1
|
Wang X, Sun P, Wei Y, Lv X, Sun X. In Situ Templated Synthesis of Sponge-like Zn/Sb Dual-Atom Catalysts for Efficient Oxygen Reduction in Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40448627 DOI: 10.1021/acsami.5c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Developing efficient electrocatalysts that can improve the oxygen reduction reaction (ORR) activity and optimize mass transfer efficiency is crucial for advancing rechargeable Zn-air batteries (ZABs). Herein, we report an in situ template strategy utilizing in situ formed Zn nanoclusters to construct a sponge-like framework with atomically dispersed dual-atom Zn/Sb sites (Zn/Sb-NC-g). The sponge-like structure with well-defined mesopores (2-5 nm) enhances both the mass transport of oxygen intermediates and the exposure of Zn/Sb-Nx active sites, thereby optimizing ORR kinetics. Systematic X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) analyses confirm the atomic-level dispersion of Zn/Sb atoms and their electronic interactions, which promote intrinsic ORR activity. The Zn/Sb-NC-g catalyst demonstrates superior ORR activity (with a half-wave potential reaching 0.905 V versus reversible hydrogen electrode), accelerated ORR kinetics, and excellent mass-transport property, which is significantly superior to its microporous and Zn single-atom counterparts. When assembled into ZABs, the catalyst delivers remarkable peak power densities up to 209 and 426 mW cm-2 in aqueous and flexible batteries, respectively, with favorable cycling stability for over 1000 h at 10 mA cm-2. Such a synthetic strategy for constructing sponge-like porous structure with dual-atom Zn/Sb sites offers an effective approach to develop highly efficient electrocatalysts for Zn-air batteries.
Collapse
Affiliation(s)
- Xin Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Panpan Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Yongan Wei
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Xiaowei Lv
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Xiaohua Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
2
|
Liu S, Meyer Q, Xu D, Cheng Y, Osmieri L, Li XH, Zhao C. Breaking the Activity and Stability Trade-Off of Platinum-Free Catalysts for the Oxygen Reduction Reaction in Hydrogen Fuel Cells. ACS NANO 2025. [PMID: 40388711 DOI: 10.1021/acsnano.5c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Hydrogen fuel cells, which use hydrogen as fuel to generate electricity, hold great promises as future energy conversion devices for heavy-duty transport, due to their zero CO2 emissions, high energy conversion efficiency, and high power density. However, the adoption of hydrogen fuel cells has been slow due to their reliance on large amounts of costly and scarce platinum (Pt) for the oxygen reduction reaction. The replacement of Pt with Earth-abundant transition metals such as Fe, Co, Mn, and Sn with oxygen reduction reaction affinity has thus been a holy grail of electrocatalysis research. Pt-free catalysts must combine both high power density and high stability in hydrogen fuel cells to be considered viable alternatives to Pt. Despite promising progress on both fronts, a trade-off has emerged: Pt-free catalysts either achieve high power densities (≥1.5 W cm-2) but suffer from low stabilities (≥70% loss after 25 h) or more recently demonstrate improved stability (≤25% loss after 150 h), while delivering considerably lower power densities (<1 W cm-2) in hydrogen fuel cells. Herein, we summarize the recent progress in the synthesis of high power density M-N-C catalysts for hydrogen fuel cells and highlight the critical importance of uncovering the underlying mechanisms using operando methods. We then discuss the primary causes of catalyst degradation in hydrogen fuel cells and the most promising strategies to enhance the stability of the M-N-C catalysts. Finally, a roadmap is proposed to overcome the activity stability trade-off for Pt-free catalysts in hydrogen fuel cells.
Collapse
Affiliation(s)
- Shiyang Liu
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Quentin Meyer
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Cheng
- Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China
| | - Luigi Osmieri
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chuan Zhao
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Lu S, Niu S, Yi J, Zhang J, Meng G, Yang Y, Chen W. Pyrrole Nitrogen Coordination Activates Intrinsically Catalytically Inert Mo for Oxygen Reduction Reaction. Inorg Chem 2025; 64:9735-9743. [PMID: 40326495 DOI: 10.1021/acs.inorgchem.5c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Electronic structure modulation is a promising approach to enhance the properties of intrinsically inert metals in an electrocatalytic oxygen reduction reaction. Herein, a molybdenum (Mo) single atom (Mo SAs) catalyst with pyrrole-rich nitrogen/oxygen double coordination has been designed and synthesized (defined as Mo SAs/N-C). The pyrrole-nitrogen (Pyrr-N) coordination was shown to effectively regulate the metal-centered electronic structure of Mo. This coordination strategy enables Mo SAs/N-C to exhibit superior catalytic activity and enhanced 4e- transfer selectivity. The electrochemical performance evaluations revealed that Mo SAs/N-C exhibit exceptional durability (with only a 2.0 mV half-wave potential decay after 5000 cycles) and resistance to methanol toxicity, outperforming commercial Pt/C (20%). Notably, as an air-cathode catalyst for zinc-air batteries, Mo SAs/N-C achieved a peak power density of 242 mW cm-2. Combining experimental results with density functional theory calculations, it was found that Pyrr-N effectively modulates the adsorption of OOH* intermediates on Mo atoms, promoting the 4e- transfer pathway and significantly enhancing the performance of the ORR. This study provides valuable insights into the role of Pyrr-N coordination in improving the performance of single-atom catalysts.
Collapse
Affiliation(s)
- Shaojie Lu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shuwen Niu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Jundong Yi
- Baima Lake Laboratory, Hangzhou 310051, P. R. China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| | - Yun Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China
| |
Collapse
|
4
|
Yang T, Ding K, Zhou J, Ma X, Tan KC, Wang G, Huang H, Yang M. Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts. SMALL METHODS 2025; 9:e2401333. [PMID: 39552000 DOI: 10.1002/smtd.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Indexed: 11/19/2024]
Abstract
Toward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains limited. Using Fe and Co SACs co-supported on the nitrogen-doped graphene as a model system, the loading effect on the site-specific activity of heteronuclear SACs toward oxygen reduction reaction (ORR) is here reported by density functional theory calculations. The Fe site exhibits an oscillatory decrease in activity with the loading. In contrast, the Co site has a volcano-like activity with the optimum performance achieved at ≈16.8 wt.% (average inter-site distance: ≈7 Å). At the ultra-high loading of 38.4 wt.% (inter-site distance: ≈4 Å), the Co site is the only ORR active site, whereas Fe sites turn into spectators. This distinct loading-dependent activity between the Fe and Co sites can be ascribed to their difference in the binding capability with the substrate and the dxz and dyz orbitals' occupation. These findings highlight the importance of the loading effect in heteronuclear SACs, which could be useful for the development of high-performance heteronuclear and high-entropy SACs toward various catalytic reactions in the high-loading regime.
Collapse
Affiliation(s)
- Tong Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Keda Ding
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jun Zhou
- Institute of Materials Research & Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Xiaoyang Ma
- School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Kay Chen Tan
- Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre on Data Sciences & Artificial Intelligence, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
5
|
Xiao W, Huang J, Yu C, Xiang X, Lin M, Wen L, Liang W, Shen PK, Tian ZQ. Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction. J Colloid Interface Sci 2025; 684:87-96. [PMID: 39787810 DOI: 10.1016/j.jcis.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Transition metal-nitrogen-carbon (MNC) based on 3d metal atoms as promising non-precious metal catalysts have been extensively exploited for oxygen reduction reaction (ORR), but MNC with 4f rare earth metals have been largely ignored, most likely due to their large atomic radii that are difficult to coordinate with N dopants using conventional precursors. Herein, atomically dispersed dysprosium-nitrogen-carbon (DyNC) nanosheets were developed via the pyrolysis of anitrogen-containing chelate compound of 2, 4, 6-Tri (2-pyridyl) 1, 3, 5-triazine (TPTZ) ligand with Dy3+ under the assistance of molten NaCl. The as-synthesized DyNC features specific moieties of single Dy atom coordinated by N and O as active sites for ORR, displaying excellent performance. The half-wave potentials of 0.77 V and 0.88 V in acidic and alkaline media respectively are superior to those of iron-nitrogen-carbon (FeNC) synthesized using the same method. Meanwhile, a practical zinc-air battery verifies the ORR activity of DyNC with a maximum power output of 216 mW cm-2, which is even better than the commercial platinum on carbon catalyst (Pt/C) under the same loading.In addition, theoretical calculations verify that compared to the classic FeN4 moiety,the DyN4O1 exhibits a lower overpotential of 0.570 V, demonstrating that it possesses more significant catalytic performance for ORR. This work provides the inspiration of developing non-precious metal electrocatalysts with atomic 4f rare earth metals for ORR.
Collapse
Affiliation(s)
- Wanling Xiao
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Ji Huang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Cunhuai Yu
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Xue Xiang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Mingjie Lin
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Lizhen Wen
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Weiqi Liang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Pei Kang Shen
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Zhi Qun Tian
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China.
| |
Collapse
|
6
|
Peera SG, Kim SW. Rare Earth Ce/CeO 2 Electrocatalysts: Role of High Electronic Spin State of Ce and Ce 3+/Ce 4+ Redox Couple on Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:600. [PMID: 40278467 PMCID: PMC12029306 DOI: 10.3390/nano15080600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
With unique 4f electronic shells, rare earth metal-based catalysts have been attracting tremendous attention in electrocatalysis, including oxygen reduction reaction (ORR). In particular, atomically dispersed Ce/CeO2-based catalysts have been explored extensively due to several unique features. This review article provides a comprehensive understanding of (i) the significance of the effect of Ce high-spin state on ORR activity enhancement on the Pt and non-pt electrocatalysts, (ii) the spatially confining and stabilizing effect of ceria on the generation of atomically dispersed transition metal-based catalysts, (iii) experimental and theoretical evidence of the effect of Ce3+ ↔ Ce4+ redox pain on radical scavenging, (iv) the effect of the Ce 4f electrons on the d-band center and electron transfer between Ce to the N-doped carbon and transition metal catalysts for enhanced ORR activity, and (v) the effect of Pt/CeO2/carbon heterojunctions on the stability of the Pt/CeO2/carbon electrocatalyst for ORR. Among several strategies of synthesizing Ce/CeO2 electrocatalysts, the metal-organic framework (MOF)-derived catalysts are being perused extensively due to the tendency of Ce to readily coordinate with O- and N-containing ligands, which upon undergoing pyrolysis, results in the formation of high surface area, porous carbon networks with atomically dispersed metallic/clusters/nanoparticles of Ce active sites. This review paper provides an overview of recent advancements regarding Ce/CeO2-based catalysts derived from the MOF precursor for ORR in fuel cells and metal-air battery applications and we conclude with insights into key issues and future development directions.
Collapse
Affiliation(s)
- Shaik Gouse Peera
- Natural Science Research Institute, College of Natural Sciences, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea;
| | | |
Collapse
|
7
|
Wang Q, Luo T, Cao X, Gong Y, Liu Y, Xiao Y, Li H, Gröbmeyer F, Lu YR, Chan TS, Ma C, Liu K, Fu J, Zhang S, Liu C, Lin Z, Chai L, Cortes E, Liu M. Lanthanide single-atom catalysts for efficient CO 2-to-CO electroreduction. Nat Commun 2025; 16:2985. [PMID: 40140362 PMCID: PMC11947204 DOI: 10.1038/s41467-025-57464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Single-atom catalysts (SACs) have received increasing attention due to their 100% atomic utilization efficiency. The electrochemical CO2 reduction reaction (CO2RR) to CO using SAC offers a promising approach for CO2 utilization, but achieving facile CO2 adsorption and CO desorption remains challenging for traditional SACs. Instead of singling out specific atoms, we propose a strategy utilizing atoms from the entire lanthanide (Ln) group to facilitate the CO2RR. Density functional theory calculations, operando spectroscopy, and X-ray absorption spectroscopy elucidate the bridging adsorption mechanism for a representative erbium (Er) single-atom catalyst. As a result, we realize a series of Ln SACs spanning 14 elements that exhibit CO Faradaic efficiencies exceeding 90%. The Er catalyst achieves a high turnover frequency of ~130,000 h-1 at 500 mA cm-2. Moreover, 34.7% full-cell energy efficiency and 70.4% single-pass CO2 conversion efficiency are obtained at 200 mA cm-2 with acidic electrolyte. This catalytic platform leverages the collective potential of the lanthanide group, introducing new possibilities for efficient CO2-to-CO conversion and beyond through the exploration of unique bonding motifs in single-atom catalysts.
Collapse
Affiliation(s)
- Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, PR China
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, PR China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, PR China
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, PR China
| | - Xueying Cao
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong, PR China
| | - Yujie Gong
- School of Electrical Engineering, University of South China, Hengyang, Hunan, PR China
| | - Yuxiang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, PR China
| | - Yusen Xiao
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, PR China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, PR China
| | - Franz Gröbmeyer
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, 300, Hsinchu, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 300, Hsinchu, Taiwan
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, PR China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, PR China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, PR China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, PR China
| | - Changxu Liu
- Centre for Metamaterial Research & Innovation, Department of Engineering, University of Exeter, Exeter, UK
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, PR China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, PR China
| | - Emiliano Cortes
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, PR China.
| |
Collapse
|
8
|
Yang XP, Wu ZZ, Li YC, Sun SP, Zhang YC, Duanmu JW, Lu PG, Zhang XL, Gao FY, Yang Y, Wang YH, Yu PC, Li SK, Gao MR. Atomically dispersed cerium on copper tailors interfacial water structure for efficient CO-to-acetate electroreduction. Nat Commun 2025; 16:2811. [PMID: 40118841 PMCID: PMC11928625 DOI: 10.1038/s41467-025-58109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
Electrosynthesis of acetate from carbon monoxide (CO) powered by renewable electricity offers one promising avenue to obtain valuable carbon-based products but undergoes unsatisfied selectivity because of the competing hydrogen evolution reaction. We report here a cerium single atoms (Ce-SAs) modified crystalline-amorphous dual-phase copper (Cu) catalyst, in which Ce SAs reduce the electron density of the dual-phase Cu, lowering the proportion of interfacial K+ ion hydrated water (K·H2O) and thereby decreasing the H* coverage on the catalyst surface. Meanwhile, the electron transfer from dual-phase Cu to Ce SAs yields Cu+ species, which boost the formation of active atop-adsorbed *CO (COatop), improving COatop-COatop coupling kinetics. These together lead to the preferential pathway of ketene intermediate (*CH2-C=O) formation, which then reacts with OH- enriched by pulsed electrolysis to generate acetate. Using this catalyst, we achieve a high Faradaic efficiency of 71.3 ± 2.1% toward acetate and a time-averaged acetate current density of 110.6 ± 2.0 mA cm-2 under a pulsed electrolysis mode. Furthermore, a flow-cell reactor assembled by this catalyst can produce acetate steadily for at least 138 hours with selectivity greater than 60%.
Collapse
Affiliation(s)
- Xue-Peng Yang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui, China
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Ye-Cheng Li
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Shu-Ping Sun
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu-Cai Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing-Wen Duanmu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Pu-Gan Lu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Ye-Hua Wang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng-Cheng Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Shi-Kuo Li
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui, China.
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
9
|
Guo J, Jin M, Huang Y, Yin L, Li X, Du Y, Zhai X. Ce Single Atom with Cascaded Self-Circulating Enzyme-Like Activities and Photothermal Activities for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410041. [PMID: 39930724 DOI: 10.1002/smll.202410041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Indexed: 03/20/2025]
Abstract
Specific regulation of the tumor microenvironment (TME) is a potential strategy for tumor therapy. Although many TME-responsive nanozymes have been developed for tumor therapy, the limited substrates affect the therapeutic effect. In this study, cerium single-atom nanozymes (Ce SAs) are prepared by immobilizing cerium (Ce) using zeolitic imidazolate framework-8 (ZIF-8) as a precursor. The reversible conversion between Ce3+ and Ce4+ endows Ce SAs with multiple enzyme-like activities, such as peroxidase (POD)-like activity, oxidase (OD)-like activity, catalase (CAT)-like activity, glucose oxidase (GOD)-like activity, and glutathione peroxidase (GSH-Px)-like activity. All of the above enzyme activities give Ce SAs cascade self-circulation properties and can be used for tumor therapy in the TME. In addition, the prepared Ce SAs also have photothermal properties, which can achieve photothermal therapy (PTT) of tumor cells under 808 nm near-infrared (NIR) irradiation. Combining the cascade self-cycling enzyme-like activities and the photothermal properties of Ce SAs, this synergistic therapy makes Ce SAs have attractive efficacy in tumor treatment.
Collapse
Affiliation(s)
- Jialiang Guo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Mengdie Jin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yongkang Huang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaopeng Li
- Department of Minimally Invasive Spine Surgery, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xinyun Zhai
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
10
|
Song K, Jing H, Yang B, Shao J, Tao Y, Zhang W. Enhancing Oxygen Reduction Reaction of Single-Atom Catalysts by Structure Tuning. CHEMSUSCHEM 2025; 18:e202401713. [PMID: 39187438 DOI: 10.1002/cssc.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Deciphering the fine structure has always been a crucial approach to unlocking the distinct advantages of high activity, selectivity, and stability in single-atom catalysts (SACs). However, the complex system and unclear catalytic mechanism have obscured the significance of exploring the fine structure. Therefore, we endeavored to develop a three-component strategy to enhance oxygen reduction reaction (ORR), delving deep into the profound implications of the fine structure, focusing on central atoms, coordinating atoms, and environmental atoms. Firstly, the mechanism by which the chemical state and element type of central atoms influence catalytic performance is discussed. Secondly, the significance of coordinating atoms in SACs is analyzed, considering both the number and type. Lastly, the impact of environmental atoms in SACs is reviewed, encompassing existence state and atomic structure. Thorough analysis and summarization of how the fine structure of SACs influences the ORR have the potential to offer valuable insights for the accurate design and construction of SACs.
Collapse
Affiliation(s)
- Kexin Song
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Haifeng Jing
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Binbin Yang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Jing Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Youkun Tao
- College of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
11
|
Sun X, Zhang P, Zhang B, Xu C. Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405624. [PMID: 39252646 DOI: 10.1002/smll.202405624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Indexed: 09/11/2024]
Abstract
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications.
Collapse
Affiliation(s)
- Xiaohui Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bangyan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| |
Collapse
|
12
|
Zhou Y, Sheng L, Chen L, Zhang W, Yang J. Theoretical Investigation of Single-, Double-, and Triple- p-block Metals Anchored on g-CN Monolayer for Oxygen Electrocatalysis. J Phys Chem Lett 2024; 15:11454-11461. [PMID: 39509545 DOI: 10.1021/acs.jpclett.4c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The design and development of highly active non-noble metal electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are crucial for metal-air batteries. In this work, the electrocatalytic performance of different p-block metal (PM = Sn, Sb, Pb and Bi) atoms embedded in the g-CN monolayer (PMx@g-CN, x = 1-3) for the OER and ORR was systematically investigated by density functional theory (DFT). The strong interaction between PMx atoms and g-CN substrates indicates the good stability of PMx@g-CN catalysts. Among all the designed catalysts, Bi3@g-CN is found to be a promising bifunctional electrocatalyst for both the OER and ORR with the calculated overpotential ηOER and ηORR of 0.23 and 0.25 V, respectively. With the atomic active sites of PMx increasing from x = 1 to 3, the OER and ORR catalytic activity is enhanced. The correlations between the overpotentials of the OER/ORR and Bader charge values of the anchored PMx atoms of the catalysts were established. Our findings contribute to searching for noble metal-free bifunctional electrocatalysts and shed light on the rational design of atomic active sites on electrocatalysts.
Collapse
Affiliation(s)
- Yanan Zhou
- School of Material Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Li Sheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lanlan Chen
- Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenhua Zhang
- Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Liu J, He Q, Zou W, Wu M, Rego CRC, Xia C, Xiong Y, Zhao Y. Modulation of d-Orbital Interactions in Dual-Atom Catalysts for Enhanced Polysulfide Anchoring and Kinetics in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60180-60188. [PMID: 39436993 DOI: 10.1021/acsami.4c11523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Modulating the electronic structure is essential for improving the anchoring and catalytic capabilities of catalysts in lithium-sulfur batteries (LSBs). This study delves into the modulation of d-orbitals in transition metal dual-atom catalysts (DACs) supported by boron nitride and graphene (BNC) hybrid sheets for LSBs. This study reveals that the d-band center of the DACs, a key determinant of material chemical properties, is primarily determined by the electronic configuration of the dyz and dx2-y2 orbitals. Furthermore, the interaction between dz2 of transition metals and S_3 p orbitals is critical for the binding strength of LiPSs. By understanding these interactions, the functionality of DACs can be customized for optimal performance in LSBs. For example, the MnCrBNC catalyst with 10 d-electrons exhibits the optimal d-band center and demonstrates exceptional LiPSs binding capability, the lowest Li2S decomposition energy barrier, and the lowest Gibbs free energy of reaction for the rate-determining step of sulfur reduction. This study elucidates the fundamental mechanisms for designing high-performance LSB catalysts through electronic structure modulation.
Collapse
Affiliation(s)
- Jianfeng Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Qiu He
- College of Materials Synthesis and Engineering, Sichuan University, Chengdu 610065, China
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Wanjuan Zou
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697, United States
| | - Mingwei Wu
- College of Materials Synthesis and Engineering, Sichuan University, Chengdu 610065, China
| | - Celso Ricardo Caldeira Rego
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Chenxi Xia
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Xiong
- College of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yan Zhao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- College of Materials Synthesis and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Yang Z, Li W, Zhang J. First principles theoretical of designing sandwich-like metallic BP 4monolayer as anode for alkali metal-ion batteries. NANOTECHNOLOGY 2024; 35:475403. [PMID: 39163875 DOI: 10.1088/1361-6528/ad7145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Phosphorene has been widely used as anode material for batteries. However, the huge volume change during charging and discharging process, the semiconductor properties, and the high open circuit voltage limit its application. Based on this, by introducing the electron-deficient boron atoms into blue phosphorene, we proposed a P-rich sandwich-like BP4monolayer by density functional theory calculation and particle swarm optimization. The BP4monolayer shows good thermodynamic and dynamic stability, as well as chemical stability in O2atmosphere, mainly due to the strengthened P-P bond of the outer layer by the middle boron atoms adoptingsp3hybridization. According to the band structure, the BP4monolayer shows metallic property, which is beneficial to electron conductivity. Furthermore, compared with blue phosphorene and black phosphorene, the P-rich BP4monolayer shows higher theoretical capacity for Li, Na, and K of 1193.90, 1119.28, and 397.97 mA h g-1, respectively. The lattice constant of BP4monolayer increases only 3.73% (Li), 2.52% (Na) after Li/Na fully adsorbed on the anode. More importantly, the wettability of BP4monolayer in the electrolyte is comparable to that of graphene. These findings show that the stable sandwich-like BP4monolayer has potential as a lightweight anode material.
Collapse
Affiliation(s)
- Zhifang Yang
- Faculty of Chemistry, National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Wenliang Li
- Faculty of Chemistry, National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Jingping Zhang
- Faculty of Chemistry, National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
15
|
Chen Y, Zhang Y, Xue H, Sun J, Guo N, Song T, Sun J, Hao YR, Wang Q. The 3d-4f electron transition of the CoS 2/CeO 2 heterojunction for efficient oxygen evolution. Chem Commun (Camb) 2024; 60:8439-8442. [PMID: 39037000 DOI: 10.1039/d4cc01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
CoS2/CeO2, exhibiting the 3d-4f orbital coupling effect, is developed and shows exceptional OER activity, with an overpotential of 140 mV at 10 mA cm-2. DFT calculation and Raman spectra show the existence of a d-p-f electron transport ladder that can accelerate electron transfer through the Co-O(S)-Ce bond, optimize the adsorption free energy, and enhance the catalytic activity.
Collapse
Affiliation(s)
- Yaqin Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Yuchao Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Hui Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Niankun Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Tianshan Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jiawen Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Yi-Ru Hao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
16
|
Xie S, Lu Y, Ye K, Tan W, Cao S, Wang C, Kim D, Zhang X, Loukusa J, Li Y, Zhang Y, Ma L, Ehrlich SN, Marinkovic NS, Deng J, Flytzani-Stephanopoulos M, Liu F. Enhancing the Carbon Monoxide Oxidation Performance through Surface Defect Enrichment of Ceria-Based Supports for Platinum Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12731-12741. [PMID: 38958431 PMCID: PMC11256741 DOI: 10.1021/acs.est.4c03078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Effective synthesis and application of single-atom catalysts on supports lacking enough defects remain a significant challenge in environmental catalysis. Herein, we present a universal defect-enrichment strategy to increase the surface defects of CeO2-based supports through H2 reduction pretreatment. The Pt catalysts supported by defective CeO2-based supports, including CeO2, CeZrOx, and CeO2/Al2O3 (CA), exhibit much higher Pt dispersion and CO oxidation activity upon reduction activation compared to their counterpart catalysts without defect enrichment. Specifically, Pt is present as embedded single atoms on the CA support with enriched surface defects (CA-HD) based on which the highly active catalyst showing embedded Pt clusters (PtC) with the bottom layer of Pt atoms substituting the Ce cations in the CeO2 surface lattice can be obtained through reduction activation. Embedded PtC can better facilitate CO adsorption and promote O2 activation at PtC-CeO2 interfaces, thereby contributing to the superior low-temperature CO oxidation activity of the Pt/CA-HD catalyst after activation.
Collapse
Affiliation(s)
- Shaohua Xie
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Yue Lu
- Beijing
Key Laboratory of Microstructure and Properties of Solids, Faculty
of Materials and Manufacturing, Beijing
University of Technology, Beijing 100124, People’s
Republic of China
| | - Kailong Ye
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Wei Tan
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control,
School of Chemistry and Chemical Engineering, Center of Modern Analysis, Nanjing University, Nanjing, Jiangsu 210023, People’s Republic
of China
| | - Sufeng Cao
- Department
of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Aramco Boston
Research Center, Cambridge, Massachusetts 02139, United States
| | - Chunying Wang
- Center
for Excellence in Regional Atmospheric Environment, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People’s
Republic of China
| | - Daekun Kim
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Xing Zhang
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Jeremia Loukusa
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Yaobin Li
- Center
for Excellence in Regional Atmospheric Environment, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People’s
Republic of China
| | - Yan Zhang
- Center
for Excellence in Regional Atmospheric Environment, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People’s
Republic of China
| | - Lu Ma
- National
Synchrotron Light Source II (NSLS-II), Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Steven N. Ehrlich
- National
Synchrotron Light Source II (NSLS-II), Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Nebojsa S. Marinkovic
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jiguang Deng
- Beijing
Key Laboratory for Green Catalysis and Separation, Key Laboratory
of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced
Functional Materials, Ministry of Education of China, Faculty of Environment
and Life, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | | | - Fudong Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California 92521, United States
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
17
|
Bai J, Lin Y, Xu J, Zhou W, Zhou P, Deng Y, Lian Y. PGM-free single atom catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:7113-7123. [PMID: 38912537 DOI: 10.1039/d4cc02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The progress of proton exchange membrane fuel cells (PEMFCs) in the clean energy sector is notable for its efficiency and eco-friendliness, although challenges remain in terms of durability, cost and power density. The oxygen reduction reaction (ORR) is a key sluggish process and although current platinum-based catalysts are effective, their high cost and instability is a significant barrier. Single-atom catalysts (SACs) offer an economically viable alternative with comparable catalytic activity for ORR. The primary concern regarding SACs is their operational stability under PEMFCs conditions. In this article, we review current strategies for increasing the catalytic activity of SACs, including increasing active site density, optimizing metal center coordination through heteroatom doping, and engineering porous substrates. To enhance durability, we discuss methods to stabilize metal centers, mitigate the effects of the Fenton reaction, and improve graphitization of the carbon matrix. Future research should apply computational chemistry to predict catalyst properties, develop in situ characterization for real-time active site analysis, explore novel catalysts without the use of platinum-based catalysts to reduce dependence on rare and noble metal, and investigate the long-term stability of catalyst under operating conditions. The aim is to engineer SACs that meet and surpass the performance benchmarks of PEMFCs, contributing to a sustainable energy future.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Jinnan Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Wangkai Zhou
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yuebin Lian
- School of Optoelectronics, Changzhou Institute of Technology, Changzhou, 213022, China.
| |
Collapse
|
18
|
Xue N, Xue X, Aihemaiti A, Zhu H, Yin J. Atomically Dispersed Ce Sites Augmenting Activity and Durability of Fe-Based Oxygen Reduction Catalyst in PEMFC. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311034. [PMID: 38415298 DOI: 10.1002/smll.202311034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Indexed: 02/29/2024]
Abstract
In the cathode of proton exchange membrane fuel cells (PEMFCs), Fe and N co-doped carbon (Fe-N-C) materials with atomically dispersed active sites are one of the satisfactory candidates to replace Pt-based catalysts. However, Fe-N-C catalysts are vulnerable to attack from reactive oxygen species, resulting in inferior durability, and current strategies failing to balance the activity and stability. Here, this study reports Fe and Ce single atoms coupled catalysts anchored on ZIF-8-derived nitrogen-doped carbon (Fe/Ce-N-C) as an efficient ORR electrocatalyst for PEMFCs. In PEMFC tests, the maximum power density of Fe/Ce-N-C catalyst reached up to 0.82 W cm-2, which is 41% larger than that of Fe-N-C. More importantly, the activity of Fe/Ce-N-C catalyst only decreased by 21% after 30 000 cycles under H2/air condition. Density functional theory reveals that the strong coupling between the Fe and Ce sites result in the redistribution of electrons in the active sites, which optimizes the adsorption of OH* intermediates on the catalyst and increases the intrinsic activity. Additionally, the admirable radical scavenging ability of the Ce sites ensured that the catalysts gained long-term stability. Therefore, the addition of Ce single atoms provides a new strategy for improving the activity and durability of oxygen reduction catalysts.
Collapse
Affiliation(s)
- Nan Xue
- Laboratory of Environmental Sciences and Technology, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueyan Xue
- Laboratory of Environmental Sciences and Technology, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aikelaimu Aihemaiti
- Laboratory of Environmental Sciences and Technology, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Hui Zhu
- Laboratory of Environmental Sciences and Technology, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Jiao Yin
- Laboratory of Environmental Sciences and Technology, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
19
|
Wu K, Wang D, Fu Q, Xu T, Xiong Q, Peera SG, Liu C. Co/Ce-MOF-Derived Oxygen Electrode Bifunctional Catalyst for Rechargeable Zinc-Air Batteries. Inorg Chem 2024; 63:11135-11145. [PMID: 38829208 DOI: 10.1021/acs.inorgchem.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Improving the practicality of rechargeable zinc-air batteries relies heavily on the development of oxygen electrode catalysts that are low-cost, durable, and highly efficient in performing dual functions. In the present study, a catalyst with atomic Ce and Co distribution on a nitrogen-doped carbon substrate was prepared by doping the rare earth elements Ce and Co into a metal-organic framework precursor. Rare earth element Ce, known for its unique structure and excellent oxygen affinity, was utilized to regulate the catalytic activity. The catalyst prepared in this study demonstrated an exceptional electrocatalytic performance. At a current density of 10 mA cm-2, the catalyst exhibited an overpotential of 340 mV for the oxygen evolution reaction (OER), which was lower than that of commercial IrO2 (370 mV), while achieving a half-wave potential of 0.79 V for the process of oxygen reduction reaction (ORR), exhibiting a similar level of effectiveness as commercially accessible Pt/C catalysts (0.8 V). The catalyst's porous structure, interconnected three-dimensional carbon network, and large specific surface area are the factors contributing to the significant improvement in catalytic performance. Furthermore, in comparison to commercial Pt/C+IrO2, the catalyst exhibited good cycling stability and high efficiency in rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Kang Wu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Daomiao Wang
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Qiming Fu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Tao Xu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Qiang Xiong
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Shaik Gouse Peera
- Department of Environmental Engineering, Keimyung University, 1095, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Chao Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
20
|
Yang B, Xiang Z. Nanostructure Engineering of Cathode Layers in Proton Exchange Membrane Fuel Cells: From Catalysts to Membrane Electrode Assembly. ACS NANO 2024; 18:11598-11630. [PMID: 38669279 DOI: 10.1021/acsnano.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The membrane electrode assembly (MEA) is the core component of proton exchange membrane fuel cells (PEMFCs), which is the place where the reaction occurrence, the multiphase material transfer and the energy conversion, and the development of MEA with high activity and long stability are crucial for the practical application of PEMFCs. Currently, efforts are devoted to developing the regulation of MEA nanostructure engineering, which is believed to have advantages in improving catalyst utilization, maximizing three-phase boundaries, enhancing mass transport, and improving operational stability. This work reviews recent research progress on platinum group metal (PGM) and PGM-free catalysts with multidimensional nanostructures, catalyst layers (CLs), and nano-MEAs for PEMFCs, emphasizing the importance of structure-function relationships, aiming to guide the further development of the performance for PEMFCs. Then the design strategy of the MEA interface is summarized systematically. In addition, the application of in situ and operational characterization techniques to adequately identify current density distributions, hot spots, and water management visualization of MEAs is also discussed. Finally, the limitations of nanostructured MEA research are discussed and future promising research directions are proposed. This paper aims to provide valuable insights into the fundamental science and technical engineering of efficient MEA interfaces for PEMFCs.
Collapse
Affiliation(s)
- Bolong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
21
|
Xiao C, Guo X, Li J. From nano- to macroarchitectures: designing and constructing MOF-derived porous materials for persulfate-based advanced oxidation processes. Chem Commun (Camb) 2024; 60:4395-4418. [PMID: 38587500 DOI: 10.1039/d4cc00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) have gained significant attention as an effective approach for the elimination of emerging organic contaminants (EOCs) in water treatment. Metal-organic frameworks (MOFs) and their derivatives are regarded as promising catalysts for activating peroxydisulfate (PDS) and peroxymonosulfate (PMS) due to their tunable and diverse structure and composition. By the rational nanoarchitectured design of MOF-derived nanomaterials, the excellent performance and customized functions can be achieved. However, the intrinsic fine powder form and agglomeration ability of MOF-derived nanomaterials have limited their practical engineering application. Recently, a great deal of effort has been put into shaping MOFs into macroscopic objects without sacrificing the performance. This review presents recent advances in the design and synthetic strategies of MOF-derived nano- and macroarchitectures for PS-AOPs to degrade EOCs. Firstly, the strategies of preparing MOF-derived diverse nanoarchitectures including hierarchically porous, hollow, yolk-shell, and multi-shell structures are comprehensively summarized. Subsequently, the approaches of manufacturing MOF-based macroarchitectures are introduced in detail. Moreover, the PS-AOP application and mechanisms of MOF-derived nano- and macromaterials as catalysts to eliminate EOCs are discussed. Finally, the prospects and challenges of MOF-derived materials in PS-AOPs are discussed. This work will hopefully guide the design and development of MOF-derived porous materials in SR-AOPs.
Collapse
Affiliation(s)
- Chengming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xin Guo
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
22
|
Deng H, Deng D, Jin S, Tian Z, Yang LM. Unraveling the Activity and Mechanism of TM@g-C 4N 3 Electrocatalysts in the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17617-17625. [PMID: 38530989 DOI: 10.1021/acsami.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this work, a high-throughput screening strategy and density functional theory (DFT) are jointly employed to identify high-performance TM@g-C4N3 (TM = 3d, 4d, 5d transition metals) single-atom catalysts (SACs) for the oxygen reduction reaction (ORR). Comprehensive studies demonstrated that Cu@, Zn@, and Ag@g-C4N3 show high ORR catalytic activities under both acidic and alkaline conditions with favorable overpotentials (ηORR) of 0.70, 0.89, and 0.89 V, respectively; among them, Cu@g-C4N3 is the best candidate. The ORR follows a four-electron mechanism with the final product H2O/OH-. Cu@, Zn@, and Ag@g-C4N3 catalysts also exhibit good thermal (500 K) and electrochemical (0.93-3.14 V) stabilities. Cu@, Zn@, and Ag@g-C4N3 demonstrate superior activities with low ηORR due to its moderate adsorption strength of *OH. The ηORR and the Gibbs free energy changes of *OH (ΔG4(acidic)/ΔG4(alkaline)) resemble a volcano-type relationship under acidic/alkaline conditions, respectively. Additionally, the O-O bond length in *OOH emerged as an effective structural descriptor for rapidly identifying the promising electrocatalysts. This research provides valuable insights into the origin of the ORR activity on TM@g-C4N3 and offers useful guidance for the efficient exploration of high-performance catalyst candidates.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, PR China
| | - Li-Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
23
|
Yu Y, Zhu Z, Huang H. Surface Engineered Single-atom Systems for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311148. [PMID: 38197471 DOI: 10.1002/adma.202311148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Single-atom catalysts (SACs) are demonstrated to show exceptional reactivity and selectivity in catalytic reactions by effectively utilizing metal species, making them a favorable choice among the different active materials for energy conversion. However, SACs are still in the early stages of energy conversion, and problems like agglomeration and low energy conversion efficiency are hampering their practical applications. Substantial research focus on support modifications, which are vital for SAC reactivity and stability due to the intimate relationship between metal atoms and support. In this review, a category of supports and a variety of surface engineering strategies employed in SA systems are summarized, including surface site engineering (heteroatom doping, vacancy introducing, surface groups grafting, and coordination tunning) and surface structure engineering (size/morphology control, cocatalyst deposition, facet engineering, and crystallinity control). Also, the merits of support surface engineering in single-atom systems are systematically introduced. Highlights are the comprehensive summary and discussions on the utilization of surface-engineered SACs in diversified energy conversion applications including photocatalysis, electrocatalysis, thermocatalysis, and energy conversion devices. At the end of this review, the potential and obstacles of using surface-engineered SACs in the field of energy conversion are discussed. This review aims to guide the rational design and manipulation of SACs for target-specific applications by capitalizing on the characteristic benefits of support surface engineering.
Collapse
Affiliation(s)
- Yutang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
24
|
Yan Y, Zhu Q, Cao L, Gu F, Liu S, Luo Y, Liu F, Wang S, Fan L, Xiong S. Ceria nanoclusters coupled with Ce-Nx sites for efficient oxygen reduction in Zn-air batteries. J Colloid Interface Sci 2024; 659:31-39. [PMID: 38157724 DOI: 10.1016/j.jcis.2023.12.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Rational construction of efficient carbon-supported rare earth cerium nanoclusters as oxygen reduction reaction (ORR) is of great significance to promote the practical application of zinc-air batteries (ZABs). Herein, N doped conductive carbon black anchored CeO2 nanoclusters (CeO2 Clusters/NC) for the ORR is reported. The volatile cerium species vaporized by CeO2 nanoclusters at high temperatures are captured by nitrogen-rich carbon carriers to form highly dispersed Ce-Nx active sites. Benefiting from the coupling effect between oxygen vacancies-enriched CeO2 nanoclusters and highly dispersed Ce-Nx sites, the prepared 2CeO2 Clusters/NC catalyst possesses an ORR half-wave potential of 0.88 V, superior electrochemical stability, and better methanol tolerance compared to commercial Pt/C catalysts. Moreover, the 2CeO2 Clusters/NC involved liquid ZABs show excellent energy efficiency, superior stability, and a high energy density of 982 Wh kg-1 at 10 mA cm-2.
Collapse
Affiliation(s)
- Yueming Yan
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Qian Zhu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Lei Cao
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Feng Gu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China; Alber Particle Science and Technology Research Institute, Nanchang, 330000, China
| | - Shiji Liu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yuhao Luo
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Feng Liu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shufen Wang
- Alber Particle Science and Technology Research Institute, Nanchang, 330000, China
| | - Lanlan Fan
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Shixian Xiong
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China.
| |
Collapse
|
25
|
Wu X, Wang X, Zhang L, Wang X, Song S, Zhang H. Polyethylene Upgrading to Liquid Fuels Boosted by Atomic Ce Promoters. Angew Chem Int Ed Engl 2024; 63:e202317594. [PMID: 38183405 DOI: 10.1002/anie.202317594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
Hydrocracking catalysis is a key route to plastic waste upgrading, but the acid site-driven C-C cleavage step is relatively sluggish in conventional bifunctional catalysts, dramatically effecting the overall efficiency. We demonstrate here a facile and efficient way to boost the reactivity of acid sites by introducing Ce promoters into Pt/HY catalysts, thus achieving a better metal-acid balance. Remarkably, 100 % of low-density polyethylene (LDPE) can be converted with 80.9 % selectivity of liquid fuels over the obtained Pt/5Ce-HY catalysts at 300 °C in 2 h. For comparison, Pt/HY only gives 38.8 % of LDPE conversion with 21.3 % selectivity of liquid fuels. Through multiple experimental studies on the structure-performance relationship, the Ce species occupied in the supercage are identified as the actual active sites, which possess remarkably-improved adsorption capability towards short-chain intermediates.
Collapse
Affiliation(s)
- Xueting Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaomei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
26
|
Liu J, Guo C, Sun L, Liu Y, Chen H, Shu C, Dai J, Xu C, Jin R, Li H, Si Y. Unraveling the Electron Transfer Effect of Single-Metal Ce-N 4 Sites via Mesopore-Coupling for Boosted Oxygen Reduction Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305615. [PMID: 37718453 DOI: 10.1002/smll.202305615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Indexed: 09/19/2023]
Abstract
The development of cerium (Ce) single-atom (SA) electrocatalysts for oxygen reduction reaction (ORR) with high active-site utilization and intrinsic activity has become popular recently but remains challenging. Inspired by an interesting phenomenon that pore-coupling with single-metal cerium sites can accelerate the electron transfer predicted by density functional theory calculations, here, a facile strategy is reported for directional design of a highly active and stable Ce SA catalyst (Ce SA/MC) by the coupling of single-metal Ce-N4 sites and mesopores in nanocarbon via pore-confinement-pyrolysis of Ce/phenanthroline complexes combined with controlling the formation of Ce oxides. This catalyst delivers a comparable ORR catalytic activity with a half-wave potential of 0.845 V versus RHE to the Pt/C catalyst. Also, a Ce SA/MC-based zinc-air battery (ZAB) has exhibited a higher energy density (924 Wh kgZn -1 ) and better long-term cycling durability than a Pt/C-based ZAB. This proposed strategy may open a door for designing efficient rare-earth metal catalysts with single-metal sites coupling with porous structures for next-generation energy devices.
Collapse
Affiliation(s)
- Jianping Liu
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chaozhong Guo
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Lingtao Sun
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- Institute of Chemical and Gas and Oil Technologies, T.F. Gorbachev Kuzbass State Technical University, Kemerovo, 650000, Russia
| | - Yao Liu
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Hongdian Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chenyang Shu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jiangyou Dai
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chuanlan Xu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Rong Jin
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- Institute of Chemical and Gas and Oil Technologies, T.F. Gorbachev Kuzbass State Technical University, Kemerovo, 650000, Russia
| | - Honglin Li
- School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, China
| | - Yujun Si
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| |
Collapse
|
27
|
Tang Q, Bai L, Zhang C, Meng R, Wang L, Geng C, Guo Y, Wang F, Liu Y, Song G, Ling G, Sun H, Weng Z, Yang QH. Molecular catalysts with electronic axial stretching for high-performance lean-oxygen seawater batteries. Sci Bull (Beijing) 2023; 68:3172-3180. [PMID: 37839915 DOI: 10.1016/j.scib.2023.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
A dissolved-oxygen seawater battery (SWB) can generate electricity by reducing dissolved oxygen and sacrificing the metal anode at different depths and temperatures in the ocean, acting as the basic unit of spatially underwater energy networks for future maritime exploration. However, most traditional oxygen reduction reaction (ORR) catalysts are out of work at such ultralow dissolved oxygen concentration. Here, we proposed that the electronic axial stretching of the catalyst is essentially responsible for enhancing the catalyst's sensitivity to dissolved oxygen. By modulating the lattice of iron phthalocyanine (FePc) as a model catalyst, the unique electronic axial stretching in the z-direction of planar FePc molecules was realized to achieve a boosted adsorption and electron transfer and result in a much improved ORR activity in lean-oxygen seawater environment. The peak power density of a homemade SWB using a practical carbon brush electrode decorated by the FePc is estimated to be as high as 3 W L-1. These results provide inspiring insights into the interaction between the catalyst and complicated seawater environment, and propose the electronic axial stretching as an effective indicator for the rational design of catalysts to be used in extremely lean-oxygen environment.
Collapse
Affiliation(s)
- Quanjun Tang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Liang Bai
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Chen Zhang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Rongwei Meng
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Li Wang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Chuannan Geng
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yong Guo
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Feifei Wang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yingxin Liu
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Guisheng Song
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Guowei Ling
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zhe Weng
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Quan-Hong Yang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
28
|
Grabchenko MV, Mikheeva NN, Mamontov GV, Cortés Corberán V, Litvintseva KA, Svetlichnyi VA, Vodyankina OV, Salaev MA. Unraveling the Structural and Compositional Peculiarities in CTAB-Templated CeO 2-ZrO 2-MnO x Catalysts for Soot and CO Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3108. [PMID: 38133005 PMCID: PMC10745992 DOI: 10.3390/nano13243108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Structure-performance relationships in functional catalysts allow for controlling their performance in a wide range of reaction conditions. Here, the structural and compositional peculiarities in CTAB-templated CeO2-ZrO2-MnOx catalysts prepared by co-precipitation of precursors and their catalytic behavior in CO oxidation and soot combustion are discussed. A complex of physical-chemical methods (low-temperature N2 sorption, XRD, TPR-H2, Raman, HR TEM, XPS) is used to elucidate the features of the formation of interphase boundaries, joint phases, and defects in multicomponent oxide systems. The addition of Mn and/or Zr dopant to ceria is shown to improve its performance in both reactions. Binary Ce-Mn catalysts demonstrate enhanced performance closely followed by the ternary oxide catalysts, which is due the formation of several types of active sites, namely, highly dispersed MnOx species, oxide-oxide interfaces, and oxygen vacancies that can act individually and/or synergistically.
Collapse
Affiliation(s)
- Maria V. Grabchenko
- Laboratory of Catalytic Research, Tomsk State University, 634050 Tomsk, Russia;
| | - Natalia N. Mikheeva
- Research Laboratory of Porous Materials and Sorption, Tomsk State University, 634050 Tomsk, Russia (O.V.V.)
| | - Grigory V. Mamontov
- Research Laboratory of Porous Materials and Sorption, Tomsk State University, 634050 Tomsk, Russia (O.V.V.)
| | - Vicente Cortés Corberán
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Kseniya A. Litvintseva
- Boreskov Institute of Catalysis SB RAS (BIC SB RAS), 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Valery A. Svetlichnyi
- Laboratory of Advanced Materials and Technology, Siberian Physical Technical Institute, Tomsk State University, 634050 Tomsk, Russia
| | - Olga V. Vodyankina
- Research Laboratory of Porous Materials and Sorption, Tomsk State University, 634050 Tomsk, Russia (O.V.V.)
| | - Mikhail A. Salaev
- Laboratory of Catalytic Research, Tomsk State University, 634050 Tomsk, Russia;
| |
Collapse
|
29
|
Sodpiban O, Kessaratikoon T, Smith J, Ren G, Del Gobbo S, Das S, Chi M, D'Elia V, Gates BC. Catalysts Prepared from Atomically Dispersed Ce(III) on MgO Rival Bulk Ceria for CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55885-55894. [PMID: 37991323 DOI: 10.1021/acsami.3c13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Atomically dispersed cerium catalysts on an inert, crystalline MgO powder support were prepared by using both Ce(III) and Ce(IV) precursors. The materials were used as catalysts for CO oxidation in a once-through flow reactor and characterized by atomic-resolution scanning transmission electron microscopy, X-ray absorption near-edge structure spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed reduction, among other techniques, before and after catalysis. The most active catalysts, formed from the precursor incorporating Ce(III), displayed performance similar to that reported for bulk ceria under comparable conditions. The catalyst provided stable time-on-stream performance for as long as it was kept on-stream, 2 days, increasing slightly in activity as the atomically dispersed cerium ions were transformed into ceria nanodomains represented as CeOx and having increased reducibility on the MgO support. The results suggest how highly dispersed supported ceria catalysts with low cerium loadings can be prepared and may pave the way for improved efficiencies of cerium utilization in oxidation catalysis.
Collapse
Affiliation(s)
- Ounjit Sodpiban
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Tanika Kessaratikoon
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Jacob Smith
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Guodong Ren
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Silvano Del Gobbo
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Sonali Das
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai 400076, India
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valerio D'Elia
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
30
|
Montes-Monroy JM, Manzorro R, Chinchilla LE, Celín WE, Calvino JJ, Pérez-Omil JA. Supported Ce/Zr pyrochlore monolayers as a route to single cerium atom catalysts with low temperature reducibility. iScience 2023; 26:107506. [PMID: 37636072 PMCID: PMC10448079 DOI: 10.1016/j.isci.2023.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
The combination of structural characterization at atomic resolution, chemical data, and theoretical insights has revealed the unique nanostructures which develop in ceria supported on yttria-stabilized zirconia (YSZ) after being submitted to high-temperature reducing treatments. The results show that just a small ceria loading is needed for creating a supported Zr-rich pyrochlore (111) nanostructure, resembling the structure of single cerium atom catalysts. The specific atomic arrangement of this nanostructure allows to explain the improvement of the reducibility at low temperature. The reduction mechanism can be extrapolated to ceria-zirconia mixed oxides with pyrochlore-like cationic ordering, exposing Zr-rich (111) surfaces. The results gathered here provide key information to understand the redox behavior of these types of systems, which may contribute to improving the design of new ceria-zirconia based materials, with lower content of the lanthanide element, nearly 100% cerium atom utilization, and applications in environmental catalysis.
Collapse
Affiliation(s)
- Jose M. Montes-Monroy
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Ramón Manzorro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Lidia E. Chinchilla
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - William E. Celín
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Jose J. Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Jose A. Pérez-Omil
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| |
Collapse
|
31
|
Wu S, Xu X, Wang Z, Ke X, Gu S, Zhou G, Wang L. Engineering Strategy for Enhancing the Co Loading of Co-N 4-C Single-Atomic Catalysts Based on the ZIF-67@Yeast Construction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40451-40458. [PMID: 37581380 DOI: 10.1021/acsami.3c06886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The Co-N4-C single-atom catalysts (SACs) have attracted great research interest in the energy storage and conversion fields owing to 100% atom utilization. However, enhancing the Co loading for higher electrocatalytic performance is still challenging. In this context, we propose an engineering strategy to fabricate the high Co atomic loading Co-N4-C SACs based on the zeolitic imidazolate framework-67 (ZIF-67)@yeast construction. The rich amino groups provide the possibility for Co2+ ion anchorage and ZIF-67@yeast construction via the biomineralization of yeast cells. The functional design induces the formation of Co-N4-C sites and regulates the porosity for exposure of such Co-N4-C sites. As a result, the Co-N4-C sites were anchored on spherical micrometer flower carbonaceous materials through our novel strategy. The as-obtained optimal sample exhibited a Co atomic loading of 12.18 wt % and a specific surface area of 403.26 m2 g-1. High Co atomic loading and large specific surface area delivered excellent electrocatalytic kinetics as well as a high discharge voltage of 1.08 V at 10 mA cm-2 for more than 100 h in Zn-air batteries. This work represents a promising strategy for fabricating high-loading SACs with high activity and good durability.
Collapse
Affiliation(s)
- Shuo Wu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaolong Xu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zelin Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Xiaoxing Ke
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology, School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
32
|
Du J, Han G, Zhang W, Li L, Yan Y, Shi Y, Zhang X, Geng L, Wang Z, Xiong Y, Yin G, Du C. CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid. Nat Commun 2023; 14:4766. [PMID: 37553335 PMCID: PMC10409757 DOI: 10.1038/s41467-023-40467-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
The two-electron oxygen reduction reaction in acid is highly attractive to produce H2O2, a commodity chemical vital in various industry and household scenarios, which is still hindered by the sluggish reaction kinetics. Herein, both density function theory calculation and in-situ characterization demonstrate that in dual-atom CoIn catalyst, O-affinitive In atom triggers the favorable and stable adsorption of hydroxyl, which effectively optimizes the adsorption of OOH on neighboring Co. As a result, the oxygen reduction on Co atoms shifts to two-electron pathway for efficient H2O2 production in acid. The H2O2 partial current density reaches 1.92 mA cm-2 at 0.65 V in the rotating ring-disk electrode test, while the H2O2 production rate is as high as 9.68 mol g-1 h-1 in the three-phase flow cell. Additionally, the CoIn-N-C presents excellent stability during the long-term operation, verifying the practicability of the CoIn-N-C catalyst. This work provides inspiring insights into the rational design of active catalysts for H2O2 production and other catalytic systems.
Collapse
Affiliation(s)
- Jiannan Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Guokang Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Lingfeng Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yuqi Yan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yaoxuan Shi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Xue Zhang
- Center for Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Lin Geng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Zhijiang Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yueping Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Geping Yin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Chunyu Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| |
Collapse
|
33
|
Hu H, Zhao Y, Zhang Y, Xi J, Xiao J, Cao S. Performance Regulation of Single-Atom Catalyst by Modulating the Microenvironment of Metal Sites. Top Curr Chem (Cham) 2023; 381:24. [PMID: 37480375 DOI: 10.1007/s41061-023-00434-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
Metal-based catalysts, encompassing both homogeneous and heterogeneous types, play a vital role in the modern chemical industry. Heterogeneous metal-based catalysts usually possess more varied catalytically active centers than homogeneous catalysts, making it challenging to regulate their catalytic performance. In contrast, homogeneous catalysts have defined active-site structures, and their performance can be easily adjusted by modifying the ligand. These characteristics lead to remarkable conceptual and technical differences between homogeneous and heterogeneous catalysts. As a recently emerging class of catalytic material, single-atom catalysts (SACs) have become one of the most active new frontiers in the catalysis field and show great potential to bridge homogeneous and heterogeneous catalytic processes. This review documents a brief introduction to SACs and their role in a range of reactions involving single-atom catalysis. To fully understand process-structure-property relationships of single-atom catalysis in chemical reactions, active sites or coordination structure and performance regulation strategies (e.g., tuning chemical and physical environment of single atoms) of SACs are comprehensively summarized. Furthermore, we discuss the application limitations, development trends and future challenges of single-atom catalysis and present a perspective on further constructing a highly efficient (e.g., activity, selectivity and stability), single-atom catalytic system for a broader scope of reactions.
Collapse
Affiliation(s)
- Hanyu Hu
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
| | - Yanyan Zhao
- Rowland Institute at Harvard, Cambridge, MA, 02142, USA
| | - Yue Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China.
| | - Jian Xiao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| | - Sufeng Cao
- Aramco Boston Research Center, Cambridge, MA, 02139, USA.
| |
Collapse
|
34
|
Yin L, Zhang S, Sun M, Wang S, Huang B, Du Y. Heteroatom-Driven Coordination Fields Altering Single Cerium Atom Sites for Efficient Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302485. [PMID: 37015027 DOI: 10.1002/adma.202302485] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 05/26/2023]
Abstract
For current single-atom catalysts (SACs), modulating the coordination environments of rare-earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co-doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as-prepared Ce SAs/PSNC possesses a half-wave potential of 0.90 V, a turnover frequency value of 52.2 s-1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC-based liquid zinc-air batteries (ZABs) exhibit a high and stable open-circuit voltage of 1.49 V and a maximum power density of 212 mW cm-2 . As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site-to-site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE-based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices.
Collapse
Affiliation(s)
- Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Siyuan Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
- Research Centre for Carbon-Strategic Catalysis, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
35
|
Zhang W, Qin X, Wei T, Liu Q, Luo J, Liu X. Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. J Colloid Interface Sci 2023; 638:650-657. [PMID: 36774878 DOI: 10.1016/j.jcis.2023.02.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Electrocatalytic nitric oxide reduction reaction (NORR) at ambient environments not only offers a promising strategy to yield ammonia (NH3) but also degrades the NO contaminant; however, its application depends on searching for high-performance catalysts. Herein, we present single atomic Ce sites anchored on nitrogen-doped hollow carbon spheres that are capable of electro-catalyzing NO reduction to NH3 in an acidic solution, achieving a maximal Faradaic efficiency of 91 % and a yield rate of 1023 μg h-1 mgcat.-1 at -0.7 V vs RHE for NH3 formation, both of which outperform these on Ce nanoclusters and approach the best-reported results. Meanwhile, the single atomic Ce catalyst shows good structural and electrochemical stability during the 30-h NO electrolysis. Furthermore, when the single atomic Ce catalyst was used as cathodic material in a proof-of-concept of Zn-NO battery, it delivers a maximal power density of 3.4 mW cm-2 and a high NH3 yield rate of 309 μg h-1 mgcat.-1. Theoretical simulations suggest that the Ce-N4 active moiety can not only activate NO molecules via a strong electronic interaction but also reduce the free energy barrier of *NO transition to *NOH intermediate as the limiting step, and therefore boosting the NORR kinetics and suppressing the competitive hydrogen evolution.
Collapse
Affiliation(s)
- Weiqing Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China.
| | - Xuhui Qin
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Tianran Wei
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
36
|
Yang B, Yu H, Jia X, Cheng Q, Ren Y, He B, Xiang Z. Atomically Dispersed Isolated Fe-Ce Dual-Metal-Site Catalysts for Proton-Exchange Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23316-23327. [PMID: 37145771 DOI: 10.1021/acsami.3c03203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Atomically dispersed single-metal-site catalysts are hailed as the most promising category for the oxygen reduction reaction (ORR) with full metal utilization and complete exploitation of intrinsic activity. However, due to the inherent electronic structure of single-metal atoms in MNx, it is difficult to break the linear relationship between catalytic activity and adsorption energy of reaction intermediates, and the performance of such catalysts still falls short of expectations. Herein, we change the adsorption structure by constructing Fe-Ce atomic pairs to modulate the iron d-orbital electron configuration, breaking the linear relationship based on single-metal sites. The 4f cruise electrons of cerium element reduce the d-orbital center of iron in the synthesized FeCe-single atom dispersed hierarchical porous nitrogen-doped carbon (FeCe-SAD/HPNC) catalyst, and more orbital-occupied states appear near the fermi level, which weakens the adsorption strength in the active center and oxygen species, so that the rate-determining step was shifted from *OH desorption to *O > *OH, rendering the excellent ORR performances of the FeCe-SAD/HPNC catalyst. The synthesized FeCe-SAD/HPNC catalyst shows excellent activity, with a half-wave potential as high as 0.81 V for ORR in 0.1 M HClO4 solution. Additionally, by constructing a three-phase reaction interface with a hierarchical porous structure, the H2-O2 proton-exchange membrane fuel cell (PEMFC) assembled with FeCe-SAD/HPNC as cathode catalyst achieves a maximum power density of 0.771 W cm-2 and good stability.
Collapse
Affiliation(s)
- Bolong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haifeng Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xudong Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yaoliang Ren
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Department of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, P. R. China
| | - Bing He
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Department of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
37
|
Zhu H, Liu S, Yu J, Chen Q, Mao X, Wu T. Computational screening of effective g-C 3N 4 based single atom electrocatalysts for the selective conversion of CO 2. NANOSCALE 2023; 15:8416-8423. [PMID: 37093106 DOI: 10.1039/d3nr00286a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two-dimensional (2D) material-based single-atom catalysts (SACs) have demonstrated their potential in electrochemical reduction reactions but exploring suitable 2D material-based SACs for the CO2 reduction reaction (CO2RR) by experiments is still a formidable task. In this study, theoretical screening of transition metal (TM)-doped graphitic carbon nitride (g-C3N4) materials as catalysts for the CO2RR was systematically performed based on density functional theory (DFT) calculations. An indicator for the selective formation of one carbon (C1) products was developed to screen catalysts that are active and selective in the CO2RR. The results indicated that Ti- and Ag-g-C3N4 demonstrate excellent catalytic activity and selectivity for the formation of CO and HCOOH, with limiting potentials of -0.330 and -0.096 V, respectively, while Cr-g-C3N4 exhibits the highest catalytic activity for yielding CH3OH and CH4 (-0.355 and -0.420 V, respectively), but none of the screened catalysts have been identified as ideal candidates for the selective production of CH3OH and CH4. Furthermore, Bader charge analysis suggested that excessive electron transfer from TM leads to stronger adsorption of intermediates and high limiting potentials, which subsequently result in lower catalytic activity. This work provides theoretical insights into the effective screening of active and selective 2D material-based SACs which has the potential to significantly reduce the time and resources required for the discovery of novel electrocatalysts for the controlled formation of various products.
Collapse
Affiliation(s)
- Huiwen Zhu
- Key Laboratory of Clean Energy Technologies of Ningbo Municipality, University of Nottingham Ningbo China, Ningbo 315100, China.
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Shuai Liu
- School of Mechatronics and Energy Engineering, Ningbo Tech University, 315100, Ningbo, China
| | - Jiahui Yu
- Medical Science and Technology Innovation Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Quhan Chen
- Key Laboratory of Clean Energy Technologies of Ningbo Municipality, University of Nottingham Ningbo China, Ningbo 315100, China.
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Xinyi Mao
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Tao Wu
- Key Laboratory of Clean Energy Technologies of Ningbo Municipality, University of Nottingham Ningbo China, Ningbo 315100, China.
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
38
|
Zhao X, He D, Xia BY, Sun Y, You B. Ambient Electrosynthesis toward Single-Atom Sites for Electrocatalytic Green Hydrogen Cycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210703. [PMID: 36799551 DOI: 10.1002/adma.202210703] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 06/18/2023]
Abstract
With the ultimate atomic utilization, well-defined configuration of active sites and unique electronic properties, catalysts with single-atom sites (SASs) exhibit appealing performance for electrocatalytic green hydrogen generation from water splitting and further utilization via hydrogen-oxygen fuel cells, such that a vast majority of synthetic strategies toward SAS-based catalysts (SASCs) are exploited. In particular, room-temperature electrosynthesis under atmospheric pressure offers a novel, safe, and effective route to access SASs. Herein, the recent progress in ambient electrosynthesis toward SASs for electrocatalytic sustainable hydrogen generation and utilization, and future opportunities are discussed. A systematic summary is started on three kinds of ambient electrochemically synthetic routes for SASs, including electrochemical etching (ECE), direct electrodeposition (DED), and electrochemical leaching-redeposition (ELR), associated with advanced characterization techniques. Next, their electrocatalytic applications for hydrogen energy conversion including hydrogen evolution reaction, oxygen evolution reaction, overall water splitting, and oxygen reduction reaction are reviewed. Finally, a brief conclusion and remarks on future challenges regarding further development of ambient electrosynthesis of high-performance and cost-effective SASCs for many other electrocatalytic applications are presented.
Collapse
Affiliation(s)
- Xin Zhao
- School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
39
|
Zhao S, Ma Z, Wan Z, Li J, Wang X. Noble-Metal-Free FeMn-N-C Catalyst for Efficient Oxygen Reduction Reaction in Both Alkaline and Acidic Media. J Colloid Interface Sci 2023; 642:800-809. [PMID: 37043938 DOI: 10.1016/j.jcis.2023.03.206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
The oxygen reduction reaction (ORR) is important cathodic reaction running in several electrochemical energy conversion devices. It is still difficult to develop non-precious nanocatalysts for ORR that have high activity and increased durability for practical application. Herein, bimetallic FeMn(mIm)-N-C composite incorporated with Fe and Mn via an encapsulation-ligand exchange technique is prepared and established as an efficient ORR catalyst. The results reveal that FeMn(mIm)-N-C shows outstanding ORR performance with E1/2 of 0.861 V and 0.778 V in alkaline and acid solutions, along with robust durability. Additionally, the assembled Zn-Air batteries (ZAB) and proton exchange membrane fuel cells (PEMFCs) both have exceptional power densities and show promise for long-term stability compared to 20% Pt/C. The present work provides a useful strategy for designing and synthesizing a reliable low-cost and high-efficient electrocatalysts for energy conversion and storage.
Collapse
|
40
|
Zhang YX, Zhang S, Huang H, Liu X, Li B, Lee Y, Wang X, Bai Y, Sun M, Wu Y, Gong S, Liu X, Zhuang Z, Tan T, Niu Z. General Synthesis of a Diatomic Catalyst Library via a Macrocyclic Precursor-Mediated Approach. J Am Chem Soc 2023; 145:4819-4827. [PMID: 36790150 DOI: 10.1021/jacs.2c13886] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Heterogeneous catalysts containing diatomic sites are often hypothesized to have distinctive reactivity due to synergistic effects, but there are limited approaches that enable the convenient production of diatomic catalysts (DACs) with diverse metal combinations. Here, we present a general synthetic strategy for constructing a DAC library across a wide spectrum of homonuclear (Fe2, Co2, Ni2, Cu2, Mn2, and Pd2) and heteronuclear (Fe-Cu, Fe-Ni, Cu-Mn, and Cu-Co) bimetal centers. This strategy is based on an encapsulation-pyrolysis approach, wherein a porous material-encapsulated macrocyclic complex mediates the structure of DACs by preserving the main body of the molecular framework during pyrolysis. We take the oxygen reduction reaction (ORR) as an example to show that this DAC library can provide great opportunities for electrocatalyst development by unlocking an unconventional reaction pathway. Among all investigated sites, Fe-Cu diatomic sites possess exceptional high durability for ORR because the Fe-Cu pairs can steer elementary steps in the catalytic cycle and suppress the troublesome Fenton-like reactions.
Collapse
Affiliation(s)
- Yu-Xiao Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shengbo Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Helai Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaolong Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Beibei Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yiyang Lee
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xingdong Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Bai
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Mingze Sun
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanfen Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shuyan Gong
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Li S, Chai H, Zhang L, Xu Y, Chen J, Jiao Y. Constructing oxygen vacancy-rich MXene @Ce-MOF composites for enhanced energy storage and conversion. J Colloid Interface Sci 2023; 642:235-245. [PMID: 37004258 DOI: 10.1016/j.jcis.2023.03.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Oxygen vacancies can regulate the coordination structure and electronic states of atoms, thus promoting the formation of surface-active sites and increasing the conductivity of the electrode material. This work presents a design for MXene@Ce-MOF composites with abundant oxygen vacancies. The hydroxyl groups on the surface of monolayer MXene attract cerium ions, which create surface defects in Ce-MOF and further promote the formation of oxygen vacancies. This results in a significant improvement in energy storage capacity, as well as performance in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The MXene@Ce-MOF composite exhibits a specific capacity of 496 F g-1, which is 1.8 times higher than that of pure Ce-MOF and 3.5 times higher than MXene alone. At a current density of 10 mA cm-2, the overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is as low as 270 and 220 mV, respectively, and the composite exhibits excellent cycling stability. Oxygen vacancy-based MOF composites play a crucial role in electrocatalysis and energy conversion.
Collapse
|
42
|
Yan M, Wei Z, Gong Z, Johannessen B, Ye G, He G, Liu J, Zhao S, Cui C, Fei H. Sb 2S 3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H 2O 2 electrosynthesis. Nat Commun 2023; 14:368. [PMID: 36690634 PMCID: PMC9871021 DOI: 10.1038/s41467-023-36078-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Selective two-electron (2e-) oxygen reduction reaction (ORR) offers great opportunities for hydrogen peroxide (H2O2) electrosynthesis and its widespread employment depends on identifying cost-effective catalysts with high activity and selectivity. Main-group metal and nitrogen coordinated carbons (M-N-Cs) are promising but remain largely underexplored due to the low metal-atom density and the lack of understanding in the structure-property correlation. Here, we report using a nanoarchitectured Sb2S3 template to synthesize high-density (10.32 wt%) antimony (Sb) single atoms on nitrogen- and sulfur-codoped carbon nanofibers (Sb-NSCF), which exhibits both high selectivity (97.2%) and mass activity (114.9 A g-1 at 0.65 V) toward the 2e- ORR in alkaline electrolyte. Further, when evaluated with a practical flow cell, Sb-NSCF shows a high production rate of 7.46 mol gcatalyst-1 h-1 with negligible loss in activity and selectivity in a 75-h continuous electrolysis. Density functional theory calculations demonstrate that the coordination configuration and the S dopants synergistically contribute to the enhanced 2e- ORR activity and selectivity of the Sb-N4 moieties.
Collapse
Affiliation(s)
- Minmin Yan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zengxi Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhichao Gong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | - Gonglan Ye
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Guanchao He
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jingjing Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Chunyu Cui
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Huilong Fei
- State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China.
| |
Collapse
|
43
|
Li S, Li Z, Huang T, Xie H, Miao Z, Liang J, Pan R, Wang T, Han J, Li Q. Si Doping Enables Activity and Stability Enhancement on Atomically Dispersed Fe-N x /C Electrocatalysts for Oxygen Reduction in Acid. CHEMSUSCHEM 2023; 16:e202201795. [PMID: 36355035 DOI: 10.1002/cssc.202201795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Fe-N-C represents the most promising non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) in fuel cells, but often suffers from poor stability in acid due to the dissolution of metal sites and the poor oxidation resistance of carbon substrates. In this work, silicon-doped iron-nitrogen-carbon (Si/Fe-N-C) catalysts were developed by in situ silicon doping and metal-polymer coordination. It was found that Si doping could not only promote the density of Fe-Nx /C active sites but also elevated the content of graphitic carbon through catalytic graphitization. The best-performing Si/Fe-N-C exhibited a half-wave potential of 0.817 V vs. reversible hydrogen electrode in 0.5 m H2 SO4 , outperforming that of undoped Fe-N-C and most of the reported Fe-N-C catalysts. It also exhibited significantly enhanced stability at elevated temperature (≥60 °C). This work provides a new way to develop non-precious metal ORR catalysts with improved activity and stability in acidic media.
Collapse
Affiliation(s)
- Shenzhou Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| | - Zhiqiang Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianping Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huan Xie
- International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhengpei Miao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| | - Ran Pan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
44
|
Iron-tin based nanoparticles anchored on N-doped carbon as high-efficiency oxygen electrocatalyst for rechargeable Zn-air batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Wei X, Song S, Cai W, Luo X, Jiao L, Fang Q, Wang X, Wu N, Luo Z, Wang H, Zhu Z, Li J, Zheng L, Gu W, Song W, Guo S, Zhu C. Tuning the spin-state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Baum Z, Diaz LL, Konovalova T, Zhou QA. Materials Research Directions Toward a Green Hydrogen Economy: A Review. ACS OMEGA 2022; 7:32908-32935. [PMID: 36157740 PMCID: PMC9494439 DOI: 10.1021/acsomega.2c03996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 05/06/2023]
Abstract
A constellation of technologies has been researched with an eye toward enabling a hydrogen economy. Within the research fields of hydrogen production, storage, and utilization in fuel cells, various classes of materials have been developed that target higher efficiencies and utility. This Review examines recent progress in these research fields from the years 2011-2021, exploring the most commonly occurring concepts and the materials directions important to each field. Particular attention has been given to catalyst materials that enable the green production of hydrogen from water, chemical and physical storage systems, and materials used in technical capacities within fuel cells. The quantification of publication and materials trends provides a picture of the current state of development within each node of the hydrogen economy.
Collapse
|
47
|
Li S, Wang R, Xie M, Xu Y, Chen J, Jiao Y. Construction of trifunctional electrode material based on Pt-Coordinated Ce-Based metal organic framework. J Colloid Interface Sci 2022; 622:378-389. [PMID: 35525141 DOI: 10.1016/j.jcis.2022.04.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 01/17/2023]
Abstract
The main challenge hindering the use of Pt nanoparticles (Pt NPs) for electrochemical applications is their high cost and agglomeration. Herein, a trifunctional electrode material based on a two-dimensional cerium-based metal organic framework (2D Ce-MOF) decorated with Pt NPs is constructed. The large specific surface area of the 2D Ce-MOF can effectively prevent the phenomenon of Pt NPs reaction. The strong synergy between Pt NPs and the 2D Ce-MOF not only significantly enhances electron transport efficiency, but also increases the number of electrochemically reaction reactive sites. As a result, the Ce-MOF@Pt presents excellent performance in the HER (Hydrogen Evolution Reaction), OER (Oxygen Evolution Reaction) and supercapacitor reactions. The Tafel slopes of OER and HER are 47.9 and 188.1 mV dec-1, respectively. Meanwhile, Ce-MOF@Pt-0.05 shows a specific capacity of 1894F g-1 at a current density of 1 A g-1 and remains at 111.5% of the initial capacitance after 3000 cycles. In general, this study highlights the importance of Pt NPs in promoting the electrochemical performance of MOFs and reveals a new way to reduce electrocatalyst prices.
Collapse
Affiliation(s)
- Shuke Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ran Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Meng Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yang Jiao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
48
|
Liu X, Verma G, Chen Z, Hu B, Huang Q, Yang H, Ma S, Wang X. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation (N Y) 2022; 3:100281. [PMID: 35880235 PMCID: PMC9307687 DOI: 10.1016/j.xinn.2022.100281] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
Metal-organic frameworks (MOFs) have garnered multidisciplinary attention due to their structural tailorability, controlled pore size, and physicochemical functions, and their inherent properties can be exploited by applying them as precursors and/or templates for fabricating derived hollow porous nanomaterials. The fascinating, functional properties and applications of MOF-derived hollow porous materials primarily lie in their chemical composition, hollow character, and unique porous structure. Herein, a comprehensive overview of the synthetic strategies and emerging applications of hollow porous materials derived from MOF-based templates and/or precursors is given. Based on the role of MOFs in the preparation of hollow porous materials, the synthetic strategies are described in detail, including (1) MOFs as removable templates, (2) MOF nanocrystals as both self-sacrificing templates and precursors, (3) MOF@secondary-component core-shell composites as precursors, and (4) hollow MOF nanocrystals and their composites as precursors. Subsequently, the applications of these hollow porous materials for chemical catalysis, electrocatalysis, energy storage and conversion, and environmental management are presented. Finally, a perspective on the research challenges and future opportunities and prospects for MOF-derived hollow materials is provided. MOFs have garnered multi-disciplinary attention due to their unique inherent properties Various synthetic strategies of MOFs-derived hollow porous materials are summarized Emerging applications of MOFs-derived hollow porous materials are reviewed
Collapse
Affiliation(s)
- Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.,School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Gaurav Verma
- Department of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, TX 76201, USA
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, TX 76201, USA
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.,School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| |
Collapse
|
49
|
Recent Insight in Transition Metal Anchored on Nitrogen-Doped Carbon Catalysts: Preparation and Catalysis Application. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The design and preparation of novel, high-efficiency, and low-cost heterogeneous catalysts are important topics in academic and industry research. In the past, inorganic materials, metal oxide, and carbon materials were used as supports for the development of heterogeneous catalysts due to their excellent properties, such as high specific surface areas and tunable porous structures. However, the properties of traditional pristine carbon materials cannot keep up with the sustained growth and requirements of industry and scientific research, since the introduction of nitrogen atoms into carbon materials may significantly enhance a variety of their physicochemical characteristics, which gradually become appropriate support for synthesizing supported transition metal catalysts. In the past several decades, the transition metal anchored on nitrogen-doped carbon catalysts has attracted a tremendous amount of interest as potentially useful catalysts for diverse chemical reactions. Compared with original carbon support, the doping of nitrogen atoms can significantly regulate the physicochemical properties of carbon materials and allow active metal species uniformly dispersed on the support. The various N species in support also play a critical role in accelerating the catalytic performance in some reactions. Besides, the interaction between support and transition metal active sites can offer an anchor site to stabilize metal species during the preparation process and then improve reaction performance, atomic utilization, and stability. In this review, we highlight the recent advances and the remaining challenges in the preparation and application of transition metal anchored on nitrogen-doped carbon catalysts.
Collapse
|
50
|
Liu X, Verma G, Chen Z, Hu B, Huang Q, Yang H, Ma S, Wang X. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation (N Y) 2022; 3:100281. [DOI: doi.org/10.1016/j.xinn.2022.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
|