1
|
Gioffrè D, Müller C, Docherty SR, Yakimov A, Copéret C. 2H Quadrupolar Coupling Constant: A Spectroscopic Ruler for Transition Metal-Hydride Bond Distances in Molecular and Surface Sites. J Am Chem Soc 2025; 147:15936-15941. [PMID: 40324048 DOI: 10.1021/jacs.5c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Transition metal hydrides (TMHs) find numerous applications across fields from catalysis to H2 storage. Yet, determining the structure of TMHs can remain a challenge, as hydrogen is difficult to detect by X-ray based or classical spectroscopic techniques. Considering that the deuterium isotope (D) is a quadrupolar nucleus (I = 1) and that a quadrupolar coupling constant (CQ) depends on the distance between D and its bonding partner E (dED), we evaluate this trend across molecularly defined transition metal deuterides (TMDs) through a systematic investigation across TM block elements using both computations and experiments. We show that the M-D bond distance (dMD) in [Å] correlates with the CQ values in [kHz] as dMD = 7.83(CQ + 28.7)-1/3─independently from the nature of the TM─with an accuracy >0.04-0.08 Å. Based on experimental CQ values measured by 2H solid-state NMR, this simple correlation is then used to obtain the M-D bond distances in two silica-supported TMDs (M = Zr and Ir), notable heterogeneous catalysts representing early and late TMDs, where evaluating M-D bond distances by other means is very challenging. Considering the ease of measurement, this method is readily applicable to a large range of diamagnetic terminal M-Ds, from molecular to surface sites, making 2H NMR a method of choice to measure TMD bond distances.
Collapse
Affiliation(s)
- Domenico Gioffrè
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Cäcilie Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Scott R Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Alexander Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
2
|
Lv M, Li Q, Zhu Y, Zeng J, Li Q, Chen X, Lin K, Deng J, Xing X. Zr element promotes gallium oxide-based catalyst activity for direct dehydrogenation of propane. Chem Commun (Camb) 2025; 61:6158-6161. [PMID: 40160151 DOI: 10.1039/d5cc00800j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The activity of gallium oxide-based catalysts for direct dehydrogenation of propane can be enhanced by doping Zr element. The enhancement is attributed to the transformation of Ga ions into a more active structure with lower coordination number. This finding offers an effective strategy for optimizing the performance of gallium oxide-based catalysts.
Collapse
Affiliation(s)
- Mingxin Lv
- Institute of Solid State Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Qiang Li
- Institute of Solid State Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yue Zhu
- Institute of Solid State Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qiheng Li
- Institute of Solid State Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xin Chen
- Institute of Solid State Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Kun Lin
- Institute of Solid State Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jinxia Deng
- Institute of Solid State Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xianran Xing
- Institute of Solid State Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Li Q, Zhang J, Yu T, Chen J, Wang G, Shi Z, Zhuo R, Wang R. Advanced metal oxide catalysts for propane dehydrogenation: from design strategy to dehydrogenation performance. NANOSCALE 2025; 17:5629-5653. [PMID: 39931811 DOI: 10.1039/d4nr04482g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Propane dehydrogenation (PDH) technology has been considered an important breakthrough to cope with the ever-increasing demand for propylene. Developing high-performance non-noble metal catalysts has emerged as an effective approach for replacing the currently used commercial Pt- and Cr-based catalysts with high cost and toxicity. Metal oxides have attracted much attention as PDH catalysts due to their high C-H activity, abundant active sites, and desirable dehydrogenation pathways. Regulating the supports and active sites through the rational design of structure and composition provides a new promising platform to improve the dehydrogenation activity and stability of metal oxide catalysts. This review systematically summarizes the catalytic mechanism of PDH. The rational design of metal oxide catalysts with suitable supports and precisely modulated active sites is described with their catalytic performances. In addition, the important roles played by reaction conditions to promote PDH processes are discussed. Furthermore, combined with well-developed advanced characterization methods, the in-depth exploration of the metal oxide-based PDH catalysts is highlighted. Finally, some perspectives for metal oxide-based PDH catalysts are concisely proposed to achieve their future innovations and industrialization.
Collapse
Affiliation(s)
- Qian Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Tong Yu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China.
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zongbo Shi
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Runsheng Zhuo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Lee S, Kwon HC, Jeong J, Shin H, Oh D, Seok J, Kim JC, Choi M. Ideal Bifunctional Catalysis for Propane Dehydrogenation over Pt-Promoted Gallia-Alumina and Minimized Use of Precious Elements. J Am Chem Soc 2025; 147:6480-6491. [PMID: 39948044 DOI: 10.1021/jacs.4c13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Gallia-alumina (GaxAl2-xO3), promoted with a trace amount of Pt, exhibits excellent activity and selectivity in propane dehydrogenation (PDH) due to a bifunctional mechanism. Tetrahedrally coordinated Ga (GaIV) catalyzes C-H dissociation, while Pt facilitates H recombination into H2. To maximize the utilization of precious Pt and Ga, it is crucial to understand the optimal balance between the two catalytic functions or determine the 'ideal regime.' Here, we developed techniques to quantify the catalytic functions of Pt and GaIV sites. H2-D2 exchange rates (rHD) and propylene chemisorption (Q(GaIV,surf)) were used as effective measures of the catalytic functions of Pt and GaIV, respectively. When Pt is sufficient relative to GaIV (rHD/Q(GaIV,surf) ratio >0.3 molHD molGaIV,surf-1 s-1), the catalysts exhibit ideal catalytic properties. During repeated reaction and regeneration cycles, the catalysts deactivated mainly due to Pt sintering, which leads to an imbalance between the two catalytic functions. Notably, catalysts with higher Pt contents lost catalytic activity faster than those with lower Pt contents, eventually exhibiting reversed activities. This is because increased Pt loading facilitates sintering. Doping a small amount of Ce3+ onto GaxAl2-xO3 effectively suppresses Pt sintering via strong metal-support interaction. Thus, optimal loadings of Ga and Pt, combined with Ce3+ doping to stabilize Pt, enabled the minimized use of precious elements while maintaining excellent catalytic properties. Even with 100 ppm Pt and 1 wt % Ga, the catalyst exhibited superior activity, selectivity, and stability compared to the benchmark catalyst, PtSn/γ-Al2O3, with 7000 ppm (0.7 wt %) Pt.
Collapse
Affiliation(s)
- Susung Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Han Chang Kwon
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jaewoo Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyeyoung Shin
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - DongHwan Oh
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin Seok
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong-Chul Kim
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Minkee Choi
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Bao Z, Jiang M, Sun Z, Zhang M, Dong J, Lv T, Sun C, Chen X, Huang Z, Yin P. Manipulating Oxygen Vacancies in γ-Ga 2O 3 Nanocrystals: Correlation between Defect Location, Charge State, and Photophysical Properties. J Phys Chem Lett 2024; 15:12477-12484. [PMID: 39668359 DOI: 10.1021/acs.jpclett.4c03000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Recent advancements in colloidal synthesis have enabled precise control of extrinsic dopants in semiconductor nanocrystals (NCs), enriching our understanding of dopant-exciton interactions and opening new avenues for controlling NC properties. However, the manipulation of intrinsic defects in colloidal NCs remains challenging. Here, we demonstrate regulation of oxygen vacancy concentration and location in γ-Ga2O3 NCs, significantly altering their photoluminescent properties. Spectroscopic analysis and density functional theory calculations reveal that bulk oxygen vacancies are mostly neutral and lead to the formation of a deep donor band that contributes to the UV emission. Conversely, surface-proximate oxygen vacancies, influenced by the band bending effect, exhibit a tendency toward double ionization, giving rise to the characteristic donor-acceptor pair emission. This work highlights the correlation between the oxygen vacancy location and charge states, leading to diverse defective states and distinct photophysical processes. Precise defect manipulation offers new insights into structure-property relationships and the design of functional nanomaterials.
Collapse
Affiliation(s)
- Zhongyao Bao
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ming Jiang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhaofei Sun
- Center of Free Electron Laser and High Magnetic Field, and Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Mengxuan Zhang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Junjie Dong
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Tianxiang Lv
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Chenzhe Sun
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Xuegang Chen
- Center of Free Electron Laser and High Magnetic Field, and Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Zhen Huang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Penghui Yin
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
6
|
Jung HI, Choi H, Song YJ, Kim JH, Yoon Y. Synergistic augmentation and fundamental mechanistic exploration of β-Ga 2O 3-rGO photocatalyst for efficient CO 2 reduction. NANOSCALE ADVANCES 2024; 6:4611-4624. [PMID: 39263398 PMCID: PMC11385812 DOI: 10.1039/d4na00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/14/2024] [Indexed: 09/13/2024]
Abstract
We explore the novel photodecomposition capabilities of β-Ga2O3 when augmented with reduced graphene oxide (rGO). Employing real-time spectroscopy, this study unveils the sophisticated mechanisms of photodecomposition, identifying an optimal 1 wt% β-Ga2O3-rGO ratio that substantially elevates the degradation efficiency of Methylene Blue (MB). Our findings illuminate a direct relationship between the photocatalyst's composition and its performance, with the quantity of rGO synthesis notably influencing the catalyst's morphology and consequently, its photodegradation potency. The 1 wt% β-Ga2O3-rGO composition stands out in its class, showing a notable 4.7-fold increase in CO production over pristine β-Ga2O3 and achieving CO selectivity above 98%. This remarkable performance is a testament to the significant improvements rendered by our novel rGO integration technique. Such promising results highlight the potential of our custom-designed β-Ga2O3-rGO photocatalyst for critical environmental applications, representing a substantial leap forward in photocatalytic technology.
Collapse
Affiliation(s)
- Hye-In Jung
- Korea Aerospace University, Department of Materials Engineering Goyang Republic of Korea
| | - Hangyeol Choi
- Korea Aerospace University, Department of Materials Engineering Goyang Republic of Korea
| | - Yu-Jin Song
- Dong-A University, Department of Materials Science and Engineering Busan Republic of Korea
| | - Jung Han Kim
- Dong-A University, Department of Materials Science and Engineering Busan Republic of Korea
| | - Yohan Yoon
- Korea Aerospace University, Department of Materials Engineering Goyang Republic of Korea
| |
Collapse
|
7
|
Han X, Yang Y, Chen R, Zhou J, Yang X, Wang X, Ji H. One-dimensional Ga 2O 3-Al 2O 3 nanofibers with unsaturated coordination Ga: Catalytic dehydrogenation of propane under CO 2 atmosphere with excellent stability. J Colloid Interface Sci 2024; 666:76-87. [PMID: 38583212 DOI: 10.1016/j.jcis.2024.03.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
The pressing demand for propylene has spurred intensive research on the catalytic dehydrogenation of propane to produce propylene. Gallium-based catalysts are regarded as highly promising due to their exceptional dehydrogenation activity in the presence of CO2. However, the inherent coking issue associated with high temperature reactions poses a constraint on the stability development of this process. In this study, we employed the electrospinning method to prepare a range of Ga2O3-Al2O3 mixed oxide one-dimensional nanofiber catalysts with varying molar ratios for CO2 oxidative dehydrogenation of propane (CO2-OPDH). The propane conversion was up to 48.4 % and the propylene selectivity was high as 96.8 % at 500 °C, the ratio of propane to carbon dioxide is 1:2. After 100 h of reaction, the catalyst still maintains approximately 10 % conversion and exhibits a propylene selectivity of around 98 %. The electrospinning method produces one-dimensional nanostructures with a larger specific surface area, unique multi-stage pore structure and low-coordinated Ga3+, which enhances mass transfer and accelerates reaction intermediates. This results in less coking and improved catalyst stability. The high activity of the catalyst is attributed to an abundance of low-coordinated Ga3+ ions associated with weak/medium-strong Lewis acid centers. In situ infrared analysis reveals that the reaction mechanism involves a two-step dehydrogenation via propane isocleavage, with the second dehydrogenation of Ga-OR at the metal-oxygen bond being the decisive speed step.
Collapse
Affiliation(s)
- Xue Han
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China, 530004
| | - Yun Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275
| | - Rui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275
| | - Jiaqi Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275
| | - Xupeng Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275
| | - Xuyu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275.
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China, 530004; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 510275; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China, 310014.
| |
Collapse
|
8
|
Ye J, Jin S, Cheng Y, Xu H, Wu C, Wu F, Guo D. Photocurrent Ambipolar Behavior in Phase Junction of a Ga 2O 3 Porous Nanostructure for Solar-Blind Light Control Logic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26512-26520. [PMID: 38730549 DOI: 10.1021/acsami.4c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Photoelectrochemical (PEC) devices are the most similar artificial devices to the nervous system, which is expected to solve the problem of complex computer/nervous system interface (solid-liquid interface) and multifunctional integration (photoelectric fusion) required in the post-Moore era. Based on the different photocurrent ambipolar behavior and different deep ultraviolet solar-blind spectral photoresponse characteristics of α-Ga2O3 and β-Ga2O3, we designed and constructed the Ga2O3 porous nanostructure PEC device with an adjustable photocurrent bipolar behavior through constructing an α/β phase junction core-shell structure by adjusting the thickness and the surface state of the shell layer. The switching point of the α/β-Ga2O3 ambipolar photocurrent shifts toward negative values with the increase of β-Ga2O3 shell layer thicknesses, and adjustable Boolean logic gates are prepared using the voltage as the input source with a high accuracy manipulated by solar-blind deep ultraviolet light. The controllable solar-blind logic gates based on the ambipolar photocurrent behavior of α/β-Ga2O3 presented in this study offer a new path for the photoelectric device multifunctional integration needed in the post-Moore era, which can be used in the creation of Ga2O3 half adders and full adders, as well as in the construction of four-input OR gates.
Collapse
Affiliation(s)
- Junhao Ye
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuo Jin
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuexing Cheng
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hangjie Xu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chao Wu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengmin Wu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Daoyou Guo
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
9
|
Qu Z, He G, Zhang T, Fan Y, Guo Y, Hu M, Xu J, Ma Y, Zhang J, Fan W, Sun Q, Mei D, Yu J. Tricoordinated Single-Atom Cobalt in Zeolite Boosting Propane Dehydrogenation. J Am Chem Soc 2024; 146:8939-8948. [PMID: 38526452 DOI: 10.1021/jacs.3c12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Propane dehydrogenation (PDH) reaction has emerged as one of the most promising propylene production routes due to its high selectivity for propylene and good economic benefits. However, the commercial PDH processes usually rely on expensive platinum-based and poisonous chromium oxide based catalysts. The exploration of cost-effective and ecofriendly PDH catalysts with excellent catalytic activity, propylene selectivity, and stability is of great significance yet remains challenging. Here, we discovered a new active center, i.e., an unsaturated tricoordinated cobalt unit (≡Si-O)CoO(O-Mo) in a molybdenum-doped silicalite-1 zeolite, which afforded an unprecedentedly high propylene formation rate of 22.6 molC3H6 gCo-1 h-1 and apparent rate coefficient of 130 molC3H6 gCo-1 h-1 bar-1 with >99% of propylene selectivity at 550 °C. Such activity is nearly one magnitude higher than that of previously reported Co-based catalysts in which cobalt atoms are commonly tetracoordinated, and even superior to that of most of Pt-based catalysts under similar operating conditions. Density functional theory calculations combined with the state-of-the-art characterizations unravel the role of the unsaturated tricoordinated Co unit in facilitating the C-H bond-breaking of propane and propylene desorption. The present work opens new opportunities for future large-scale industrial PDH production based on inexpensive non-noble metal catalysts.
Collapse
Affiliation(s)
- Ziqiang Qu
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Guangyuan He
- School of Environmental Science and Engineering and School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
| | - Tianjun Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Yaqi Fan
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yanxia Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Min Hu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Donghai Mei
- School of Environmental Science and Engineering and School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Sun G, Zhao ZJ, Li L, Pei C, Chang X, Chen S, Zhang T, Tian K, Sun S, Zheng L, Gong J. Metastable gallium hydride mediates propane dehydrogenation on H 2 co-feeding. Nat Chem 2024; 16:575-583. [PMID: 38168925 DOI: 10.1038/s41557-023-01392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024]
Abstract
In heterogeneous catalysis, the catalytic dehydrogenation reactions of hydrocarbons often exhibit a negative pressure dependence on hydrogen due to the competitive chemisorption of hydrocarbons and hydrogen. However, some catalysts show a positive pressure dependence for propane dehydrogenation, an important reaction for propylene production. Here we show that the positive activity dependence on H2 partial pressure of gallium oxide-based catalysts arises from metastable hydride mediation. Through in situ spectroscopic, kinetic and computational analyses, we demonstrate that under reaction conditions with H2 co-feeding, the dissociative adsorption of H2 on a partially reduced gallium oxide surface produces H atoms chemically bonded to coordinatively unsaturated Ga atoms. These metastable gallium hydride species promote C-H bond activation while inhibiting deep dehydrogenation. We found that the surface coverage of gallium hydride determines the catalytic performance. Accordingly, benefiting from proper H2 co-feeding, the alumina-supported, trace additive-modified gallium oxide catalyst GaOx-Ir-K/Al2O3 exhibited high activity and selectivity at high propane concentrations.
Collapse
Affiliation(s)
- Guodong Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Lulu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Tingting Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Kaige Tian
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Shijia Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China.
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| |
Collapse
|
11
|
Zimmerli NK, Rochlitz L, Checchia S, Müller CR, Copéret C, Abdala PM. Structure and Role of a Ga-Promoter in Ni-Based Catalysts for the Selective Hydrogenation of CO 2 to Methanol. JACS AU 2024; 4:237-252. [PMID: 38274252 PMCID: PMC10806875 DOI: 10.1021/jacsau.3c00677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Supported, bimetallic catalysts have shown great promise for the selective hydrogenation of CO2 to methanol. In this study, we decipher the catalytically active structure of Ni-Ga-based catalysts. To this end, model Ni-Ga-based catalysts, with varying Ni:Ga ratios, were prepared by a surface organometallic chemistry approach. In situ differential pair distribution function (d-PDF) analysis revealed that catalyst activation in H2 leads to the formation of nanoparticles based on a Ni-Ga face-centered cubic (fcc) alloy along with a small quantity of GaOx. Structure refinements of the d-PDF data enabled us to determine the amount of both alloyed Ga and GaOx species. In situ X-ray absorption spectroscopy experiments confirmed the presence of alloyed Ga and GaOx and indicated that alloying with Ga affects the electronic structure of metallic Ni (viz., Niδ-). Both the Ni:Ga ratio in the alloy and the quantity of GaOx are found to minimize methanation and to determine the methanol formation rate and the resulting methanol selectivity. The highest formation rate and methanol selectivity are found for a Ni-Ga alloy having a Ni:Ga ratio of ∼75:25 along with a small quantity of oxidized Ga species (0.14 molNi-1). Furthermore, operando infrared spectroscopy experiments indicate that GaOx species play a role in the stabilization of formate surface intermediates, which are subsequently further hydrogenated to methoxy species and ultimately to methanol. Notably, operando XAS shows that alloying between Ni and Ga is maintained under reaction conditions and is key to attaining a high methanol selectivity (by minimizing CO and CH4 formation), while oxidized Ga species enhance the methanol formation rate.
Collapse
Affiliation(s)
- Nora K. Zimmerli
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| | - Lukas Rochlitz
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, CH 8093 Zürich, Switzerland
| | - Stefano Checchia
- ESRF
− The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Christoph R. Müller
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, CH 8093 Zürich, Switzerland
| | - Paula M. Abdala
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| |
Collapse
|
12
|
Chen Z, Zimmerli NK, Zubair M, Yakimov AV, Björgvinsdóttir S, Alaniva N, Willinger E, Barnes AB, Bedford NM, Copéret C, Florian P, Abdala PM, Fedorov A, Müller CR. Nature of GaO x Shells Grown on Silica by Atomic Layer Deposition. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7475-7490. [PMID: 37780414 PMCID: PMC10536998 DOI: 10.1021/acs.chemmater.3c00923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/02/2023] [Indexed: 10/03/2023]
Abstract
Gallia-based shells with a thickness varying from a submonolayer to ca. 2.5 nm were prepared by atomic layer deposition (ALD) using trimethylgallium, ozone, and partially dehydroxylated silica, followed by calcination at 500 °C. Insight into the atomic-scale structure of these shells was obtained by high-field 71Ga solid-state nuclear magnetic resonance (NMR) experiments and the modeling of X-ray differential pair distribution function data, complemented by Ga K-edge X-ray absorption spectroscopy and 29Si dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) studies. When applying one ALD cycle, the grown submonolayer contains mostly tetracoordinate Ga sites with Si atoms in the second coordination sphere ([4]Ga(Si)) and, according to 15N DNP SENS using pyridine as the probe molecule, both strong Lewis acid sites (LAS) and strong Brønsted acid sites (BAS), consistent with the formation of gallosilicate Ga-O-Si and Ga-μ2-OH-Si species. The shells obtained using five and ten ALD cycles display characteristics of amorphous gallia (GaOx), i.e., an increased relative fraction of pentacoordinate sites ([5]Ga(Ga)), the presence of mild LAS, and a decreased relative abundance of strong BAS. The prepared Ga1-, Ga5-, and Ga10-SiO2-500 materials catalyze the dehydrogenation of isobutane to isobutene, and their catalytic performance correlates with the relative abundance and strength of LAS and BAS, viz., Ga1-SiO2-500, a material with a higher relative fraction of strong LAS, is more active and stable compared to Ga5- and Ga10-SiO2-500. In contrast, related ALD-derived Al1-, Al5-, and Al10-SiO2-500 materials do not catalyze the dehydrogenation of isobutane and this correlates with the lack of strong LAS in these materials that instead feature abundant strong BAS formed via the atomic-scale mixing of Al sites with silica, leading to Al-μ2-OH-Si sites. Our results suggest that [4]Ga(Si) sites provide strong Lewis acidity and drive the dehydrogenation activity, while the appearance of [5]Ga(Ga) sites with mild Lewis activity is associated with catalyst deactivation through coking. Overall, the atomic-level insights into the structure of the GaOx-based materials prepared in this work provide a guide to design active Ga-based catalysts by a rational tailoring of Lewis and Brønsted acidity (nature, strength, and abundance).
Collapse
Affiliation(s)
- Zixuan Chen
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Nora K. Zimmerli
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Muhammad Zubair
- School
of Chemical Engineering, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander V. Yakimov
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | | | - Nicholas Alaniva
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Elena Willinger
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Alexander B. Barnes
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Nicholas M. Bedford
- School
of Chemical Engineering, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Pierre Florian
- CNRS,
CEMHTI UPR3079, Université d’Orléans, F-45071 Orléans, France
| | - Paula M. Abdala
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Alexey Fedorov
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Christoph R. Müller
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Li X, Rui P, Huang W, Yao X, Ye Y, Ye T, Morgan DJ, Carter JH. Propane Dehydrogenation Using Platinum Supported on Gallium-Doped Silica. Catal Letters 2023. [DOI: 10.1007/s10562-023-04328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
14
|
Zhao D, Gao M, Tian X, Doronkin DE, Han S, Grunwaldt JD, Rodemerck U, Linke D, Ye M, Jiang G, Jiao H, Kondratenko EV. Effect of Diffusion Constraints and ZnO x Speciation on Nonoxidative Dehydrogenation of Propane and Isobutane over ZnO-Containing Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Dan Zhao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Mingbin Gao
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xinxin Tian
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Dmitry E. Doronkin
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Shanlei Han
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Jan-Dierk Grunwaldt
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Uwe Rodemerck
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| | - David Linke
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| | - Mao Ye
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| | - Evgenii V. Kondratenko
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| |
Collapse
|
15
|
Feng F, Zhang H, Chu S, Zhang Q, Wang C, Wang G, Wang F, Bing L, Han D. Recent progress on the traditional and emerging catalysts for propane dehydrogenation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Chen H, Gao P, Liu Z, Liang L, Han Q, Wang Z, Chen K, Zhao Z, Guo M, Liu X, Han X, Bao X, Hou G. Direct Detection of Reactive Gallium-Hydride Species on the Ga 2O 3 Surface via Solid-State NMR Spectroscopy. J Am Chem Soc 2022; 144:17365-17375. [DOI: 10.1021/jacs.2c01005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hongyu Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhengmao Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Liang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Meiling Guo
- Energy Innovation Laboratory, BP (China) Dalian Office, Dalian 116023, China
| | - Xuebin Liu
- Energy Innovation Laboratory, BP (China) Dalian Office, Dalian 116023, China
| | - Xiuwen Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
17
|
Chernyak SA, Corda M, Dath JP, Ordomsky VV, Khodakov AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev 2022; 51:7994-8044. [PMID: 36043509 DOI: 10.1039/d1cs01036k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.
Collapse
Affiliation(s)
- Sergei A Chernyak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Massimo Corda
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Jean-Pierre Dath
- Direction Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Vitaly V Ordomsky
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Andrei Y Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| |
Collapse
|
18
|
Yang F, Zhang J, Shi Z, Chen J, Wang G, He J, Zhao J, Zhuo R, Wang R. Advanced design and development of catalysts in propane dehydrogenation. NANOSCALE 2022; 14:9963-9988. [PMID: 35815671 DOI: 10.1039/d2nr02208g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Propane dehydrogenation (PDH) is an industrial technology for direct propylene production, which has received extensive attention and realized large-scale application. At present, the commercial Pt/Cr-based catalysts suffer from fast deactivation and inferior stability resulting from active species sintering and coke depositing. To overcome the above problems, several strategies such as the modification of the support and the introduction of additives have been proposed to strengthen the catalytic performance and prolong the robust stability of Pt/Cr-based catalysts. This review firstly gives a brief description of the development of PDH and PDH catalysts. Then, the advanced research progress of supported noble metals and non-noble metals together with metal-free materials for PDH is systematically summarized along with the material design and active origin as well as the existing problems in the development of PDH catalysts. Furthermore, the review also emphasizes advanced synthetic strategies based on novel design of PDH catalysts with improved dehydrogenation activity and stability. Finally, the future challenges and directions of PDH catalysts are provided for the development of their further industrial application.
Collapse
Affiliation(s)
- Fuwen Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zongbo Shi
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junjie He
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junyu Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | | | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Zimmerli NK, Müller CR, Abdala PM. Deciphering the structure of heterogeneous catalysts across scales using pair distribution function analysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Huang M, Maeno Z, Toyao T, Shimizu KI. Ga speciation and ethane dehydrogenation catalysis of Ga-CHA and MOR: Comparative investigation with Ga-MFI. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Ni L, Khare R, Bermejo-Deval R, Zhao R, Tao L, Liu Y, Lercher JA. Highly Active and Selective Sites for Propane Dehydrogenation in Zeolite Ga-BEA. J Am Chem Soc 2022; 144:12347-12356. [PMID: 35771043 DOI: 10.1021/jacs.2c03810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly selective Ga-modified zeolite BEA for propane dehydrogenation has been synthesized by grafting Ga on Zn-BEA followed by removal of Zn in the presence of H2. A propene selectivity of 82% at 19% propane conversion illustrates the high selectivity at 813 K. The kinetic model of the catalyzed dehydrogenation including the elementary steps of propane adsorption, first and second C-H bond cleavage, and propene and H2 desorption demonstrates that the propane dehydrogenation rate is determined by the first C-H bond cleavage at low pC3H8, while at high pC3H8, the rate is limited by the desorption of H2. The active sites have been identified as dehydrated and tetrahedrally coordinated Ga3+ in the *BEA lattice. The low selectivity toward aromatics is concluded to be associated with the high Lewis acid strength of lattice Ga3+ and the low Brønsted acid strength of the hydrated Ga sites.
Collapse
Affiliation(s)
- Lingli Ni
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany
| | - Ricardo Bermejo-Deval
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany
| | - Ruixue Zhao
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany
| | - Lei Tao
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
22
|
Steering the reaction pathway of syngas-to-light olefins with coordination unsaturated sites of ZnGaO x spinel. Nat Commun 2022; 13:2742. [PMID: 35585075 PMCID: PMC9117195 DOI: 10.1038/s41467-022-30344-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
Significant progress has been demonstrated in the development of bifunctional oxide-zeolite catalyst concept to tackle the selectivity challenge in syngas chemistry. Despite general recognition on the importance of defect sites of metal oxides for CO/H2 activation, the actual structure and catalytic roles are far from being well understood. We demonstrate here that syngas conversion can be steered along a highly active and selective pathway towards light olefins via ketene-acetate (acetyl) intermediates by the surface with coordination unsaturated metal species, oxygen vacancies and zinc vacancies over ZnGaOx spinel-SAPO-34 composites. It gives 75.6% light-olefins selectivity and 49.5% CO conversion. By contrast, spinel-SAPO-34 containing only a small amount of oxygen vacancies and zinc vacancies gives only 14.9% light olefins selectivity at 6.6% CO conversion under the same condition. These findings reveal the importance to tailor the structure of metal oxides with coordination unsaturated metal sites/oxygen vacancies in selectivity control within the oxide-zeolite framework for syngas conversion and being anticipated also for CO2 hydrogenation.
Collapse
|
23
|
Baumgarten R, Ingale P, Knemeyer K, Naumann d’Alnoncourt R, Driess M, Rosowski F. Synthesis of High Surface Area-Group 13-Metal Oxides via Atomic Layer Deposition on Mesoporous Silica. NANOMATERIALS 2022; 12:nano12091458. [PMID: 35564168 PMCID: PMC9104076 DOI: 10.3390/nano12091458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/10/2022]
Abstract
The atomic layer deposition of gallium and indium oxide was investigated on mesoporous silica powder and compared to the related aluminum oxide process. The respective oxide (GaOx, InOx) was deposited using sequential dosing of trimethylgallium or trimethylindium and water at 150 °C. In-situ thermogravimetry provided direct insight into the growth rates and deposition behavior. The highly amorphous and well-dispersed nature of the oxides was shown by XRD and STEM EDX-mappings. N2 sorption analysis revealed that both ALD processes resulted in high specific surface areas while maintaining the pore structure. The stoichiometry of GaOx and InOx was suggested by thermogravimetry and confirmed by XPS. FTIR and solid-state NMR were conducted to investigate the ligand deposition behavior and thermogravimetric data helped estimate the layer thicknesses. Finally, this study provides a deeper understanding of ALD on powder substrates and enables the precise synthesis of high surface area metal oxides for catalytic applications.
Collapse
Affiliation(s)
- Robert Baumgarten
- BasCat—UniCat BASF JointLab, Technische Universität Berlin, Hardenberstraße 36, 10623 Berlin, Germany; (R.B.); (P.I.); (K.K.); (M.D.); (F.R.)
| | - Piyush Ingale
- BasCat—UniCat BASF JointLab, Technische Universität Berlin, Hardenberstraße 36, 10623 Berlin, Germany; (R.B.); (P.I.); (K.K.); (M.D.); (F.R.)
| | - Kristian Knemeyer
- BasCat—UniCat BASF JointLab, Technische Universität Berlin, Hardenberstraße 36, 10623 Berlin, Germany; (R.B.); (P.I.); (K.K.); (M.D.); (F.R.)
| | - Raoul Naumann d’Alnoncourt
- BasCat—UniCat BASF JointLab, Technische Universität Berlin, Hardenberstraße 36, 10623 Berlin, Germany; (R.B.); (P.I.); (K.K.); (M.D.); (F.R.)
- Correspondence: ; Tel.: +49-30-314-73683
| | - Matthias Driess
- BasCat—UniCat BASF JointLab, Technische Universität Berlin, Hardenberstraße 36, 10623 Berlin, Germany; (R.B.); (P.I.); (K.K.); (M.D.); (F.R.)
- Institut für Chemie: Metallorganik und Anorganische Materialien, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Frank Rosowski
- BasCat—UniCat BASF JointLab, Technische Universität Berlin, Hardenberstraße 36, 10623 Berlin, Germany; (R.B.); (P.I.); (K.K.); (M.D.); (F.R.)
- Process Research and Chemical Engineering, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| |
Collapse
|
24
|
Merko M, Busser GW, Muhler M. Non‐oxidative dehydrogenation of methanol to formaldehyde over bulk β‐Ga2O3. ChemCatChem 2022. [DOI: 10.1002/cctc.202200258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mariia Merko
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Department of Chemistry and Biochemistry 44780 Bochum GERMANY
| | - G. Wilma Busser
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Department of Chemistry and Biochemistry 44780 Bochum GERMANY
| | - Martin Muhler
- Ruhr University Bochum Faculty of Chemistry and Biochemistry: Ruhr Universitat Bochum Fakultat fur Chemie und Biochemie Chemistry and Biochemistry Universitätsstr. 150 44801 Bochum GERMANY
| |
Collapse
|
25
|
Abdelgaid M, Mpourmpakis G. Structure–Activity Relationships in Lewis Acid–Base Heterogeneous Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mona Abdelgaid
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
26
|
Castro-Fernández P, Mance D, Liu C, Abdala PM, Willinger E, Rossinelli A, Serykh AI, Pidko EA, Copéret C, Fedorov A, Müller CR. Bulk and Surface Transformations of Ga2O3 Nanoparticle Catalysts for Propane Dehydrogenation Induced by a H2 Treatment. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Zhang B, Song M, Liu H, Li G, Liu S, Wang L, Zhang X, Liu G. Role of Ni species in ZnO Supported on Silicalite-1 for Efficient Propane Dehydrogenation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Wang W, Wu Y, Liu T, Zhao Y, Qu Y, Yang R, Xue Z, Wang Z, Zhou F, Long J, Yang Z, Han X, Lin Y, Chen M, Zheng L, Zhou H, Lin X, Wu F, Wang H, Yang Y, Li Y, Dai Y, Wu Y. Single Co Sites in Ordered SiO2 Channels for Boosting Nonoxidative Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenyu Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tianyang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Yafei Zhao
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunteng Qu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhenggang Xue
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiyuan Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fangyao Zhou
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangping Long
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengkun Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiao Han
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Lin
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Chen
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lirong Zheng
- Institute of High Energy Physics, Beijing 100049, China
| | - Huang Zhou
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingen Lin
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Yihu Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuen Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
29
|
Castro-Fernández P, Serykh AI, Yakimov AV, Prosvirin IP, Bukhtiyarov AV, Abdala PM, Copéret C, Fedorov A, Müller CR. Atomic-scale changes of silica-supported catalysts with nanocrystalline or amorphous gallia phases: implications of hydrogen pretreatment on their selectivity for propane dehydrogenation. Catal Sci Technol 2022; 12:3957-3968. [PMID: 35814525 PMCID: PMC9208381 DOI: 10.1039/d2cy00074a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/01/2022] [Indexed: 12/22/2022]
Abstract
This work explores how H2 pretreatment at 550 °C induces structural transformation of two gallia-based propane dehydrogenation (PDH) catalysts, viz. nanocrystalline γ/β-Ga2O3 and amorphous Ga2O3 (GaOx) supported on silica (γ-Ga2O3/SiO2 and Ga/SiO2, respectively) and how it affects their activity, propene selectivity and stability with time on stream (TOS). Ga/SiO2–H2 shows poor activity and propene selectivity, no coking and no deactivation with TOS, similar to Ga/SiO2. In contrast, the high initial activity and propene selectivity of γ-Ga2O3/SiO2–H2 decline with TOS but to a lesser extent than in calcined γ-Ga2O3/SiO2. In addition, γ-Ga2O3/SiO2–H2 cokes less than γ-Ga2O3/SiO2. Ga K-edge X-ray absorption spectroscopy suggests an increased disorder of the nanocrystalline γ/β-Ga2O3 phases in γ-Ga2O3/SiO2–H2 and the emergence of additional tetrahedral Ga sites (GaIV). Such GaIV sites are strong Lewis acid sites (LAS) according to studies using adsorbed pyridine and CO probe molecules, i.e., the abundance of strong LAS is higher in γ-Ga2O3/SiO2–H2 compared to γ-Ga2O3/SiO2 but lower than in Ga/SiO2 and Ga/SiO2–H2. Dissociation of H2 on the Ga–O linkages in γ-Ga2O3/SiO2–H2 yields high-frequency Ga–H bands that are observed in Ga/SiO2 and Ga/SiO2–H2 but not detected in γ-Ga2O3/SiO2. We attribute the increased amount of GaIV sites in γ-Ga2O3/SiO2–H2 mostly to an increased disorder in γ/β-Ga2O3. X-ray photoelectron spectroscopy detects the formation of Ga+ and Ga0 species in both Ga/SiO2–H2 and γ-Ga2O3/SiO2–H2. Therefore, it is likely that a minor amount of GaIV sites also forms through the interaction of Ga+ (such as Ga2O) and/or Ga0 with silanol groups of SiO2. We explore how H2 pretreatment changes the structure of two gallia-based propane dehydrogenation catalysts, viz. crystalline γ/β-Ga2O3 and amorphous Ga2O3 supported on silica, and how it affects their activity, selectivity and stability on stream.![]()
Collapse
Affiliation(s)
- Pedro Castro-Fernández
- Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland
| | | | - Alexander V. Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | | | | | - Paula M. Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Christoph R. Müller
- Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland
| |
Collapse
|
30
|
Huang M, Yasumura S, Li L, Toyao T, Maeno Z, Shimizu KI. High-loading Ga-exchanged MFI zeolites as selective and coke-resistant catalysts for nonoxidative ethane dehydrogenation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01799c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A high-loading Ga-exchanged MFI zeolite was developed for efficient ethane dehydrogenation. Its high catalytic performance is ascribed to both the low amount of Brønsted acid sites and the major formation of [GaH2]+ ions among isolated Ga hydrides.
Collapse
Affiliation(s)
- Mengwen Huang
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Lingcong Li
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
31
|
Castro-Fernández P, Kaushik M, Wang Z, Mance D, Kountoupi E, Willinger E, Abdala PM, Copéret C, Lesage A, Fedorov A, Müller CR. Uncovering selective and active Ga surface sites in gallia-alumina mixed-oxide propane dehydrogenation catalysts by dynamic nuclear polarization surface enhanced NMR spectroscopy. Chem Sci 2021; 12:15273-15283. [PMID: 34976347 PMCID: PMC8635172 DOI: 10.1039/d1sc05381g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Gallia–alumina (Ga,Al)2O3(x : y) spinel-type solid solution nanoparticle catalysts for propane dehydrogenation (PDH) were prepared with four nominal Ga : Al atomic ratios (1 : 6, 1 : 3, 3 : 1, 1 : 0) using a colloidal synthesis approach. The structure, coordination environment and distribution of Ga and Al sites in these materials were investigated by X-ray diffraction, X-ray absorption spectroscopy (Ga K-edge) as well as 27Al and 71Ga solid state nuclear magnetic resonance. The surface acidity (Lewis or Brønsted) was probed using infrared spectroscopy with pyridine and 2,6-dimethylpyridine probe molecules, complemented by element-specific insights (Ga or Al) from dynamic nuclear polarization surface enhanced cross-polarization magic angle spinning 15N{27Al} and 15N{71Ga} J coupling mediated heteronuclear multiple quantum correlation NMR experiments using 15N-labelled pyridine as a probe molecule. The latter approach provides unique insights into the nature and relative strength of the surface acid sites as it allows to distinguish contributions from Al and Ga sites to the overall surface acidity of mixed (Ga,Al)2O3 oxides. Notably, we demonstrate that (Ga,Al)2O3 catalysts with a high Al content show a greater relative abundance of four-coordinated Ga sites and a greater relative fraction of weak/medium Ga-based surface Lewis acid sites, which correlates with superior propene selectivity, Ga-based activity, and stability in PDH (due to lower coking). In contrast, (Ga,Al)2O3 catalysts with a lower Al content feature a higher fraction of six-coordinated Ga sites, as well as more abundant Ga-based strong surface Lewis acid sites, which deactivate through coking. Overall, the results show that the relative abundance and strength of Ga-based surface Lewis acid sites can be tuned by optimizing the bulk Ga : Al atomic ratio, thus providing an effective measure for a rational control of the catalyst performance. Coordination geometry and Lewis acidity of Ga and Al (bulk and surface) sites in mixed oxide gallia–alumina nanoparticles is correlated with the performance in propane dehydrogenation.![]()
Collapse
Affiliation(s)
| | - Monu Kaushik
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Zhuoran Wang
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Deni Mance
- Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Evgenia Kountoupi
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Elena Willinger
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Anne Lesage
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| |
Collapse
|
32
|
Praveen CS, Comas-Vives A. Activity Trends in the Propane Dehydrogenation Reaction Catalyzed by MIII Sites on an Amorphous SiO2 Model: A Theoretical Perspective. Top Catal 2021. [DOI: 10.1007/s11244-021-01535-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractOne class of particularly active catalysts for the Propane Dehydrogenation (PDH) reaction are well-defined M(III) sites on amorphous SiO2. In the present work, we focus on evaluating the catalytic trends of the PDH for four M(III) single-sites (Cr, Mo, Ga and In) on a realistic amorphous model of SiO2 using density functional theory-based calculations and the energetic span model. We considered a catalytic pathway spanned by three reaction steps taking place on selected MIII–O pair of the SiO2 model: σ-bond metathesis of propane on a MIII–O bond to form M-propyl and O–H group, a β-H transfer step forming M–H and propene, and the H–H coupling step producing H2 and regenerating the initial M–O bond. With the application of the energetic span model, we found that the calculated catalytic activity for Ga and Cr is comparable to the ones reported at the experimental level, enabling us to benchmark the model and the methodology used. Furthermore, results suggest that both In(III) and Mo(III) on SiO2 are potential active catalysts for PDH, provided they can be synthesized and are stable under PDH reaction conditions.
Collapse
|
33
|
Sharma L, Jiang X, Wu Z, DeLaRiva A, Datye AK, Baltrus J, Rangarajan S, Baltrusaitis J. Atomically Dispersed Tin-Modified γ-alumina for Selective Propane Dehydrogenation under H 2S Co-feed. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lohit Sharma
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Xiao Jiang
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Andrew DeLaRiva
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Abhaya K. Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - John Baltrus
- U. S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Srinivas Rangarajan
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
34
|
Xie Q, Miao C, Hua W, Yue Y, Gao Z. Ga-Doped MgAl 2O 4 Spinel as an Efficient Catalyst for Ethane Dehydrogenation to Ethylene Assisted by CO 2. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Xie
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, PR China
| | - Changxi Miao
- Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, PR China
| | - Weiming Hua
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, PR China
| | - Yinghong Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, PR China
| | - Zi Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, PR China
| |
Collapse
|
35
|
Lian Z, Si C, Jan F, Zhi S, Li B. Coke Deposition on Pt-Based Catalysts in Propane Direct Dehydrogenation: Kinetics, Suppression, and Elimination. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00331] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zan Lian
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - Chaowei Si
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - ShuaiKe Zhi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - Bo Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| |
Collapse
|
36
|
Rochlitz L, Searles K, Nater DF, Docherty SR, Gioffrè D, Copéret C. A Molecular Analogue of the C−H Activation Intermediate of the Silica‐Supported Ga(III) Single‐Site Propane Dehydrogenation Catalyst: Structure and XANES Signature. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Rochlitz
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| | - Keith Searles
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| | - Darryl F. Nater
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| | - Scott R. Docherty
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| | - Domenico Gioffrè
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| | - Christophe Copéret
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 1–5 CH-8093 Zurich Switzerland
| |
Collapse
|
37
|
Praveen CS, Borosy AP, Copéret C, Comas-Vives A. Strain in Silica-Supported Ga(III) Sites: Neither Too Much nor Too Little for Propane Dehydrogenation Catalytic Activity. Inorg Chem 2021; 60:6865-6874. [PMID: 33545002 PMCID: PMC8483445 DOI: 10.1021/acs.inorgchem.0c03135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Well-defined Ga(III) sites on SiO2 are highly active, selective, and stable catalysts in the propane dehydrogenation (PDH) reaction. In this contribution, we evaluate the catalytic activity toward PDH of tricoordinated and tetracoordinated Ga(III) sites on SiO2 by means of first-principles calculations using realistic amorphous periodic SiO2 models. We evaluated the three reaction steps in PDH, namely, the C-H activation of propane to form propyl, the β-hydride (β-H) transfer to form propene and a gallium hydride, and the H-H coupling to release H2, regenerating the initial Ga-O bond and closing the catalytic cycle. Our work shows how Brønsted-Evans-Polanyi relationships are followed to a certain extent for these three reaction steps on Ga(III) sites on SiO2 and highlights the role of the strain of the reactive Ga-O pairs on such sites of realistic amorphous SiO2 models. It also shows how transition-state scaling holds very well for the β-H transfer step. While highly strained sites are very reactive sites for the initial C-H activation, they are more difficult to regenerate. The corresponding less strained sites are not reactive enough, pointing to the need for the right balance in strain to be an effective site for PDH. Overall, our work provides an understanding of the intrinsic activity of acidic Ga single sites toward the PDH reaction and paves the way toward the design and prediction of better single-site catalysts on SiO2 for the PDH reaction.
Collapse
Affiliation(s)
- C S Praveen
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - A P Borosy
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - C Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - A Comas-Vives
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
38
|
Docherty SR, Rochlitz L, Payard PA, Copéret C. Heterogeneous alkane dehydrogenation catalysts investigated via a surface organometallic chemistry approach. Chem Soc Rev 2021; 50:5806-5822. [PMID: 33972978 PMCID: PMC8111541 DOI: 10.1039/d0cs01424a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The selective conversion of light alkanes (C2–C6 saturated hydrocarbons) to the corresponding alkene is an appealing strategy for the petrochemical industry in view of the availability of these feedstocks, in particular with the emergence of Shale gas. Here, we present a review of model dehydrogenation catalysts of light alkanes prepared via surface organometallic chemistry (SOMC). A specific focus of this review is the use of molecular strategies for the deconvolution of complex heterogeneous materials that are proficient in enabling dehydrogenation reactions. The challenges associated with the proposed reactions are highlighted, as well as overriding themes that can be ascertained from the systematic study of these challenging reactions using model SOMC catalysts. Alkane dehydrogenation over heterogeneous catalysts has attracted renewed attention in recent years. Here, well-defined catalysts based on isolated metal sites and supported Pt-alloys prepared via SOMC are discussed and compared to classical systems.![]()
Collapse
Affiliation(s)
- Scott R Docherty
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Pierre-Adrien Payard
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| |
Collapse
|
39
|
Büchele S, Zichittella G, Kanatakis S, Mitchell S, Pérez‐Ramírez J. Impact of Heteroatom Speciation on the Activity and Stability of Carbon‐Based Catalysts for Propane Dehydrogenation. ChemCatChem 2021. [DOI: 10.1002/cctc.202100208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Büchele
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Guido Zichittella
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Spyridon Kanatakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Javier Pérez‐Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|