql) topology with three magnetic order states: one ferromagnetic state (FM) and two antiferromagnetic states (AFM1 and AFM2). Specially, the electrocatalyst in the AFM2 state shows a remarkable onset potential of 0.80 V/reversible hydrogen electrode (RHE) at pH 1, superior to the existing most excellent noble-metal catalysts. Thermodynamically, the onset potential for the 4e- ORR is 0.64 V/RHE at pH 1, with a magnetic state transition process of FM → AFM1 → FM → FM → FM, while at pH 13, the onset potential for the 4e- ORR is 0.54 V/RHE, with the magnetic transition process of FM → FM → AFM1 → FM → FM. Generally, this finding will provide new avenues to rationally design the Fe-N4 electrocatalyst.
Collapse
Affiliation(s)
- Shui-Yang Fang
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Yi-Jie Chen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Wen-Xian Chen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Gui-Lin Zhuang
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| |
Collapse
|
11
|
Shao X, Gan R, Rao Y, Nga TTT, Liang M, Dong CL, Ma C, Lee JY, Li H, Lee H. Main Group SnN 4O Single Sites with Optimized Charge Distribution for Boosting the Oxygen Reduction Reaction. ACS NANO 2024; 18:14742-14753. [PMID: 38770934 DOI: 10.1021/acsnano.4c04112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Transition metal single-atom catalysts (SACs) have been regarded as possible alternatives to platinum-based materials due to their satisfactory performance of the oxygen reduction reaction (ORR). By contrast, main-group metal elements are rarely studied due to their unfavorable surface and electronic states. Herein, a main-group Sn-based SAC with penta-coordinated and asymmetric first-shell ligands is reported as an efficient and robust ORR catalyst. The introduction of the vertical oxygen atom breaks the symmetric charge balance, modulating the binding strength to oxygen intermediates and decreasing the energy barrier for the ORR process. As expected, the prepared Sn SAC exhibits outstanding ORR activity with a high half-wave potential of 0.912 V (vs RHE) and an excellent mass activity of 13.1 A mgSn-1 at 0.850 V (vs RHE), which surpasses that of commercial Pt/C and most reported transition-metal-based SACs. Additionally, the reported Sn SAC shows excellent ORR stability due to the strong interaction between Sn sites and the carbon support with oxygen atom as the bridge. The excellent ORR performance of Sn SAC was also proven by both liquid- and solid-state zinc-air battery (ZAB) measurements, indicating its great potential in practical applications.
Collapse
Affiliation(s)
- Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ruihui Gan
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, China
| | - Yuan Rao
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Ta Thi Thuy Nga
- Department of Physics, Tamkang University, Taipei, New Taipei City 25137, Taiwan
| | - Mengfang Liang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung-Li Dong
- Department of Physics, Tamkang University, Taipei, New Taipei City 25137, Taiwan
| | - Chang Ma
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Creative Research Institute, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Zhang Y, Chen ZW, Liu X, Wen Z, Singh CV, Yang CC, Jiang Q. Vacancy-Enhanced Sb-N 4 Sites for the Oxygen Reduction Reaction and Zn-Air Battery. NANO LETTERS 2024; 24:4291-4299. [PMID: 38551180 DOI: 10.1021/acs.nanolett.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
With the advantages of a Fenton-inactive characteristic and unique p electrons that can hybridize with O2 molecules, p-block metal-based single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) have tremendous potential. Nevertheless, their undesirable intrinsic activity caused by the closed d10 electronic configuration remains a major challenge. Herein, an Sb-based SAC featuring carbon vacancy-enhanced Sb-N4 active centers, corroborated by the results of high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure, has been developed for an incredibly effective ORR. The obtained SbSA-N-C demonstrates a positive half-wave potential of 0.905 V and excellent structural stability in alkaline environments. Density functional theory calculations reveal that the carbon vacancies weaken the adsorption between Sb atoms and the OH* intermediate, thus promoting the ORR performance. Practically, the SbSA-N-C-based Zn-air batteries achieve impressive outcomes, such as a high power density of 181 mW cm-2, showing great potential in real-world applications.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhi-Wen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Xu Liu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
13
|
Xie L, Zhou W, Huang Y, Qu Z, Li L, Yang C, Ding Y, Li J, Meng X, Sun F, Gao J, Zhao G, Qin Y. Elucidating the impact of oxygen functional groups on the catalytic activity of M-N 4-C catalysts for the oxygen reduction reaction: a density functional theory and machine learning approach. MATERIALS HORIZONS 2024; 11:1719-1731. [PMID: 38277153 DOI: 10.1039/d3mh02115g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Efforts to enhance the efficiency of electrocatalysts for the oxygen reduction reaction (ORR) in energy conversion and storage devices present formidable challenges. In this endeavor, M-N4-C single-atom catalysts (MN4) have emerged as promising candidates due to their precise atomic structure and adaptable electronic properties. However, MN4 catalysts inherently introduce oxygen functional groups (OGs), intricately influencing the catalytic process and complicating the identification of active sites. This study employs advanced density functional theory (DFT) calculations to investigate the profound influence of OGs on ORR catalysis within MN4 catalysts (referred to as OGs@MN4, where M represents Fe or Co). We established the following activity order for the 2eORR: for OGs@CoN4: OH@CoN4 > CoN4 > CHO@CoN4 > C-O-C@CoN4 > COC@CoN4 > COOH@CoN4 > CO@CoN4; for OGs@FeN4: COC@FeN4 > CO@FeN4 > OH@FeN4 > FeN4 > COOH@FeN4 > CHO@FeN4 > C-O-C@FeN4. Multiple oxygen combinations were constructed and found to be the true origin of MN4 activity (for instance, the overpotential of 2OH@CoN4 as low as 0.07 V). Furthermore, we explored the performance of the OGs@MN4 system through charge and d-band center analysis, revealing the limitations of previous electron-withdrawing/donating strategies. Machine learning analysis, including GBR, GPR, and LINER models, effectively guides the prediction of catalyst performance (with an R2 value of 0.93 for predicting ΔG*OOH_vac in the GBR model). The Eg descriptor was identified as the primary factor characterizing ΔG*OOH_vac (accounting for 62.8%; OGs@CoN4: R2 = 0.9077, OGs@FeN4: R2 = 0.7781). This study unveils the significant impact of OGs on MN4 catalysts and pioneers design and synthesis criteria rooted in Eg. These innovative findings provide valuable insights into understanding the origins of catalytic activity and guiding the design of carbon-based single-atom catalysts, appealing to a broad audience interested in energy conversion technologies and materials science.
Collapse
Affiliation(s)
- Liang Xie
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Wei Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yuming Huang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Longhao Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Chaowei Yang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yani Ding
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Junfeng Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Fei Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Guangbo Zhao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yukun Qin
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
14
|
Rao P, Yu Y, Wang S, Zhou Y, Wu X, Li K, Qi A, Deng P, Cheng Y, Li J, Miao Z, Tian X. Understanding the improvement mechanism of plasma etching treatment on oxygen reduction reaction catalysts. EXPLORATION (BEIJING, CHINA) 2024; 4:20230034. [PMID: 38854495 PMCID: PMC10867369 DOI: 10.1002/exp.20230034] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 06/11/2024]
Abstract
Plasma etching treatment is an effective strategy to improve the electrocatalytic activity, but the improvement mechanism is still unclear. In this work, a nitrogen-doped carbon nanotube-encased iron nanoparticles (Fe@NCNT) catalyst is synthesized as the model catalyst, followed by plasma etching treatment with different parameters. The electrocatalytic activity improvement mechanism of the plasma etching treatment is revealed by combining the physicochemical characterizations and electrochemical results. As a result, highly active metal-nitrogen species introduced by nitrogen plasma etching treatment are recognized as the main contribution to the improved electrocatalytic activity, and the defects induced by plasma etching treatment also contribute to the improvement of the electrocatalytic activity. In addition, the prepared catalyst also demonstrates superior ORR activity and stability than the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Peng Rao
- School of Marine Science and EngineeringHainan Provincial Key Lab of Fine ChemistrySchool of Chemistry and Chemical EngineeringHainan UniversityHaikouChina
| | - Yanhui Yu
- School of Marine Science and EngineeringHainan Provincial Key Lab of Fine ChemistrySchool of Chemistry and Chemical EngineeringHainan UniversityHaikouChina
| | - Shaolei Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of EducationSchool of ChemistryNortheast Normal UniversityChangchunChina
| | - Yu Zhou
- School of Marine Science and EngineeringHainan Provincial Key Lab of Fine ChemistrySchool of Chemistry and Chemical EngineeringHainan UniversityHaikouChina
| | - Xiao Wu
- National Energy Group Ledong Power Generation Co., LtdLedongChina
| | - Ke Li
- National Energy Group Ledong Power Generation Co., LtdLedongChina
| | - Anyuan Qi
- National Energy Group Ledong Power Generation Co., LtdLedongChina
| | - Peilin Deng
- School of Marine Science and EngineeringHainan Provincial Key Lab of Fine ChemistrySchool of Chemistry and Chemical EngineeringHainan UniversityHaikouChina
| | - Yonggang Cheng
- Laboratory for chemical technologyGhent UniversityGentBelgium
| | - Jing Li
- School of Marine Science and EngineeringHainan Provincial Key Lab of Fine ChemistrySchool of Chemistry and Chemical EngineeringHainan UniversityHaikouChina
| | - Zhengpei Miao
- School of Marine Science and EngineeringHainan Provincial Key Lab of Fine ChemistrySchool of Chemistry and Chemical EngineeringHainan UniversityHaikouChina
| | - Xinlong Tian
- School of Marine Science and EngineeringHainan Provincial Key Lab of Fine ChemistrySchool of Chemistry and Chemical EngineeringHainan UniversityHaikouChina
| |
Collapse
|
15
|
Qin M, Chen L, Zhang W, Yang J. A Self-Consistent Framework for Tailored Single-Atom Catalysts in Electrocatalytic Nitrogen Reduction. J Phys Chem Lett 2024; 15:1089-1096. [PMID: 38261607 DOI: 10.1021/acs.jpclett.3c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The catalytic activity of single-atom catalysts (SACs) is crucially affected by the actual ligand configurations under the reaction condition; thus, carefully considering the reaction condition is crucial for the theoretical design of SACs. With single metal atoms supported by g-C3N4 as a model system, a self-consistent screening framework is proposed for the theoretical design of SACs with respect to the nitrogen reduction reaction (NRR). Pourbaix diagrams are constructed on the basis of various co-adsorption configurations of N2, H, and OH. Possible stable configurations containing N2 under the expected reaction condition are considered to obtain the limiting potential of NRR, and the stability of the configuration at the calculated UL is rechecked. With this framework, AC stacking of double-layer g-C3N4-supported Nb and AA stacking and AB stacking of double-layer g-C3N4-supported W are predicted to exhibit superior NRR activity with UL values of -0.36, -0.45, and -0.52 V, respectively. This procedure can be widely applied to the screening of SACs for electrocatalytic reactions.
Collapse
Affiliation(s)
- Mingxin Qin
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lanlan Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenhua Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Laboratory for Chemical Technology, Ghent University, Ghent 9052, Belgium
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Liu ZH, Ma FX, Fan HS, Liu ZQ, Du Y, Zhen L, Xu CY. Formulating N-Doped Carbon Hollow Nanospheres with Highly Accessible Through-Pores to Isolate Fe Single-Atoms for Efficient Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305700. [PMID: 37797186 DOI: 10.1002/smll.202305700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Indexed: 10/07/2023]
Abstract
It is challenging yet promising to design highly accessible N-doped carbon skeletons to fully expose the active sites inside single-atom catalysts. Herein, mesoporous N-doped carbon hollow spheres with regulatable through-pore size can be formulated by a simple sequential synthesis procedure, in which the condensed SiO2 is acted as removable dual-templates to produce both hollow interiors and through-pores, meanwhile, the co-condensed polydopamine shell is served as N-doped carbon precursor. After that, Fe─N─C hollow spheres (HSs) with highly accessible active sites can be obtained after rationally implanting Fe single-atoms. Microstructural analysis and X-ray absorption fine structure analysis reveal that high-density Fe─N4 active sites together with tiny Fe clusters are uniformly distributed on the mesoporous carbon skeleton with abundant through-pores. Benefitted from the highly accessible Fe─N4 active sites arising from the unique through-pore architecture, the Fe─N─C HSs demonstrate excellent oxygen reduction reaction (ORR) performance in alkaline media with a half-wave potential up to 0.90 V versus RHE and remarkable stability, both exceeding the commercial Pt/C. When employing Fe─N─C HSs as the air-cathode catalysts, the assembled Zn-air batteries deliver a high peak power density of 204 mW cm-2 and stable discharging voltage plateau over 140 h.
Collapse
Affiliation(s)
- Zi-Hao Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fei-Xiang Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Hong-Shuang Fan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zheng-Qi Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yue Du
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Liang Zhen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
17
|
Liu C, Mei B, Shi Z, Jiang Z, Ge J, Xing W, Song P, Xu W. Operando formation of highly efficient electrocatalysts induced by heteroatom leaching. Nat Commun 2024; 15:242. [PMID: 38172150 PMCID: PMC10764338 DOI: 10.1038/s41467-023-44480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Heterogeneous nano-electrocatalysts doped with nonmetal atoms have been studied extensively based on the so-called dopant-based active sites, while little attention has been paid to the stability of these dopants under working conditions. In this work, we reveal significantly, when the redox working potential is too low negatively or too high positively, the active sites based on these dopants actually tend to collapse. It means that some previously observed "remarkable catalytic performance" actually originated from some unknown active sites formed in situ. Take the Bi-F for the CO2RR as an example, results show that the observed remarkable activity and stability were not directly from F-based active sites, but the defective Bi sites formed in situ after the dopant leaching. Such a fact is unveiled from several heteroatom-doped nanocatalysts for four typical reactions (CO2RR, HER, ORR, and OER). This work provides insight into the role of dopants in electrocatalysis.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhaoping Shi
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zheng Jiang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Junjie Ge
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ping Song
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry, & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
18
|
Hu X, Su NQ. Targeted Spin-State Regulation to Boost Oxygen Reduction Reaction. J Phys Chem Lett 2023; 14:9872-9882. [PMID: 37902469 DOI: 10.1021/acs.jpclett.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Catalytic reactions are known to be significantly affected by spin states and their variations during reaction processes, yet the mechanisms behind them remain not fully understood, thus preventing the rational optimization of catalysis. Here, we explore the relationship between the spin states of active sites and their catalytic performance, taking the oxygen reduction reaction as an example. We demonstrate that the catalytic performance is spin-state-dependent and can be improved by adjusting spin states during the catalytic process. To this end, we further investigate the possibility of altering the spin states of transition metals through the application of external fields, such as adsorbed species. By studying the influence of the strength of adsorbed ligands on spin states and its impact on catalytic performance, our results show that optimal catalytic performance is achieved when the strength of the external field is neither too strong nor too weak, forming a volcano-like relationship between the catalytic performance and the external field strength. Our findings can have far-reaching implications for the rational design of high-performance catalysis.
Collapse
Affiliation(s)
- Xiuli Hu
- Department of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Neil Qiang Su
- Department of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Zhang W, Shu C, Zhan J, Zhang S, Zhang L, Yu F. Deep Electronic State Regulation through Unidirectional Cascade Electron Transfer Induced by Dual Junction Boosting Electrocatalysis Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304063. [PMID: 37712192 PMCID: PMC10625059 DOI: 10.1002/advs.202304063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Indexed: 09/16/2023]
Abstract
Unidirectional cascade electron transfer induced by multi-junctions is essential for deep electronic state regulation of the catalytic active sites, while this advanced concept has rarely been investigated in the field of electrocatalysis. In the present work, a dual junction heterostructure (FePc/L-R/CN) is designed by anchoring iron phthalocyanine (FePc)/MXene (L-Ti3 C2 -R, R═OH or F) heterojunction on g-C3 N4 nanosheet substrates for electrocatalysis. The unidirectional cascade electron transfer (g-C3 N4 → L-Ti3 C2 -R → FePc) induced by the dual junction of FePc/L-Ti3 C2 -R and L-Ti3 C2 -R/g-C3 N4 makes the Fe center electron-rich and therefore facilitates the adsorption of O2 in the oxygen reduction reaction (ORR). Moreover, the electron transfer between FePc and MXene is facilitated by the axial Fe─O coordination interaction of Fe with the OH in alkalized MXene nanosheets (L-Ti3 C2 -OH). As a result, FePc/L-OH/CN exhibits an impressive ORR activity with a half-wave potential (E1/2 ) of 0.92 V, which is superior over the catalysts with a single junction and the state-of-the-art Pt/C (E1/2 = 0.85 V). This work provides a broad idea for deep regulation of electronic state by the unidirectional cascade multi-step charge transfer and can be extended to other proton-coupled electron transfer processes.
Collapse
Affiliation(s)
- Wenlin Zhang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| | - Chonghong Shu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| | - Jiayu Zhan
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| | - Shenghu Zhang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| | - Lu‐Hua Zhang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| | - Fengshou Yu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| |
Collapse
|
20
|
Yi SY, Choi E, Jang HY, Lee S, Park J, Choi D, Jang Y, Kang H, Back S, Jang S, Lee J. Insight into Defect Engineering of Atomically Dispersed Iron Electrocatalysts for High-Performance Proton Exchange Membrane Fuel Cell. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302666. [PMID: 37548180 DOI: 10.1002/adma.202302666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Atomically dispersed and nitrogen coordinated iron catalysts (Fe-NCs) demonstrate potential as alternatives to platinum-group metal (PGM) catalysts in oxygen reduction reaction (ORR). However, in the context of practical proton exchange membrane fuel cell (PEMFC) applications, the membrane electrode assembly (MEA) performances of Fe-NCs remain unsatisfactory. Herein, improved MEA performance is achieved by tuning the local environment of the Fe-NC catalysts through defect engineering. Zeolitic imidazolate framework (ZIF)-derived nitrogen-doped carbon with additional CO2 activation is employed to construct atomically dispersed iron sites with a controlled defect number. The Fe-NC species with the optimal number of defect sites exhibit excellent ORR performance with a high half-wave potential of 0.83 V in 0.5 M H2 SO4 . Variation in the number of defects allows for fine-tuning of the reaction intermediate binding energies by changing the contribution of the Fe d-orbitals, thereby optimizing the ORR activity. The MEA based on a defect-engineered Fe-NC catalyst is found to exhibit a remarkable peak power density of 1.1 W cm-2 in an H2 /O2 fuel cell, and 0.67 W cm-2 in an H2 /air fuel cell, rendering it one of the most active atomically dispersed catalyst materials at the MEA level.
Collapse
Affiliation(s)
- Seung Yeop Yi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunho Choi
- School of Mechanical Engineering, Kookmin National University, Seoul, 02707, Republic of Korea
| | - Ho Yeon Jang
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi, 39177, Republic of Korea
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Jinkyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeju Jang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hojin Kang
- School of Mechanical Engineering, Kookmin National University, Seoul, 02707, Republic of Korea
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Segeun Jang
- School of Mechanical Engineering, Kookmin National University, Seoul, 02707, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
21
|
Cheng X, Jiang X, Yin S, Ji L, Yan Y, Li G, Huang R, Wang C, Liao H, Jiang Y, Sun S. Instantaneous Free Radical Scavenging by CeO 2 Nanoparticles Adjacent to the Fe-N 4 Active Sites for Durable Fuel Cells. Angew Chem Int Ed Engl 2023; 62:e202306166. [PMID: 37309017 DOI: 10.1002/anie.202306166] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
To achieve the Fe-N-C materials with both high activity and durability in proton exchange membrane fuel cells, the attack of free radicals on Fe-N4 sites must be overcome. Herein, we report a strategy to effectively eliminate radicals at the source to mitigate the degradation by anchoring CeO2 nanoparticles as radicals scavengers adjacent (Scaad-CeO2 ) to the Fe-N4 sites. Radicals such as ⋅OH and HO2 ⋅ that form at Fe-N4 sites can be instantaneously eliminated by adjacent CeO2 , which shortens the survival time of radicals and the regional space of their damage. As a result, the CeO2 scavengers in Fe-NC/Scaad-CeO2 achieved ∼80 % elimination of the radicals generated at the Fe-N4 sites. A fuel cell prepared with the Fe-NC/Scaad-CeO2 showed a smaller peak power density decay after 30,000 cycles determined with US DOE PGM-relevant AST, increasing the decay of Fe-NCPhen from 69 % to 28 % decay.
Collapse
Affiliation(s)
- Xiaoyang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaotian Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Shuhu Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Lifei Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Yani Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Rui Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Chongtai Wang
- College of Chemistry and Chemical Engineering, Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Haikou, 571158, China
| | - Honggang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Yanxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
22
|
Yuan M, Li C, Liu Y, Lan H, Chen Y, Liu K, Wang L. Single atom iron implanted polydopamine-modified hollow leaf-like N-doped carbon catalyst for improving oxygen reduction reaction and zinc-air batteries. J Colloid Interface Sci 2023; 645:350-358. [PMID: 37150008 DOI: 10.1016/j.jcis.2023.04.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
Metal-nitrogen-carbon (MNC) catalysts, especially FeNC catalysts, are considered promising candidates to replace Pt-based catalysts, but FeNC catalysts still present certain challenges in controlled-synthesis and energy device applications. In this paper, through the modification strategy of poly-dopamine (PDA) to maintain 2D leaf morphology to obtain more active sites and further adjust the N content, N-doped porous carbon monatomic iron catalyst (FeSA/NPCs) with rich-nitrogen content was prepared. XPS analysis showed that compared with C-ZIF-Fe, the contents of graphite nitrogen and pyridine nitrogen increased in FeSA/NPCs. The hollow structure with defects and Fe-N4 configuration of Fe single atom show more active sites for the catalyst, and positively promote the diffusion of reactants, oxygen exchange and electron transport, thus changing the reaction kinetics and promoting the improvement of ORR activity. FeSA/NPCs electrocatalyst exhibits good half-wave potential and onset potential at low loading (E1/2 = 0.93 V, Eonset = 1.0 V). In addition, the methanol tolerance, stability and Tafel slope are better than those of commercial Pt/C. Excitingly, the zinc-air cell with FeSA/NPCs as cathode material achieves a power density of 223 mW cm-2 and exhibits a long-term stability higher than 200 h. This work shows that nitrogen-doped porous carbon materials as well as iron monoatoms play important roles in improving electrocatalytic performance.
Collapse
Affiliation(s)
- Min Yuan
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chen Li
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yang Liu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haikuo Lan
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuting Chen
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kang Liu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Chaofeng Steel Structure Group Co., Ltd., Hangzhou 311215, China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
23
|
Liu K, Fu J, Luo T, Ni G, Li H, Zhu L, Wang Y, Lin Z, Sun Y, Cortés E, Liu M. Potential-Dependent Active Moiety of Fe-N-C Catalysts for the Oxygen Reduction Reaction. J Phys Chem Lett 2023; 14:3749-3756. [PMID: 37043683 DOI: 10.1021/acs.jpclett.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The real active moiety of Fe-N-C single-atom catalysts (SACs) during the oxygen reduction reaction (ORR) depends on the applied potential. Here, we examine the ORR activity of various SAC active moieties (Fe-N4, Fe-(OH)N4, Fe-(O2)N4, and Fe-(OH2)N4) over a wide potential window ranging from -0.8 to 1.0 V (vs. SHE) using constant potential density functional theory calculations. We show that the ORR activity of the Fe-N4 moiety is hindered by the slow *OH protonation, while the Fe-(OH2)N4 (0.4 V ≤ U ≤ 1.0 V), *O2-assisted Fe-N4 (-0.6 V ≤ U ≤ 0.2 V), and Fe-(OH)N4 (U = -0.8 V) moieties dominate the ORR activity of the Fe-N-C catalysts at different potential windows. These oxygenated species modified the single-atom Fe sites and can promote *OH protonation by regulating the electron occupancy of the Fe 3dz2 (spin-up) and Fe 3dxz (spin-down) orbitals. Overall, our findings provide guidance for understanding the active moieties of SACs.
Collapse
Affiliation(s)
- Kang Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ganghai Ni
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Li Zhu
- Nanoinstitute Munich, Faculty of Physics, Ludwig Maximilians Universität München, 80539 München, Germany
| | - Ye Wang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
- Research Center for Advanced Energy and Carbon Neutrality, Beihang University, Beijing 100191, China
| | - Emiliano Cortés
- Nanoinstitute Munich, Faculty of Physics, Ludwig Maximilians Universität München, 80539 München, Germany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
24
|
Xu Y, Li W, Chen L, Li W, Feng W, Qiu X. Regulating the N-Coordination Structure of Fe-Fe Dual Sites as the Electrocatalyst for the O 2 Reduction Reaction in Metal-Air Batteries. Inorg Chem 2023; 62:5253-5261. [PMID: 36942791 DOI: 10.1021/acs.inorgchem.3c00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Iron-nitrogen coordinated catalysts are regarded as efficient catalysts for the oxygen (O2) reduction reaction (ORR), wherein the coordination environment of Fe sites is critical to the catalytic activity. Herein, we explored the effect of the nitrogen-coordination structure of dual-atomic Fe2 sites (i.e., Fe2-N6-C and Fe2-N4-C) on the performance of the ORR. The half-wave potential (E1/2) of Fe2-N6-C is 0.880 V vs RHE, outperforming that of the tetracoordinate Fe2-N4-C (0.851 V) and commercial Pt/C (0.850 V) in alkaline electrolytes. The Fe2-N6-C-based zinc-air battery delivers a maximum power density of (258.6 mW/cm2) and superior durability under 10 mA/cm2. Theoretical calculations unveil that the moieties of Fe2-N6 profits the d-electron rearrangement of the Fe2 sites. The electronic and geometrical structure of Fe2-N6 promotes the O2 molecules adsorbed on the Fe2 site and reduces the dissociation energy barrier of O2, benefiting fracture of O-O bonds and acceleration of the transformation of O2 to *OOH (the first step of the ORR process). Such exploration of modulating the local N-coordination environment of Fe2 dimers paves an in-depth insight to design and optimize dual-atomic catalysts.
Collapse
Affiliation(s)
- Yan Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Wenyuan Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Long Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Wenzhang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Hongshan Road 98, Changsha 410022, P. R. China
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
25
|
Multicore-shell structure CuxCoy-Fe alloy nitrogen doped mesoporous hollow carbon nanotubes composites for oxygen reduction reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Bhunia S, Peña-Duarte A, Li H, Li H, Sanad MF, Saha P, Addicoat MA, Sasaki K, Strom TA, Yacamán MJ, Cabrera CR, Seshadri R, Bhattacharya S, Brédas JL, Echegoyen L. [2,1,3]-Benzothiadiazole-Spaced Co-Porphyrin-Based Covalent Organic Frameworks for O 2 Reduction. ACS NANO 2023; 17:3492-3505. [PMID: 36753696 DOI: 10.1021/acsnano.2c09838] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Designing N-coordinated porous single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) is a promising approach to achieve enhanced energy conversion due to maximized atom utilization and higher activity. Here, we report two Co(II)-porphyrin/ [2,1,3]-benzothiadiazole (BTD)-based covalent organic frameworks (COFs; Co@rhm-PorBTD and Co@sql-PorBTD), which are efficient SAC systems for O2 electrocatalysis (ORR). Experimental results demonstrate that these two COFs outperform the mass activity (at 0.85 V) of commercial Pt/C (20%) by 5.8 times (Co@rhm-PorBTD) and 1.3 times (Co@sql-PorBTD), respectively. The specific activities of Co@rhm-PorBTD and Co@sql-PorBTD were found to be 10 times and 2.5 times larger than that of Pt/C, respectively. These COFs also exhibit larger power density and recycling stability in Zn-air batteries compared with a Pt/C-based air cathode. A theoretical analysis demonstrates that the combination of Co-porphyrin with two different BTD ligands affords two crystalline porous electrocatalysts having different d-band center positions, which leads to reactivity differences toward alkaline ORR. The strategy, design, and electrochemical performance of these two COFs offer a pyrolysis-free bottom-up approach that avoids the creation of random atomic sites, significant metal aggregation, or unpredictable structural features.
Collapse
Affiliation(s)
- Subhajit Bhunia
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Armando Peña-Duarte
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Huifang Li
- College of Electromechanical Engineering, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, Shandong266061, China
| | - Hong Li
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 East Lowell Street, Tucson, Arizona85721-0088, United States
| | - Mohamed Fathi Sanad
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Pranay Saha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
| | - Matthew A Addicoat
- Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, NottinghamNG11 8NS, United Kingdom
| | - Kotaro Sasaki
- Chemistry Department, Brookhaven National Laboratory, Upton, New York11973, United States
| | - T Amanda Strom
- Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California93106, United States
| | - Miguel José Yacamán
- Department of Applied Physics and Materials Science, Northern Arizona University, 525 South Beaver Street, Flagstaff, Arizona86011, United States
| | - Carlos R Cabrera
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Ram Seshadri
- Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California93106, United States
| | - Santanu Bhattacharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
- Department of Organic Chemistry, Indian Institute of Science, Tala Marg, Bangalore560 012, India
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 East Lowell Street, Tucson, Arizona85721-0088, United States
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| |
Collapse
|
27
|
Qian Z, Wang L, Dzakpasu M, Tian Y, Ding D, Chen R, Wang G, Yang S. Spontaneous Fe III/Fe II redox cycling in single-atom catalysts: Conjugation effect and electron delocalization. iScience 2022; 26:105902. [PMID: 36691626 PMCID: PMC9860487 DOI: 10.1016/j.isci.2022.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
The mechanism of spontaneous FeIII/FeII redox cycling in iron-centered single-atom catalysts (I-SACs) is often overlooked. Consequently, pathways for continuous SO4 ·-/HO⋅ generation during peroxymonosulfate (PMS) activation by I-SACs remain unclear. Herein, the evolution of the iron center and ligand in I-SACs was comprehensively investigated. I-SACs could be considered as a coordination complex created by iron and a heteroatom N-doped carbonaceous ligand. The ligand-field theory could well explain the electronic behavior of the complex, whereby electrons delocalized by the conjugation effect of the ligand were confirmed to be responsible for the FeIII/FeII redox cycle. The possible pyridinic ligand in I-SACs was demonstrably weaker than the pyrrolic ligand in FeIII reduction due to its shielding effect on delocalized π orbitals by local lone-pair electrons. The results of this study significantly advance our understanding of the mechanism of spontaneous FeIII/FeII redox cycling and radical generation pathways in the I-SACs/PMS process.
Collapse
Affiliation(s)
- Zheng Qian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Lingzhen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Yujia Tian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu 210095, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academic of Science, 19A Yuquan Road, Beijing, 100049, China,Corresponding author
| | - Gen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China,Corresponding author
| |
Collapse
|
28
|
Hutchison P, Warburton RE, Surendranath Y, Hammes-Schiffer S. Correlation between Electronic Descriptor and Proton-Coupled Electron Transfer Thermodynamics in Doped Graphite-Conjugated Catalysts. J Phys Chem Lett 2022; 13:11216-11222. [PMID: 36445816 DOI: 10.1021/acs.jpclett.2c03278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Graphite-conjugated catalysts (GCCs) provide a powerful framework for investigating correlations between electronic structure features and chemical reactivity of single-site heterogeneous catalysts. GCC-phenazine undergoes proton-coupled electron transfer (PCET) involving protonation of phenazine at its two nitrogen atoms with the addition of two electrons. Herein, this PCET reaction is investigated in the presence of defects, such as heteroatom dopants, in the graphitic surface. The proton-coupled redox potentials, EPCET, are computed using a constant potential periodic density functional theory (DFT) strategy. The electronic states directly involved in PCET for GCC-phenazine exhibit the same nitrogen orbital character as those for molecular phenazine. The energy εLUS of this phenazine-related lowest unoccupied electronic state in GCC-phenazine is identified as a descriptor for changes in PCET thermodynamics. Importantly, εLUS is obtained from only a single DFT calculation but can predict EPCET, which requires many such calculations. Similar electronic features may be useful descriptors for thermodynamic properties of other single-site catalysts.
Collapse
Affiliation(s)
- Phillips Hutchison
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Robert E Warburton
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
29
|
Yan W, Xing Q, Guo O, Feng H, Liu H, Deshlahra P, Li X, Chen Y. A Combination of "Push Effect" Strategy with "Triple-Phase-Boundary Engineering" on Iron Porphyrin-Based MOFs: Enhanced Selectivity and Activity for Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50751-50761. [PMID: 36322477 DOI: 10.1021/acsami.2c12074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, the "push effect" strategy combined with "triple-phase-boundary" (TPB) engineering was innovatively employed to target the single Fe-N4 sites in an iron porphyrin-based metal-organic framework, with axially coordinated 4-octylpyridine groups on Fe-N4 (named as PCN-224 (Fe)-1). The amphiphilic 4-octylpyridine groups donate sufficient electrons toward Fe-N4 by the Fe-N(pyridine) coordination bond and simultaneously provide effective TBP reactive sites by the hydrophobic octyl terminals, resulting in enhanced ORR activity of the PCN-224 (Fe)-1 in hydrophobic octyl terminals, with an E1/2 of 0.81 V and complete 4-electron selectivity. Furthermore, TPB engineering is utilized to construct the PCN-224 (Fe)-1-based Zn-air battery with a maximum power density of 98 mW cm-2, demonstrating great practical application potential for molecule-based ORR catalysts. Meanwhile, the "push effect" mechanism on ORR is revealed by electron paramagnetic resonance, in situ UV-vis spectroelectrochemical analysis, and density functional theory.
Collapse
Affiliation(s)
- Wei Yan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, P. R. China
| | - Qianli Xing
- Department of Materials Science and Engineering, Tufts University, Medford, Massachusetts02155, United States
| | - Ouyang Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, P. R. China
| | - Hao Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, P. R. China
| | - Heyuan Liu
- College of New Energy, China University of Petroleum (East China), Qingdao266580, P. R. China
| | - Prashant Deshlahra
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts02155, United States
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, P. R. China
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, P. R. China
| |
Collapse
|
30
|
Cai C, Liu B, Liu K, Li P, Fu J, Wang Y, Li W, Tian C, Kang Y, Stefancu A, Li H, Kao C, Chan T, Lin Z, Chai L, Cortés E, Liu M. Heteroatoms Induce Localization of the Electric Field and Promote a Wide Potential-Window Selectivity Towards CO in the CO 2 Electroreduction. Angew Chem Int Ed Engl 2022; 61:e202212640. [PMID: 36074055 PMCID: PMC9828093 DOI: 10.1002/anie.202212640] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/12/2023]
Abstract
Carbon dioxide electroreduction (CO2 RR) is a sustainable way of producing carbon-neutral fuels. Product selectivity in CO2 RR is regulated by the adsorption energy of reaction-intermediates. Here, we employ differential phase contrast-scanning transmission electron microscopy (DPC-STEM) to demonstrate that Sn heteroatoms on a Ag catalyst generate very strong and atomically localized electric fields. In situ attenuated total reflection infrared spectroscopy (ATR-IR) results verified that the localized electric field enhances the adsorption of *COOH, thus favoring the production of CO during CO2 RR. The Ag/Sn catalyst exhibits an approximately 100 % CO selectivity at a very wide range of potentials (from -0.5 to -1.1 V, versus reversible hydrogen electrode), and with a remarkably high energy efficiency (EE) of 76.1 %.
Collapse
Affiliation(s)
- Chao Cai
- Hunan joint international research center for carbon dioxide resource UtilizationState Key Laboratory of Powder MetallurgySchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Bao Liu
- Hunan joint international research center for carbon dioxide resource UtilizationState Key Laboratory of Powder MetallurgySchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Kang Liu
- Hunan joint international research center for carbon dioxide resource UtilizationState Key Laboratory of Powder MetallurgySchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Pengcheng Li
- Hunan joint international research center for carbon dioxide resource UtilizationState Key Laboratory of Powder MetallurgySchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | | | - Yanqiu Wang
- School of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Wenzhang Li
- School of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Chen Tian
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083China
| | - Yicui Kang
- Nanoinstitut MünchenFakultät für PhysikLudwig-Maximilians-Universität München80539MünchenGermany
| | - Andrei Stefancu
- Nanoinstitut MünchenFakultät für PhysikLudwig-Maximilians-Universität München80539MünchenGermany
| | - Hongmei Li
- Hunan joint international research center for carbon dioxide resource UtilizationState Key Laboratory of Powder MetallurgySchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P.R. China
| | - Cheng‐Wei Kao
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Ting‐Shan Chan
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Zhang Lin
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083China
| | - Liyuan Chai
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083China
| | - Emiliano Cortés
- Nanoinstitut MünchenFakultät für PhysikLudwig-Maximilians-Universität München80539MünchenGermany
| | - Min Liu
- Hunan joint international research center for carbon dioxide resource UtilizationState Key Laboratory of Powder MetallurgySchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| |
Collapse
|
31
|
Wang R, Zhang L, Shan J, Yang Y, Lee J, Chen T, Mao J, Zhao Y, Yang L, Hu Z, Ling T. Tuning Fe Spin Moment in Fe-N-C Catalysts to Climb the Activity Volcano via a Local Geometric Distortion Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203917. [PMID: 36057997 PMCID: PMC9631079 DOI: 10.1002/advs.202203917] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Indexed: 05/26/2023]
Abstract
As the most promising alternative to platinum-based catalysts for cathodic oxygen reduction reaction (ORR) in proton exchange membrane fuel cells, further performance enhancement of Fe-N-C catalysts is highly expected to promote their wide application. In Fe-N-C catalysts, the single Fe atom forms a square-planar configuration with four adjacent N atoms (D4h symmetry). Breaking the D4h symmetry of the FeN4 active center provides a new route to boost the activity of Fe-N-C catalysts. Herein, for the first time, the deformation of the square-planar coordination of FeN4 moiety achieved by introducing chalcogen oxygen groups (XO2 , X = S, Se, Te) as polar functional groups in the Fe-N-C catalyst is reported. The theoretical and experimental results demonstrate that breaking the D4h symmetry of FeN4 results in the rearrangement of Fe 3d electrons and increases spin moment of Fe centers. The efficient spin state manipulation optimizes the adsorption energetics of ORR intermediates, thereby significantly promoting the intrinsic ORR activity of Fe-N-C catalysts, among which the SeO2 modified catalyst lies around the peak of the ORR volcano plot. This work provides a new strategy to tune the local coordination and thus the electronic structure of single-atom catalysts.
Collapse
Affiliation(s)
- Ruguang Wang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Lifu Zhang
- School of PhysicsNankai UniversityTianjin300071China
| | - Jieqiong Shan
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Yuanyuan Yang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Jyh‐Fu Lee
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Tsan‐Yao Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Jing Mao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Yang Zhao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Liujing Yang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Zhenpeng Hu
- School of PhysicsNankai UniversityTianjin300071China
| | - Tao Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| |
Collapse
|
32
|
Jiao P, Ye D, Zhu C, Wu S, Qin C, An C, Hu N, Deng Q. Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: progress and prospects. NANOSCALE 2022; 14:14322-14340. [PMID: 36106572 DOI: 10.1039/d2nr03687h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The massive exploitation and use of fossil resources have created many negative issues, such as energy shortage and environmental pollution. It prompts us to turn our attention to the development of new energy technologies. This review summarizes the recent research progress of non-precious transition metal single-atom catalysts (NPT-SACs) for the oxygen reduction reaction (ORR) in Zn-air batteries and fuel cells. Some commonly used preparation methods and their advantages/disadvantages have been summarized. The factors affecting the ORR performances of NPT-SACs have been focused upon, such as the substrate type, coordination environment and nanocluster effects. The loading mass of a metal atom has a direct effect on the ORR performances. Some general strategies for stabilizing metal atoms are included. This review points out some existing challenges of NPT-SACs, and also provides ideas for designing and synthesizing NPT-SACs with excellent ORR performances. The large-scale preparation and commercialization of NPT-SACs with excellent ORR properties are prospected.
Collapse
Affiliation(s)
- Penggang Jiao
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Donghao Ye
- Wuhan Marine Electric Propulsion Research Institute, Wuhan 430064, China
| | - Chunyou Zhu
- Hunan Aerospace Kaitian Water Services Co., Ltd., Changsha 410100, China
| | - Shuai Wu
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Chunling Qin
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Cuihua An
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
| | - Qibo Deng
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
33
|
Perspective of p-block single-atom catalysts for electrocatalysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
An H, Min K, Lee Y, Na R, Shim SE, Baeck SH. Sacrificial template induced Fe-, N-, and S-tridoped hollow carbon sphere as a highly efficient electrocatalyst for oxygen reduction reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
35
|
Rao P, Deng Y, Fan W, Luo J, Deng P, Li J, Shen Y, Tian X. Movable type printing method to synthesize high-entropy single-atom catalysts. Nat Commun 2022; 13:5071. [PMID: 36038594 PMCID: PMC9424199 DOI: 10.1038/s41467-022-32850-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
The controllable anchoring of multiple isolated metal atoms into a single support exhibits scientific and technological opportunities, while the synthesis of catalysts with multiple single metal atoms remains a challenge and has been rarely reported. Herein, we present a general route for anchoring up to eleven metals as highly dispersed single-atom centers on porous nitride-doped carbon supports with the developed movable type printing method, and label them as high-entropy single-atom catalysts. Various high-entropy single-atom catalysts with tunable multicomponent are successfully synthesized with the same method by adjusting only the printing templates and carbonization parameters. To prove utility, quinary high-entropy single-atom catalysts (FeCoNiCuMn) is investigated as oxygen reduction reaction catalyst with much more positive activity and durability than commercial Pt/C catalyst. This work broadens the family of single-atom catalysts and opens a way to investigate highly efficient single-atom catalysts with multiple compositions.
Collapse
Affiliation(s)
- Peng Rao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Yijie Deng
- School of Resource Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Wenjun Fan
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junming Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Peilin Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Jing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
36
|
Chen S, Luo T, Li X, Chen K, Fu J, Liu K, Cai C, Wang Q, Li H, Chen Y, Ma C, Zhu L, Lu YR, Chan TS, Zhu M, Cortés E, Liu M. Identification of the Highly Active Co-N 4 Coordination Motif for Selective Oxygen Reduction to Hydrogen Peroxide. J Am Chem Soc 2022; 144:14505-14516. [PMID: 35920726 PMCID: PMC9389578 DOI: 10.1021/jacs.2c01194] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 02/03/2023]
Abstract
Electrosynthesis of hydrogen peroxide (H2O2) through oxygen reduction reaction (ORR) is an environment-friendly and sustainable route for obtaining a fundamental product in the chemical industry. Co-N4 single-atom catalysts (SAC) have sparkled attention for being highly active in both 2e- ORR, leading to H2O2 and 4e- ORR, in which H2O is the main product. However, there is still a lack of fundamental insights into the structure-function relationship between CoN4 and the ORR mechanism over this family of catalysts. Here, by combining theoretical simulation and experiments, we unveil that pyrrole-type CoN4 (Co-N SACDp) is mainly responsible for the 2e- ORR, while pyridine-type CoN4 catalyzes the 4e- ORR. Indeed, Co-N SACDp exhibits a remarkable H2O2 selectivity of 94% and a superb H2O2 yield of 2032 mg for 90 h in a flow cell, outperforming most reported catalysts in acid media. Theoretical analysis and experimental investigations confirm that Co-N SACDp─with weakening O2/HOO* interaction─boosts the H2O2 production.
Collapse
Affiliation(s)
- Shanyong Chen
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physical and
Electronics, Central South University, 410083 Changsha, China
- Guangdong
Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443 Guangzhou, China
| | - Tao Luo
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physical and
Electronics, Central South University, 410083 Changsha, China
| | - Xiaoqing Li
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physical and
Electronics, Central South University, 410083 Changsha, China
| | - Kejun Chen
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physical and
Electronics, Central South University, 410083 Changsha, China
| | - Junwei Fu
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physical and
Electronics, Central South University, 410083 Changsha, China
| | - Kang Liu
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physical and
Electronics, Central South University, 410083 Changsha, China
| | - Chao Cai
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physical and
Electronics, Central South University, 410083 Changsha, China
| | - Qiyou Wang
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physical and
Electronics, Central South University, 410083 Changsha, China
| | - Hongmei Li
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physical and
Electronics, Central South University, 410083 Changsha, China
| | - Yu Chen
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physical and
Electronics, Central South University, 410083 Changsha, China
| | - Chao Ma
- School
of Materials Science and Engineering, Hunan
University, Changsha 410082, China
| | - Li Zhu
- Nanoinstitut
München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Ying-Rui Lu
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ting-Shan Chan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Mingshan Zhu
- Guangdong
Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443 Guangzhou, China
| | - Emiliano Cortés
- Nanoinstitut
München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Min Liu
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physical and
Electronics, Central South University, 410083 Changsha, China
| |
Collapse
|
37
|
Sun N, Ru S, Zhang C, Liu W, Luo Q, Jiao J, Lu T. Promoting oxygen reduction reaction by tuning externally doped nitrogen around atomically dispersed iron. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Liu S, Niu S, Liu J, Wang D, Wang Y, Han K. Mechanism of formaldehyde oxidation catalyzed by doped graphene single atom catalysts: Density functional theory study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
He T, Chen Y, Liu Q, Lu B, Song X, Liu H, Liu M, Liu YN, Zhang Y, Ouyang X, Chen S. Theory-Guided Regulation of FeN 4 Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal-Air Batteries. Angew Chem Int Ed Engl 2022; 61:e202201007. [PMID: 35468253 DOI: 10.1002/anie.202201007] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 01/11/2023]
Abstract
Iron, nitrogen-codoped carbon (Fe-N-C) nanocomposites have emerged as viable electrocatalysts for the oxygen reduction reaction (ORR) due to the formation of FeNx Cy coordination moieties. In this study, results from first-principles calculations show a nearly linear correlation of the energy barriers of key reaction steps with the Fe magnetic moment. Experimentally, when single Cu sites are incorporated into Fe-N-C aerogels (denoted as NCAG/Fe-Cu), the Fe centers exhibit a reduced magnetic moment and markedly enhanced ORR activity within a wide pH range of 0-14. With the NCAG/Fe-Cu nanocomposites used as the cathode catalyst in a neutral/quasi-solid aluminum-air and alkaline/quasi-solid zinc-air battery, both achieve a remarkable performance with an ultrahigh open-circuit voltage of 2.00 and 1.51 V, large power density of 130 and 186 mW cm-2 , and good mechanical flexibility, all markedly better than those with commercial Pt/C or Pt/C-RuO2 catalysts at the cathode.
Collapse
Affiliation(s)
- Ting He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China.,School of Materials Science and Engineering, Xiangtan University Yuhu District, Xiangtan, Hunan, 411105, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Min Liu
- School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China.,Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University Yuhu District, Xiangtan, Hunan, 411105, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
40
|
Facile synthesis of defect-rich Fe-N-C hybrid from fullerene/ferrotetraphenylporphyrin as efficient oxygen reduction electrocatalyst for Zn-air battery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
He T, Chen Y, Liu Q, Lu B, Song X, Liu H, Liu M, Liu Y, Zhang Y, Ouyang X, Chen S. Theory‐Guided Regulation of FeN
4
Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ting He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
- School of Materials Science and Engineering Xiangtan University Yuhu District Xiangtan Hunan 411105 China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Qiming Liu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Min Liu
- School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - You‐Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
- Key Laboratory of Materials Processing and Mold, Ministry of Education Zhengzhou University Zhengzhou, Henan 450002 China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering Xiangtan University Yuhu District Xiangtan Hunan 411105 China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
42
|
Zhang S, Qin Y, Ding S, Su Y. A DFT study on the activity origin of Fe-N-C sites for oxygen reduction reaction. Chemphyschem 2022; 23:e202200165. [PMID: 35513342 DOI: 10.1002/cphc.202200165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Indexed: 11/09/2022]
Abstract
Iron-nitrogen-carbon materials have been known as the most promising non-noble metal catalyst for proton-exchange membrane fuel cells (PEMFCs), but the genuine active sites for oxygen reduction reaction (ORR) are still arguable. Herein, by the thorough density functional theory investigations, we unravel that the planar Fe2N6 site exhibits excellent ORR catalytic activity over both FeN 3 and FeN 4 sites, and the potential-determining step is determined to be the *OH hydrogenation step with an overpotential of 0.415 V. The ORR activity of Fe 2 N 6 site originates from the low spin magnetic moment (1.11 μ B ), which leads to high antibonding states and low d-band center of the Fe center, further leads to weak binding strength of *OH species. And the density of FeN 4 sites only has little influence on the ORR activity due to the similar interaction between active site and intermediates in ORR. Our research sheds light on the activity origin of iron-nitrogen-carbon materials for ORR.
Collapse
Affiliation(s)
- Shishi Zhang
- Xi'an Jiaotong University, School of Chemistry, CHINA
| | - Yanyang Qin
- Xi'an Jiaotong University, School of Chemistry, CHINA
| | - Shujiang Ding
- Xi'an Jiaotong University, School of Chemistry, CHINA
| | - Yaqiong Su
- Xi'an Jiaotong University, Chemistry, West Xianning Road, 710049, Xi'an, CHINA
| |
Collapse
|
43
|
Liu K, Fu J, Lin Y, Luo T, Ni G, Li H, Lin Z, Liu M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat Commun 2022; 13:2075. [PMID: 35440574 PMCID: PMC9018836 DOI: 10.1038/s41467-022-29797-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Single-atom Fe-N-C catalysts has attracted widespread attentions in the oxygen reduction reaction (ORR). However, the origin of ORR activity on Fe-N-C catalysts is still unclear, which hinder the further improvement of Fe-N-C catalysts. Herein, we provide a model to understand the ORR activity of Fe-N4 site from the spatial structure and energy level of the frontier orbitals by density functional theory calculations. Taking the regulation of divacancy defects on Fe-N4 site ORR activity as examples, we demonstrate that the hybridization between Fe 3dz2, 3dyz (3dxz) and O2 π* orbitals is the origin of Fe-N4 ORR activity. We found that the Fe-O bond length, the d-band center gap of spin states, the magnetic moment of Fe site and *O2 as descriptors can accurately predict the ORR activity of Fe-N4 site. Furthermore, these descriptors and ORR activity of Fe-N4 site are mainly distributed in two regions with obvious difference, which greatly relate to the height of Fe 3d projected orbital in the Z direction. This work provides a new insight into the ORR activity of single-atom M-N-C catalysts.
Collapse
Affiliation(s)
- Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Yiyang Lin
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Ganghai Ni
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P. R. China.
| |
Collapse
|
44
|
Zhai W, Huang S, Lu C, Tang X, Li L, Huang B, Hu T, Yuan K, Zhuang X, Chen Y. Simultaneously Integrate Iron Single Atom and Nanocluster Triggered Tandem Effect for Boosting Oxygen Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107225. [PMID: 35218295 DOI: 10.1002/smll.202107225] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Atomically nitrogen-coordinated iron atoms on carbon (FeNC) catalysts are emerging as attractive materials to substitute precious-metal-based catalysts for the oxygen reduction reaction (ORR). However, FeNC usually suffers from unsatisfactory performance due to the symmetrical charge distribution around the iron site. Elaborately regulating the microenvironment of the central Fe atom can substantially improve the catalytic activity of FeNC, which remains challenging. Herein, N/S co-doped porous carbons are rationally prepared and are verified with rich Fe-active sites, including atomically dispersed FeN4 and Fe nanoclusters (FeSA-FeNC@NSC), according to systematically synchrotron X-ray absorption spectroscopy analysis. Theoretical calculation verifies that the contiguous S atoms and Fe nanoclusters can break the symmetric electronic structure of FeN4 and synergistically optimize 3d orbitals of Fe centers, thus accelerating OO bond cleavage in OOH* for improving ORR activity. The FeSA-FeNC @NSC delivers an impressive ORR activity with half-wave-potential of 0.90 V, which exceeds that of state-of-the-art Pt/C (0.87 V). Furthermore, FeSA-FeNC @NSC-based Zn-air batteries deliver excellent power densities of 259.88 and 55.86 mW cm-2 in liquid and all-solid-state flexible configurations, respectively. This work presents an effective strategy to modulate the microenvironment of single atomic centers and boost the catalytic activity of single-atom catalysts by tandem effect.
Collapse
Affiliation(s)
- Weijuan Zhai
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Senhe Huang
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenbao Lu
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiannong Tang
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Longbin Li
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Bingyu Huang
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Kai Yuan
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaodong Zhuang
- The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Institute of Advanced Scientific Research (iASR), Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
45
|
Zhou Y, Liang Y, Fu J, Liu K, Chen Q, Wang X, Li H, Zhu L, Hu J, Pan H, Miyauchi M, Jiang L, Cortés E, Liu M. Vertical Cu Nanoneedle Arrays Enhance the Local Electric Field Promoting C 2 Hydrocarbons in the CO 2 Electroreduction. NANO LETTERS 2022; 22:1963-1970. [PMID: 35166553 DOI: 10.1021/acs.nanolett.1c04653] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic reduction of CO2 to multicarbon products is a potential strategy to solve the energy crisis while achieving carbon neutrality. To improve the efficiency of multicarbon products in Cu-based catalysts, optimizing the *CO adsorption and reducing the energy barrier for carbon-carbon (C-C) coupling are essential features. In this work, a strong local electric field is obtained by regulating the arrangement of Cu nanoneedle arrays (CuNNAs). CO2 reduction performance tests indicate that an ordered nanoneedle array reaches a 59% Faraday efficiency for multicarbon products (FEC2) at -1.2 V (vs RHE), compared to a FEC2 of 20% for a disordered nanoneedle array (CuNNs). As such, the very high and local electric fields achieved by an ordered Cu nanoneedle array leads to the accumulation of K+ ions, which benefit both *CO adsorption and C-C coupling. Our results contribute to the design of highly efficient catalysts for multicarbon products.
Collapse
Affiliation(s)
- Yajiao Zhou
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Yanqing Liang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, PR China
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Qin Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Xiqing Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, PR China
| | - Li Zhu
- Chair in Hybrid Nanosystems, Faculty of Physics, Ludwig Maximilians Universität München, 80539 München, Germany
| | - Junhua Hu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital, Central South University, Changsha, 410008, PR China
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Liangxing Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Faculty of Physics, Ludwig Maximilians Universität München, 80539 München, Germany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, PR China
| |
Collapse
|
46
|
Ma R, Wang J, Tang Y, Wang J. Design Strategies for Single-Atom Iron Electrocatalysts toward Efficient Oxygen Reduction. J Phys Chem Lett 2022; 13:168-174. [PMID: 34965122 DOI: 10.1021/acs.jpclett.1c03753] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The oxygen reduction reaction (ORR) is a pivotal half-reaction for full cells and metal-air batteries. However, the intrinsic sluggish kinetics of the ORR inhibits the practical applications of these environmentally friendly energy-conversion devices. Therefore, highly efficient electrocatalysts with low cost are required to promote the ORR process. Carbon materials with single-atom Fe coordinated with N and C (Fe-N-C) stand out from various non-precious electrocatalysts, and great progress of both catalysts design and mechanism understanding has been achieved in the past. In this Perspective, we start with the recent advance in design strategies of active sites in Fe-N-C and emphasize the importance of spatial configuration and electron distribution. We discuss diverse Fe-N-C species as well as their corresponding properties. At last, we give our outlook for the future development of advanced Fe-N-C electrocatalysts.
Collapse
Affiliation(s)
- Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215011, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jiacheng Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| |
Collapse
|
47
|
Jia Y, Xue Z, Yang J, Liu Q, Xian J, Zhong Y, Sun Y, Zhang X, Liu Q, Yao D, Li G. Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yaling Jia
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ziqian Xue
- Institute for Integrated Cell-Material Sciences (iCeMS) Kyoto University Kyoto 606–8501 Japan
| | - Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Qinglin Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yicheng Zhong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yamei Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiuxiu Zhang
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China
| | - Daoxin Yao
- State Key Laboratory of Optoelectronic Materials and Technologies School of Physics Sun Yat-Sen University Guangzhou 510275 China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
48
|
Lu Z, Luo W, Huang X, Yu H, Li Z, Liu G, Liu J, Chen X. Highly-stable cobalt metal organic framework with sheet-like structure for ultra-efficient water oxidation at high current density. J Colloid Interface Sci 2022; 611:599-608. [PMID: 34973656 DOI: 10.1016/j.jcis.2021.12.132] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 01/31/2023]
Abstract
The development of efficient and robust non-precious electrocatalysts for water oxidation at a mild condition is extremely desirable for industrial water splitting. Herein we developed a facile solvothermal strategy to synthesize cobalt metal organic frameworks (Co-MOFs) with sheet-like structure, which showed highly promising performance for electrocatalytic oxygen evolution. The best Co-MOF sample afforded an ultra-high oxygen evolution current density of 63.4 mA cm-2 at 1.75 V in 1 M KOH with a catalyst loading of only 0.21 mg cm-2. Notably, its electrochemical performance remained unchanged after 10,000 cyclic voltammograms indicating very promising long-term stability. Detailed study of the mechanism of the oxygen evolution by density functional theory (DFT) indicated that the strong π-conjugation formed between the central cobalt ion and adjacent aromatic rings favored the high electrocatalytic performance. The solvothermally synthesized MOFs proposed in this paper are expected to inspire the rational design of high-performance electrocatalysts for water oxidation with atomic and molecular level structural control and the exploration of structure-performance relationships to understand the electrocatalytic origin.
Collapse
Affiliation(s)
- Zhenjie Lu
- Research Group of Functional Materials for New Energy, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan 114051, PR China
| | - Wenzhi Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518600, PR China
| | - Xinning Huang
- Research Group of Functional Materials for New Energy, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan 114051, PR China
| | - Huixuan Yu
- College of Chemistry and Chemical Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, PR China
| | - Zhiwei Li
- National Supercomputing Center in Shenzhen, Shenzhen 518055, PR China
| | - Guocheng Liu
- College of Chemistry and Chemical Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, PR China.
| | - Jianwen Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518600, PR China.
| | - Xingxing Chen
- Research Group of Functional Materials for New Energy, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan 114051, PR China.
| |
Collapse
|
49
|
Wang S, Zhang X, Chen G, Liu B, Li H, Hu J, Fu J, Liu M. Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
She X, Jinghan G, Gao Y, Tang H, Li K, Wang Y, Wu Z. Axial ligand engineering for highly efficient oxygen reduction catalyst in transition metal-N4 doped graphene. NEW J CHEM 2022. [DOI: 10.1039/d2nj03058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing highly efficient and stable electrocatalysts for oxygen reduction reaction (ORR) is a challenging task in energy conversion technologies. In this work, diverse axial ligands have been used to modify...
Collapse
|