1
|
Peng X, Zhang M, Qin H, Han J, Xu Y, Li W, Zhang XP, Zhang W, Apfel UP, Cao R. Switching Electrocatalytic Hydrogen Evolution Pathways through Electronic Tuning of Copper Porphyrins. Angew Chem Int Ed Engl 2024; 63:e202401074. [PMID: 38311965 DOI: 10.1002/anie.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/06/2024]
Abstract
The electronic structure of metal complexes plays key roles in determining their catalytic features. However, controlling electronic structures to regulate reaction mechanisms is of fundamental interest but has been rarely presented. Herein, we report electronic tuning of Cu porphyrins to switch pathways of the hydrogen evolution reaction (HER). Through controllable and regioselective β-oxidation of Cu porphyrin 1, we synthesized analogues 2-4 with one or two β-lactone groups in either a cis or trans configuration. Complexes 1-4 have the same Cu-N4 core site but different electronic structures. Although β-oxidation led to large anodic shifts of reductions, 1-4 displayed similar HER activities in terms of close overpotentials. With electrochemical, chemical and theoretical results, we show that the catalytically active species switches from a CuI species for 1 to a Cu0 species for 4. This work is thus significant to present mechanism-controllable HER via electronic tuning of catalysts.
Collapse
Affiliation(s)
- Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Mengchun Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
2
|
Montgomery CL, Amtawong J, Jordan AM, Kurtz DA, Dempsey JL. Proton transfer kinetics of transition metal hydride complexes and implications for fuel-forming reactions. Chem Soc Rev 2023; 52:7137-7169. [PMID: 37750006 DOI: 10.1039/d3cs00355h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Proton transfer reactions involving transition metal hydride complexes are prevalent in a number of catalytic fuel-forming reactions, where the proton transfer kinetics to or from the metal center can have significant impacts on the efficiency, selectivity, and stability associated with the catalytic cycle. This review correlates the often slow proton transfer rate constants of transition metal hydride complexes to their electronic and structural descriptors and provides perspective on how to exploit these parameters to control proton transfer kinetics to and from the metal center. A toolbox of techniques for experimental determination of proton transfer rate constants is discussed, and case studies where proton transfer rate constant determination informs fuel-forming reactions are highlighted. Opportunities for extending proton transfer kinetic measurements to additional systems are presented, and the importance of synergizing the thermodynamics and kinetics of proton transfer involving transition metal hydride complexes is emphasized.
Collapse
Affiliation(s)
- Charlotte L Montgomery
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA.
| | - Jaruwan Amtawong
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA.
| | - Aldo M Jordan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA.
| | - Daniel A Kurtz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA.
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA.
| |
Collapse
|
3
|
Hernández-Toledo HC, Flores-Alamo M, Castillo I. Bis(benzimidazole)amino thio- and selenoether Iron(II) complexes as proton reduction electrocatalysts. J Inorg Biochem 2023; 241:112128. [PMID: 36701986 DOI: 10.1016/j.jinorgbio.2023.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Two novel Iron (II) complexes featuring tetrapodal bis(benzimidazole)amino thio- and selenoether ligands (LS and LSe) were synthesized, characterized, and tested as electrocatalysts for the hydrogen evolution reaction. The bromide complexes [Fe(LS,LSe)Br2] (1-2) are highly insoluble, but their DMSO solvates were characterized by single crystal X-ray diffraction, revealing an octahedral coordination environment that does not feature coordination of the chalcogen atoms. The corresponding triflate derivatives [Fe(LS,LSe)(MeCN)3]OTf2 (1c-2c) were employed for electrocatalytic proton reduction, with 1c exhibiting higher activity, thus suggesting that the thioether may participate as a more competent pendant ligand for proton transfer.
Collapse
Affiliation(s)
- Hugo C Hernández-Toledo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico
| | - Marcos Flores-Alamo
- Facultad de Química, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico
| | - Ivan Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico.
| |
Collapse
|
4
|
Wang N, Zhang XP, Han J, Lei H, Zhang Q, Zhang H, Zhang W, Apfel UP, Cao R. Promoting hydrogen evolution reaction with a sulfonic proton relay. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Zhao H, Pang X, Huang Y, Ma C, Bai H, Fan W. CeO 2/Ni-MOF with Synergistic Function of Enrichment and Activation: Efficient Reduction of 4-Nitrophenol Pollutant to 4-Aminophenol. Inorg Chem 2022; 61:19806-19816. [PMID: 36417551 DOI: 10.1021/acs.inorgchem.2c02937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The conversion of organic pollutants to value-added chemicals has been considered as a sustainable approach to solve environmental problems. However, it is still a challenge to construct a suitable heterogeneous catalyst that can synchronously achieve the enrichment and activation of organic pollutants (such as 4-nitrophenol, 4-NP). Here, an organic-inorganic hybrid catalyst (CeO2/Ni-MOF) was successfully fabricated for efficiently reducing 4-NP to 4-aminophenol (4-AP) with water as the hydrogen source. Based on the synergistic effect of Ni-MOF (adsorption action) and CeO2 (active sites), CeO2/Ni-MOF could achieve a reaction rate of 1.102 μmol min-1 mg-1 with an ultrahigh Faraday efficiency (FE) (99.9%) and conversion (97.6%). In addition, the catalytic mechanism of 4-NP reduction over CeO2/Ni-MOF was elaborated in depth. This work presents a new avenue for the effective reduction of pollutants and provides a new strategy for designing high-performance catalysts for rare-earth metals.
Collapse
Affiliation(s)
- Huaiquan Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, People's Republic of China
| | - Xuliang Pang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, People's Republic of China
| | - Yifei Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, People's Republic of China
| | - Chuan Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, People's Republic of China
| | - Hongye Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, People's Republic of China
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, People's Republic of China.,Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang212013, People's Republic of China
| |
Collapse
|
6
|
Ayare PJ, Watson N, Helton MR, Warner MJ, Dilbeck T, Hanson K, Vannucci AK. Molecular Z-Scheme for Solar Fuel Production via Dual Photocatalytic Cycles. J Am Chem Soc 2022; 144:21568-21575. [DOI: 10.1021/jacs.2c08462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Pooja J. Ayare
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Noelle Watson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Maizie R. Helton
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Matthew J. Warner
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Tristan Dilbeck
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Aaron K. Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| |
Collapse
|
7
|
Zhang Q, Lei H, Guo H, Wang Y, Gao Y, Zhang W, Cao R. Through-Space Electrostatic Effects of Positively Charged Substituents on the Hydrogen Evolution Reaction. CHEMSUSCHEM 2022; 15:e202200086. [PMID: 35156337 DOI: 10.1002/cssc.202200086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Elucidating the effects of various structural components on energy-related small molecule activation is of fundamental and practical significance. Herein the inhibition effect of positively charged substituents on the hydrogen evolution reaction (HER) was reported. With the use of Cu porphyrins 1-5 containing different numbers and locations of positively charged substituents, it was demonstrated that their electrocatalytic HER activities significantly decreased when more cationic units were located close to the Cu ion: the icat /ip (icat is the catalytic peak current, ip is the one-electron reduction peak current) value decreased from 38 with zero cationic unit to 15 with four closely located cationic units. Inspired by this result, Cu porphyrin 6, with four meso-phenyl groups each bearing a negatively charged para-sulfonic substituent, was designed. With these anionic units, 6 outperformed the other Cu porphyrins for electrocatalytic HER under the same conditions.
Collapse
Affiliation(s)
- Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yimei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
8
|
Gnaim S, Bauer A, Zhang HJ, Chen L, Gannett C, Malapit CA, Hill DE, Vogt D, Tang T, Daley RA, Hao W, Zeng R, Quertenmont M, Beck WD, Kandahari E, Vantourout JC, Echeverria PG, Abruna HD, Blackmond DG, Minteer SD, Reisman SE, Sigman MS, Baran PS. Cobalt-electrocatalytic HAT for functionalization of unsaturated C-C bonds. Nature 2022; 605:687-695. [PMID: 35614246 PMCID: PMC9206406 DOI: 10.1038/s41586-022-04595-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/01/2022] [Indexed: 12/23/2022]
Abstract
The study and application of transition metal hydrides (TMHs) has been an active area of chemical research since the early 1960s1, for energy storage, through the reduction of protons to generate hydrogen2,3, and for organic synthesis, for the functionalization of unsaturated C-C, C-O and C-N bonds4,5. In the former instance, electrochemical means for driving such reactivity has been common place since the 1950s6 but the use of stoichiometric exogenous organic- and metal-based reductants to harness the power of TMHs in synthetic chemistry remains the norm. In particular, cobalt-based TMHs have found widespread use for the derivatization of olefins and alkynes in complex molecule construction, often by a net hydrogen atom transfer (HAT)7. Here we show how an electrocatalytic approach inspired by decades of energy storage research can be made use of in the context of modern organic synthesis. This strategy not only offers benefits in terms of sustainability and efficiency but also enables enhanced chemoselectivity and distinct, tunable reactivity. Ten different reaction manifolds across dozens of substrates are exemplified, along with detailed mechanistic insights into this scalable electrochemical entry into Co-H generation that takes place through a low-valent intermediate.
Collapse
Affiliation(s)
- Samer Gnaim
- Department of Chemistry, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Adriano Bauer
- Department of Chemistry, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Hai-Jun Zhang
- Department of Chemistry, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Longrui Chen
- Department of Chemistry, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Cara Gannett
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - David E Hill
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Vogt
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Tianhua Tang
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Ryan A Daley
- Department of Chemistry, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Wei Hao
- Department of Chemistry, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Wesley D Beck
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Elya Kandahari
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Julien C Vantourout
- Department of Chemistry, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | | | - Hector D Abruna
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | - Donna G Blackmond
- Department of Chemistry, The Scripps Research Institute (TSRI), La Jolla, CA, USA.
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Sarah E Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute (TSRI), La Jolla, CA, USA.
| |
Collapse
|
9
|
Chou P, Kim L, Marzouk SM, Sun R, Hartnett AC, Dogutan DK, Zheng SL, Nocera DG. Synthesis, Characterization, and Hydrogen Evolution Activity of Metallo- meso-(4-fluoro-2,6-dimethylphenyl)porphyrin Derivatives. ACS OMEGA 2022; 7:8988-8994. [PMID: 35309414 PMCID: PMC8928552 DOI: 10.1021/acsomega.2c00109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Zn(II), Cu(II), and Ni(II) 5,10,15,20-tetrakis(4-fluoro-2,6-dimethylphenyl)porphyrins (TFPs) have been synthesized and characterized. The electronic spectroscopy and cyclic voltammetry of these compounds, along with the free-base macrocycle (2H-TFP), have been determined; 2H-TFP was also structurally characterized by X-ray crystallography. The Cu(II)TFP exhibits catalytic activity for the hydrogen evolution reaction (HER). The analysis of linear sweep voltammograms shows that the HER reaction of Cu(II)TFP with benzoic acid is first-order in proton concentration with an average apparent rate constant for HER catalysis of k app = 5.79 ± 0.47 × 103 M-1 s-1.
Collapse
Affiliation(s)
| | | | | | - Rui Sun
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Alaina C. Hartnett
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Dilek K. Dogutan
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
10
|
Cui X, Sun Y, Xu X. Polyoxometalate derived p-n heterojunction for optimized reaction interface and improved HER. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Li X, Lv B, Zhang X, Jin X, Guo K, Zhou D, Bian H, Zhang W, Apfel U, Cao R. Introducing Water‐Network‐Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
12
|
Li X, Lv B, Zhang XP, Jin X, Guo K, Zhou D, Bian H, Zhang W, Apfel UP, Cao R. Introducing Water-Network-Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew Chem Int Ed Engl 2021; 61:e202114310. [PMID: 34913230 DOI: 10.1002/anie.202114310] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/10/2022]
Abstract
Proton transfer is vital for many biological and chemical reactions. Hydrogen-bonded water-containing networks are often found in enzymes to assist proton transfer, but similar strategy has been rarely presented by synthetic catalysts. We herein report the Co corrole 1 with an appended crown ether unit and its boosted activity for the hydrogen evolution reaction (HER). Crystallographic and 1H NMR studies proved that the crown ether of 1 can grab water via hydrogen bonds. By using protic acids as proton sources, the HER activity of 1 was largely boosted with added water, while the activity of crown-ether-free analogues showed very small enhancement. Inhibition studies by adding (1) external 18-crown-6-ether to extract water molecules and (2) potassium ion or N-benzyl-n-butylamine to block the crown ether of 1 further confirmed its critical role in assisting proton transfer via grabbed water molecules. This work presents a synthetic example to boost HER through water-containing networks.
Collapse
Affiliation(s)
- Xialiang Li
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Bin Lv
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Xue-Peng Zhang
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Xiaotong Jin
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Kai Guo
- shaanxi normal university, School of Chemistry and Chemical Engineering, CHINA
| | - Dexia Zhou
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Hongtao Bian
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Wei Zhang
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Fakultät fur Chemie und Biochemie, GERMANY
| | - Rui Cao
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an Campus, Number 620 West Chang'an Avenue, Chang'an District, 710119, Xi'an, CHINA
| |
Collapse
|
13
|
Bhunia S, Rana A, Hematian S, Karlin KD, Dey A. Proton Relay in Iron Porphyrins for Hydrogen Evolution Reaction. Inorg Chem 2021; 60:13876-13887. [PMID: 34097396 DOI: 10.1021/acs.inorgchem.1c01079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efficiency of the hydrogen evolution reaction (HER) can be facilitated by the presence of proton-transfer groups in the vicinity of the catalyst. A systematic investigation of the nature of the proton-transfer groups present and their interplay with bulk proton sources is warranted. The HERs electrocatalyzed by a series of iron porphyrins that vary in the nature and number of pendant amine groups are investigated using proton sources whose pKa values vary from ∼9 to 15 in acetonitrile. Electrochemical data indicate that a simple iron porphyrin (FeTPP) can catalyze the HER at this FeI state where the rate-determining step is the intermolecular protonation of a FeIII-H- species produced upon protonation of the iron(I) porphyrin and does not need to be reduced to its formal Fe0 state. A linear free-energy correlation of the observed rate with pKa of the acid source used suggests that the rate of the HER becomes almost independent of pKa of the external acid used in the presence of the protonated distal residues. Protonation to the FeIII-H- species during the HER changes from intermolecular in FeTPP to intramolecular in FeTPP derivatives with pendant basic groups. However, the inclusion of too many pendant groups leads to a decrease in HER activity because the higher proton binding affinity of these residues slows proton transfer for the HER. These results enrich the existing understanding of how second-sphere proton-transfer residues alter both the kinetics and thermodynamics of transition-metal-catalyzed HER.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Shabnam Hematian
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Kenneth D Karlin
- Department of Chemistry, John Hopkins University, Baltimore, Maryland 21218, United States
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
14
|
Zhu C, Xian Q, He Q, Chen C, Zou W, Sun C, Wang S, Duan X. Edge-Rich Bicrystalline 1T/2H-MoS 2 Cocatalyst-Decorated {110} Terminated CeO 2 Nanorods for Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35818-35827. [PMID: 34310105 DOI: 10.1021/acsami.1c09651] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing all-solid-state Z-scheme systems with highly active photocatalysts are of huge interest in realizing long-term solar-to-fuel conversion. Here we reported an innovative hybrid of {110}-oriented CeO2 nanorods with edge-enriched bicrystalline 1T/2H-MoS2 coupling as efficient photocatalysts for water splitting. In the composites, the metallic 1T phase acts as an excellent solid state electron mediator in the Z-scheme, while the 2H phase and CeO2 are the adsorption sites of the photosensitizer and reactant (H2O), respectively. Through optimal structure and phase engineering, 1T/2H-MoS2@CeO2 heterojunctions simultaneously achieve high charge separation efficiency, proliferated density of exposed active sites, and excellent affinity to reactant molecules, reaching a superior hydrogen evolution rate of 73.1 μmol/h with an apparent quantum yield of 8.2% at 420 nm. Furthermore, density functional theory calculations show that 1T/2H-MoS2@CeO2 possesses the advantages of intensive electronic interaction from the built-in electric field (negative MoS2 and positive charged CeO2) and reduced H2O adsorption/dissociation energies. This work sheds light on the design of on-demand noble-metal-free Z-scheme heterostructures for solar energy conversion.
Collapse
Affiliation(s)
- Chengzhang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Qiuying He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Weixin Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- Jiangsu Key Laboratory of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
15
|
Sun D, Karippara Harshan A, Pécaut J, Hammes‐Schiffer S, Costentin C, Artero V. Hydrogen Evolution Mediated by Cobalt Diimine‐Dioxime Complexes: Insights into the Role of the Ligand Acid/Base Functionalities. ChemElectroChem 2021. [DOI: 10.1002/celc.202100413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dongyue Sun
- Univ. Grenoble Alpes CNRS CEA IRIG Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble, Cedex France
| | - Aparna Karippara Harshan
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 United States
| | - Jacques Pécaut
- Univ. Grenoble Alpes CNRS CEA IRIG SyMMES 17 rue des Martyrs F-38054 Grenoble, Cedex France
| | | | - Cyrille Costentin
- Univ Grenoble Alpes CNRS DCM 38000 Grenoble France
- Université de Paris 75013 Paris France
| | - Vincent Artero
- Univ. Grenoble Alpes CNRS CEA IRIG Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble, Cedex France
| |
Collapse
|