1
|
Paesani M, Goetzee AG, Abeln S, Mouhib H. Odorant Binding Proteins Facilitate the Gas-Phase Uptake of Odorants Through the Nasal Mucus. Chemistry 2025; 31:e202403058. [PMID: 39509459 PMCID: PMC11724230 DOI: 10.1002/chem.202403058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Mammalian odorant binding proteins (OBPs) have long been suggested to transport hydrophobic odorant molecules through the aqueous environment of the nasal mucus. While the function of OBPs as odorant transporters is supported by their hydrophobic beta-barrel structure, no rationale has been provided on why and how these proteins facilitate the uptake of odorants from the gas phase. Here, a multi-scale computational approach validated through available high-resolution spectroscopy experiments reveals that the conformational space explored by carvone inside the binding cavity of porcine OBP (pOBP) is much closer to the gas than the aqueous phase, and that pOBP effectively manages to transport odorants by lowering the free energy barrier of odorant uptake. Understanding such perireceptor events is crucial to fully unravel the molecular processes underlying the olfactory sense and move towards the development of protein-based biomimetic sensor units that can serve as artificial noses.
Collapse
Affiliation(s)
- Massimiliano Paesani
- Department of Computer Science, BioinformaticsVrije Universiteit AmsterdamDe Boelelaan 11051081 HVAmsterdamThe Netherlands
- Van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
| | - Arthur G. Goetzee
- Department of Computer Science, BioinformaticsVrije Universiteit AmsterdamDe Boelelaan 11051081 HVAmsterdamThe Netherlands
| | - Sanne Abeln
- Department of Computer Science, BioinformaticsVrije Universiteit AmsterdamDe Boelelaan 11051081 HVAmsterdamThe Netherlands
- Department of Information and Computing SciencesDepartment of BiologyUtrecht UniversityHeidelberglaan 83584 CSUtrechtThe Netherlands
| | - Halima Mouhib
- Department of Computer Science, BioinformaticsVrije Universiteit AmsterdamDe Boelelaan 11051081 HVAmsterdamThe Netherlands
| |
Collapse
|
2
|
Lee H, Reginald SS, Sravan JS, Lee M, Chang IS. Advanced strategies for enzyme-electrode interfacing in bioelectrocatalytic systems. Trends Biotechnol 2024:S0167-7799(24)00344-5. [PMID: 39674782 DOI: 10.1016/j.tibtech.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Advances in protein engineering-enabled enzyme immobilization technologies have significantly improved enzyme-electrode wiring in enzymatic electrochemical systems, which harness natural biological machinery to either generate electricity or synthesize biochemicals. In this review, we provide guidelines for designing enzyme-electrodes, focusing on how performance variables change depending on electron transfer (ET) mechanisms. Recent advancements in enzyme immobilization technologies are summarized, highlighting their contributions to extending enzyme-electrode sustainability (up to months), enhancing biosensor sensitivity, improving biofuel cell performance, and setting a new benchmark for turnover frequency in bioelectrocatalysis. We also highlight state-of-the-art protein-engineering approaches that enhance enzyme-electrode interfacing through three key principles: protein-protein, protein-ligand, and protein-inorganic interactions. Finally, we discuss prospective avenues in strategic protein design for real-world applications.
Collapse
Affiliation(s)
- Hyeryeong Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Stacy Simai Reginald
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Professorship for Electrobiotechnology, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing 94315, Germany
| | - J Shanthi Sravan
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mungyu Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - In Seop Chang
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
3
|
Sharma G, Kaur B, Singh V, Raheja Y, Falco MD, Tsang A, Chadha BS. Genome and secretome insights: unravelling the lignocellulolytic potential of Myceliophthora verrucosa for enhanced hydrolysis of lignocellulosic biomass. Arch Microbiol 2024; 206:236. [PMID: 38676717 DOI: 10.1007/s00203-024-03974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Lignocellulolytic enzymes from a novel Myceliophthora verrucosa (5DR) strain was found to potentiate the efficacy of benchmark cellulase during saccharification of acid/alkali treated bagasse by ~ 2.24 fold, indicating it to be an important source of auxiliary enzymes. The De-novo sequencing and analysis of M. verrucosa genome (31.7 Mb) revealed to encode for 7989 putative genes, representing a wide array of CAZymes (366) with a high proportions of auxiliary activity (AA) genes (76). The LC/MS QTOF based secretome analysis of M. verrucosa showed high abundance of glycosyl hydrolases and AA proteins with cellobiose dehydrogenase (CDH) (AA8), being the most prominent auxiliary protein. A gene coding for lytic polysaccharide monooxygenase (LPMO) was expressed in Pichia pastoris and CDH produced by M. verrucosa culture on rice straw based solidified medium were purified and characterized. The mass spectrometry of LPMO catalyzed hydrolytic products of avicel showed the release of both C1/C4 oxidized products, indicating it to be type-3. The lignocellulolytic cocktail comprising of in-house cellulase produced by Aspergillus allahabadii strain spiked with LPMO & CDH exhibited enhanced and better hydrolysis of mild alkali deacetylated (MAD) and unwashed acid pretreated rice straw slurry (UWAP), when compared to Cellic CTec3 at high substrate loading rate.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Marcos Di Falco
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | | |
Collapse
|
4
|
Motycka B, Csarman F, Tscheliessnig R, Hammel M, Ludwig R. Resolving domain positions of cellobiose dehydrogenase by small angle X-ray scattering. FEBS J 2023; 290:4726-4743. [PMID: 37287434 PMCID: PMC10592539 DOI: 10.1111/febs.16885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
The interdomain electron transfer (IET) between the catalytic flavodehydrogenase domain and the electron-transferring cytochrome domain of cellobiose dehydrogenase (CDH) plays an essential role in biocatalysis, biosensors and biofuel cells, as well as in its natural function as an auxiliary enzyme of lytic polysaccharide monooxygenase. We investigated the mobility of the cytochrome and dehydrogenase domains of CDH, which is hypothesised to limit IET in solution by small angle X-ray scattering (SAXS). CDH from Myriococcum thermophilum (syn. Crassicarpon hotsonii, syn. Thermothelomyces myriococcoides) was probed by SAXS to study the CDH mobility at different pH and in the presence of divalent cations. By comparison of the experimental SAXS data, using pair-distance distribution functions and Kratky plots, we show an increase in CDH mobility at higher pH, indicating alterations of domain mobility. To further visualise CDH movement in solution, we performed SAXS-based multistate modelling. Glycan structures present on CDH partially masked the resulting SAXS shapes, we diminished these effects by deglycosylation and studied the effect of glycoforms by modelling. The modelling shows that with increasing pH, the cytochrome domain adopts a more flexible state with significant separation from the dehydrogenase domain. On the contrary, the presence of calcium ions decreases the mobility of the cytochrome domain. Experimental SAXS data, multistate modelling and previously reported kinetic data show how pH and divalent ions impact the closed state necessary for the IET governed by the movement of the CDH cytochrome domain.
Collapse
Affiliation(s)
- Bettina Motycka
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Technology, Muthgasse 18, 1190 Vienna, Austria
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190 Vienna, Austria
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkely, California, USA
| | - Florian Csarman
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Technology, Muthgasse 18, 1190 Vienna, Austria
| | - Rupert Tscheliessnig
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190 Vienna, Austria
- Division of Biophysics, Gottfried-Schatz-Research-Center, Medical University of Graz, Graz, Austria
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkely, California, USA
| | - Roland Ludwig
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Technology, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
5
|
Zhang L, Laurent CVF, Schwaiger L, Wang L, Ma S, Ludwig R. Interdomain Linker of the Bioelecrocatalyst Cellobiose Dehydrogenase Governs the Electron Transfer. ACS Catal 2023; 13:8195-8205. [PMID: 37342832 PMCID: PMC10278072 DOI: 10.1021/acscatal.3c02116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Direct bioelectrocatalysis applied in biosensors, biofuel cells, and bioelectrosynthesis is based on an efficient electron transfer between enzymes and electrodes in the absence of redox mediators. Some oxidoreductases are capable of direct electron transfer (DET), while others achieve the enzyme to electrode electron transfer (ET) by employing an electron-transferring domain. Cellobiose dehydrogenase (CDH) is the most-studied multidomain bioelectrocatalyst and features a catalytic flavodehydrogenase domain and a mobile, electron-transferring cytochrome domain connected by a flexible linker. The ET to the physiological redox partner lytic polysaccharide monooxygenase or, ex vivo, electrodes depends on the flexibility of the electron transferring domain and its connecting linker, but the regulatory mechanism is little understood. Studying the linker sequences of currently characterized CDH classes we observed that the inner, mobile linker sequence is flanked by two outer linker regions that are in close contact with the adjacent domain. A function-based definition of the linker region in CDH is proposed and has been verified by rationally designed variants of Neurospora crassa CDH. The effect of linker length and its domain attachment on electron transfer rates has been determined by biochemical and electrochemical methods, while distances between the domains of CDH variants were computed. This study elucidates the regulatory mechanism of the interdomain linker on electron transfer by determining the minimum linker length, observing the effects of elongated linkers, and testing the covalent stabilization of a linker part to the flavodehydrogenase domain. The evolutionary guided, rational design of the interdomain linker provides a strategy to optimize electron transfer rates in multidomain enzymes and maximize their bioelectrocatalytic performance.
Collapse
Affiliation(s)
- Lan Zhang
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Christophe V. F.
P. Laurent
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
- Institute
of Molecular Modeling and Simulation, Department of Material Sciences
and Process Engineering, University of Natural
Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Lorenz Schwaiger
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Lushan Wang
- State
Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, Qingdao 266237, China
| | - Su Ma
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
- State
Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, Qingdao 266237, China
| | - Roland Ludwig
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| |
Collapse
|
6
|
Yu X, Zhao Y, Yu J, Wang L. Recent advances in the efficient degradation of lignocellulosic metabolic networks by lytic polysaccharide monooxygenase. Acta Biochim Biophys Sin (Shanghai) 2023; 55:529-539. [PMID: 37036250 DOI: 10.3724/abbs.2023059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Along with long-term evolution, the plant cell wall generates lignocellulose and other anti-degradation barriers to confront hydrolysis by fungi. Lytic polysaccharide monooxygenase (LPMO) is a newly defined oxidase in lignocellulosic degradation systems that significantly fuels hydrolysis. LPMO accepts electrons from wide sources, such as cellobiose dehydrogenase (CDH), glucose-methanol-choline (GMC) oxidoreductases, and small phenols. In addition, the extracellular cometabolic network formed by cosubstrates improves the degradation efficiency, forming a stable and efficient lignocellulose degradation system. In recent years, using structural proteomics to explore the internal structure and the complex redox system of LPMOs has become a research hotspot. In this review, the diversity of LPMOs, catalytic domains, carbohydrate binding modules, direct electron transfer with CDH, cosubstrates, and degradation networks of LPMOs are explored, which can provide a systematic reference for the application of lignocellulosic degradation systems in industrial approaches.
Collapse
Affiliation(s)
- Xinran Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 266035, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Smuts IE, Blakeway NJ, Rose SH, den Haan R, Viljoen-Bloom M, van Zyl WH. Supplementation of recombinant cellulases with LPMOs and CDHs improves consolidated bioprocessing of cellulose. Enzyme Microb Technol 2023; 164:110171. [PMID: 36549094 DOI: 10.1016/j.enzmictec.2022.110171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
The increased demand for energy has sparked a global search for renewable energy sources that could partly replace fossil fuel resources and help mitigate climate change. Cellulosic biomass is an ideal feedstock for renewable bioethanol production, but the process is not currently economically feasible due to the high cost of pretreatment and enzyme cocktails to release fermentable sugars. Lytic polysaccharide monooxygenases (LPMOs) and cellobiose dehydrogenases (CDHs) are auxiliary enzymes that can enhance cellulose hydrolysis. In this study, four LPMO and two CDH genes were subcloned and expressed in the Saccharomyces cerevisiae Y294 laboratory strain. SDS-PAGE analysis confirmed the extracellular production of the LPMOs and CDHs in the laboratory S. cerevisiae Y294 strain. A rudimentary cellulase cocktail (cellobiohydrolase 1 and 2, endoglucanase and β-glucosidase) was expressed in the commercial CelluX™ 4 strain and extracellular production of the individual cellulases was confirmed by SDS-PAGE analysis. In vitro cooperation of the CDHs and LPMOs with the rudimentary cellulases produced by strain CelluX™ 4[F4-1] was demonstrated on Whatman filter paper. The significant levels of soluble sugars released from this crystalline cellulose substrate indicated that these auxiliary enzymes could be important components of the CBP yeast cellulolytic system.
Collapse
Affiliation(s)
- Ivy E Smuts
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Nicole J Blakeway
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
8
|
Zhao H, Karppi J, Nguyen TTM, Bellemare A, Tsang A, Master E, Tenkanen M. Characterization of a novel AA3_1 xylooligosaccharide dehydrogenase from Thermothelomyces myriococcoides CBS 398.93. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:135. [PMID: 36476312 PMCID: PMC9730589 DOI: 10.1186/s13068-022-02231-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The Carbohydrate-Active enZymes (CAZy) auxiliary activity family 3 (AA3) comprises flavin adenine dinucleotide-dependent (FAD) oxidoreductases from the glucose-methanol-choline (GMC) family, which play auxiliary roles in lignocellulose conversion. The AA3 subfamily 1 predominantly consists of cellobiose dehydrogenases (CDHs) that typically comprise a dehydrogenase domain, a cytochrome domain, and a carbohydrate-binding module from family 1 (CBM1). RESULTS In this work, an AA3_1 gene from T. myriococcoides CBS 398.93 encoding only a GMC dehydrogenase domain was expressed in Aspergillus niger. Like previously characterized CDHs, this enzyme (TmXdhA) predominantly accepts linear saccharides with β-(1 → 4) linkage and targets the hydroxyl on the reducing anomeric carbon. TmXdhA was distinguished, however, by its preferential activity towards xylooligosaccharides over cellooligosaccharides. Amino acid sequence analysis showed that TmXdhA possesses a glutamine at the substrate-binding site rather than a threonine or serine that occupies this position in previously characterized CDHs, and structural models suggest the glutamine in TmXdhA could facilitate binding to pentose sugars. CONCLUSIONS The biochemical analysis of TmXdhA revealed a catalytic preference for xylooligosaccharide substrates. The modeled structure of TmXdhA provides a reference for the screening of oxidoreductases targeting xylooligosaccharides. We anticipate TmXdhA to be a good candidate for the conversion of xylooligosaccharides to added-value chemicals by its exceptional catalytic ability.
Collapse
Affiliation(s)
- Hongbo Zhao
- grid.7737.40000 0004 0410 2071Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Johanna Karppi
- grid.7737.40000 0004 0410 2071Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Thi Truc Minh Nguyen
- grid.410319.e0000 0004 1936 8630Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Annie Bellemare
- grid.410319.e0000 0004 1936 8630Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Adrian Tsang
- grid.410319.e0000 0004 1936 8630Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Emma Master
- grid.5373.20000000108389418Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland ,grid.17063.330000 0001 2157 2938Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON Canada
| | - Maija Tenkanen
- grid.7737.40000 0004 0410 2071Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Qin X, Zou J, Yang K, Li J, Wang X, Tu T, Wang Y, Yao B, Huang H, Luo H. Deciphering the efficient cellulose degradation by the thermophilic fungus Myceliophthora thermophila focused on the synergistic action of glycoside hydrolases and lytic polysaccharide monooxygenases. BIORESOURCE TECHNOLOGY 2022; 364:128027. [PMID: 36174898 DOI: 10.1016/j.biortech.2022.128027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The thermophilic fungus Myceliophthora thermophila as an efficient decomposer secretes various glycoside hydrolases and auxiliary oxidation enzymes to deconstruct cellulose. However, the core enzymes critical for efficient cellulose degradation and their interactions with other cellulolytic enzymes remain unclear. Herein, the transcriptomic analysis of M. thermophila grown on Avicel exhibited that cellulases from GH5_5, GH6 and GH7, and lytic polysaccharide monooxygenases (LPMOs) from AA9 contributed to cellulose degradation. Moreover, the peptide mass fingerprinting analysis of major extracellular proteins and corresponding gene-knockout strains studies revealed that MtCel7A and MtCel5A were the core cellulolytic enzymes. Furthermore, synergistic experiments found that hydrolytic efficiencies of MtCel7A and MtCel5A were both improved by mixture C1/C4 oxidizing MtLPMO9H, but inhibited by C1 oxidizing MtLPMO9E and C4 oxidizing MtLPMO9J respectively. These results demonstrated the potential application of C1/C4 oxidizing LPMOs for future designing novel cellulolytic enzyme cocktails on the efficient conversion of cellulose into biofuels and biochemicals.
Collapse
Affiliation(s)
- Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiahuan Zou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kun Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinyang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Long L, Hu Y, Sun F, Gao W, Hao Z, Yin H. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery. Int J Biol Macromol 2022; 219:68-83. [PMID: 35931294 DOI: 10.1016/j.ijbiomac.2022.07.240] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
One crucial step in processing the recalcitrant lignocellulosic biomass is the fast hydrolysis of natural cellulose to fermentable sugars that can be subsequently converted to biofuels and bio-based chemicals. Recent studies have shown that lytic polysaccharide monooxygenase (LPMOs) with auxiliary activity family 9 (AA9) are capable of efficiently depolymerizing the crystalline cellulose via regioselective oxidation reaction. Intriguingly, the catalysis by AA9 LPMOs requires reductant to provide electrons, and lignin and its phenolic derivatives can be oxidized, releasing reductant to activate the reaction. The activity of AA9 LPMOs can be enhanced by in-situ generation of H2O2 in the presence of O2. Although scientific understanding of these enzymes remains somewhat unknown or controversial, structure modifications on AA9 LPMOs through protein engineering have emerged in recent years, which are prerequisite for their extensive applications in the development of cellulase-mediated lignocellulosic biorefinery processes. In this review, we critically comment on advances in studies for AA9 LPMOs, i.e., characteristic of AA9 LPMOs catalysis, external electron donors to AA9 LPMOs, especially the role of the oxidization of lignin and its derivatives, and AA9 LPMOs protein engineering as well as their extensive applications in the bioprocessing of lignocellulosic biomass. Perspectives are also highlighted for addressing the challenges.
Collapse
Affiliation(s)
- Lingfeng Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Wa Gao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| | - Zhikui Hao
- Institute of Applied Biotechnology, School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| |
Collapse
|
11
|
Terrasan CRF, Rubio MV, Gerhardt JA, Cairo JPF, Contesini FJ, Zubieta MP, de Figueiredo FL, Valadares FL, Corrêa TLR, Murakami MT, Franco TT, Davies GJ, Walton PH, Damasio A. Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose. Microbiol Spectr 2022; 10:e0212521. [PMID: 35658600 PMCID: PMC9241910 DOI: 10.1128/spectrum.02125-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes found in viruses, archaea, and bacteria as well as eukaryotes, such as fungi, algae and insects, actively contributing to the degradation of different polysaccharides. In Aspergillus nidulans, LPMOs from family AA9 (AnLPMO9s), along with an AA3 cellobiose dehydrogenase (AnCDH1), are cosecreted upon growth on crystalline cellulose and lignocellulosic substrates, indicating their role in the degradation of plant cell wall components. Functional analysis revealed that three target LPMO9s (AnLPMO9C, AnLPMO9F and AnLPMO9G) correspond to cellulose-active enzymes with distinct regioselectivity and activity on cellulose with different proportions of crystalline and amorphous regions. AnLPMO9s deletion and overexpression studies corroborate functional data. The abundantly secreted AnLPMO9F is a major component of the extracellular cellulolytic system, while AnLPMO9G was less abundant and constantly secreted, and acts preferentially on crystalline regions of cellulose, uniquely displaying activity on highly crystalline algae cellulose. Single or double deletion of AnLPMO9s resulted in about 25% reduction in fungal growth on sugarcane straw but not on Avicel, demonstrating the contribution of LPMO9s for the saprophytic fungal lifestyle relies on the degradation of complex lignocellulosic substrates. Although the deletion of AnCDH1 slightly reduced the cellulolytic activity, it did not affect fungal growth indicating the existence of alternative electron donors to LPMOs. Additionally, double or triple knockouts of these enzymes had no accumulative deleterious effect on the cellulolytic activity nor on fungal growth, regardless of the deleted gene. Overexpression of AnLPMO9s in a cellulose-induced secretome background confirmed the importance and applicability of AnLPMO9G to improve lignocellulose saccharification. IMPORTANCE Fungal lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that boost plant biomass degradation in combination with glycoside hydrolases. Secretion of LPMO9s arsenal by Aspergillus nidulans is influenced by the substrate and time of induction. These findings along with the biochemical characterization of novel fungal LPMO9s have implications on our understanding of their concerted action, allowing rational engineering of fungal strains for biotechnological applications such as plant biomass degradation. Additionally, the role of oxidative players in fungal growth on plant biomass was evaluated by deletion and overexpression experiments using a model fungal system.
Collapse
Affiliation(s)
- César Rafael Fanchini Terrasan
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Ventura Rubio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Paulo Franco Cairo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabiano Jares Contesini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mariane Paludetti Zubieta
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Lopes de Figueiredo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Lima Valadares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thamy Lívia Ribeiro Corrêa
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Telma Teixeira Franco
- Interdisciplinary Center of Energy Planning, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gideon J. Davies
- Department of Chemistry, University of York, York, United Kingdom
| | - Paul H. Walton
- Department of Chemistry, University of York, York, United Kingdom
| | - Andre Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Cellobiose dehydrogenase in biofuel cells. Curr Opin Biotechnol 2022; 73:205-212. [PMID: 34482156 PMCID: PMC7613715 DOI: 10.1016/j.copbio.2021.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Enzymatic biofuel cells utilize oxidoreductases as highly specific and highly active electrocatalysts to convert a fuel and an oxidant even in complex biological matrices like hydrolysates or physiological fluids into electric energy. The hemoflavoenzyme cellobiose dehydrogenase is investigated as a versatile bioelectrocatalyst for the anode reaction of biofuel cells, because it is robust, converts a range of different carbohydrates, and can transfer electrons to the anode by direct electron transfer or via redox mediators. The versatility of cellobiose dehydrogenase has led to the development of various electrode modifications to create biofuel cells and biosupercapacitors that are capable to power small electronic devices like biosensors and connect them wireless to a receiver.
Collapse
|
13
|
Viehauser MC, Breslmayr E, Scheiblbrandner S, Schachinger F, Ma S, Ludwig R. A cytochrome b-glucose dehydrogenase chimeric enzyme capable of direct electron transfer. Biosens Bioelectron 2022; 196:113704. [PMID: 34695687 DOI: 10.1016/j.bios.2021.113704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 02/05/2023]
Abstract
The development of third generation biosensors depends on the availability of direct electron transfer (DET) capable enzymes. A successful strategy is to fuse a cytochrome domain to an enzyme to fulfil the function of a built-in redox mediator between the catalytic center and the electrode. In this study, we fused the cytochrome domain of Neurospora crassa CDH IIA (NcCYT) N-terminally to glucose dehydrogenase from Glomerella cingulata (GcGDH) to generate the chimeric enzyme NcCYT-GcGDH in a large amount for further studies. Heterologous expression in P. pastoris and chromatographic purification resulted in 1.8 g of homogeneous chimeric enzyme. Biochemical and electrochemical characterization confirmed that the chimeric enzyme is catalytically active, able to perform interdomain electron transfer (IET) and direct electron transfer (DET) via the fused cytochrome domain. The midpoint redox potential of the fused b-type cytochrome is 91 mV vs. SHE at pH 6.5 and the specific current obtained on a porous graphite electrode is 2.3 μA cm-2. The high current obtained on this simple, unmodified electrode at a rather low redox potential is a promising starting point for further optimization. The high yield of NcCYT-GcGDH and its high specific activity supports the application of the chimeric enzyme in bioelectrocatalytic applications.
Collapse
Affiliation(s)
- Marie-Christin Viehauser
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Erik Breslmayr
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Stefan Scheiblbrandner
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Franziska Schachinger
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Su Ma
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
14
|
Manavalan T, Stepnov AA, Hegnar OA, Eijsink VGH. Sugar oxidoreductases and LPMOs - two sides of the same polysaccharide degradation story? Carbohydr Res 2021; 505:108350. [PMID: 34049079 DOI: 10.1016/j.carres.2021.108350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides such as chitin and cellulose and their discovery has revolutionized our understanding of enzymatic biomass conversion. The discovery of LPMOs raises interesting new questions regarding the roles of other oxidoreductases and abiotic redox processes in biomass conversion. LPMOs need reducing power and an oxygen co-substrate and biomass degrading ecosystems contain a multitude of redox enzymes that affect the availability of both. For example, biomass degrading fungi produce multiple sugar oxidoreductases whose biological functions so far have remained somewhat enigmatic. It is now conceivable that these redox enzymes, in particular H2O2-producing sugar oxidases, could play a role in fueling and controlling LPMO reactions. Here, we shortly review contemporary issues in the LPMO field, paying particular attention to the possible roles of sugar oxidoreductases.
Collapse
Affiliation(s)
- Tamilvendan Manavalan
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway.
| |
Collapse
|
15
|
Geiss A, Reichhart TMB, Pejker B, Plattner E, Herzog PL, Schulz C, Ludwig R, Felice AKG, Haltrich D. Engineering the Turnover Stability of Cellobiose Dehydrogenase toward Long-Term Bioelectronic Applications. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:7086-7100. [PMID: 34306835 PMCID: PMC8296668 DOI: 10.1021/acssuschemeng.1c01165] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/16/2021] [Indexed: 05/09/2023]
Abstract
Cellobiose dehydrogenase (CDH) is an attractive oxidoreductase for bioelectrochemical applications. Its two-domain structure allows the flavoheme enzyme to establish direct electron transfer to biosensor and biofuel cell electrodes. Yet, the application of CDH in these devices is impeded by its limited stability under turnover conditions. In this work, we aimed to improve the turnover stability of CDH by semirational, high-throughput enzyme engineering. We screened 13 736 colonies in a 96-well plate setup for improved turnover stability and selected 11 improved variants. Measures were taken to increase the reproducibility and robustness of the screening setup, and the statistical evaluation demonstrates the validity of the procedure. The selected CDH variants were expressed in shaking flasks and characterized in detail by biochemical and electrochemical methods. Two mechanisms contributing to turnover stability were found: (i) replacement of methionine side chains prone to oxidative damage and (ii) the reduction of oxygen reactivity achieved by an improved balance of the individual reaction rates in the two CDH domains. The engineered CDH variants hold promise for the application in continuous biosensors or biofuel cells, while the deduced mechanistic insights serve as a basis for future enzyme engineering approaches addressing the turnover stability of oxidoreductases in general.
Collapse
Affiliation(s)
- Andreas
F. Geiss
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Thomas M. B. Reichhart
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
| | - Barbara Pejker
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Esther Plattner
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
| | - Peter L. Herzog
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
| | - Christopher Schulz
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
| | - Roland Ludwig
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
| | - Alfons K. G. Felice
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
- E-mail: . Telephone: +436505000167
| | - Dietmar Haltrich
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|