1
|
Ma Y, Shao M, Wang G, Guo L, Wang Y, Hao F, Liu F, Meng X, Wang C, Xiong Y, Fan Z. Controlled synthesis of metal-based Janus nanostructures for tandem electrocatalytic carbon dioxide reduction. Sci Bull (Beijing) 2025:S2095-9273(25)00490-6. [PMID: 40413073 DOI: 10.1016/j.scib.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/27/2025]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) possesses huge potential for achieving carbon neutrality by reducing greenhouse-gas CO2 to value-added chemicals/fuels with sustainable energy. However, obtaining highly selective and long-term stable catalysts for CO2RR is still challenging. Recently, metal-based Janus nanostructures (JNSs) have demonstrated unique advantages in addressing this issue in CO2RR via tandem catalysis. Herein, we systematically summarize the recently developed metal-based JNSs for electrocatalytic CO2RR. The synthesis methods are first introduced, including three representative methods (seed-mediated growth, dimerization, and selective-etching) and the strategy for constructing specific facets or unconventional phases in metal-based JNSs. Then, the application of metal-based JNSs in CO2RR toward the generation of single-carbon and multi-carbon products is elaborated, along with the corresponding catalytic mechanisms. The structural reconstruction of metal-based JNSs is also discussed in detail. Finally, we briefly summarize the recent advances and provide personal perspectives in this research direction.
Collapse
Affiliation(s)
- Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Mingzheng Shao
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Chaohui Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China; Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong 999077, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
2
|
Song X, Pu P, Feng H, Ding H, Deng Y, Ge Z, Zhao S, Liu T, Yang Y, Wei M, Zhang X. Integrating Active Learning and DFT for Fast-Tracking Single-Atom Alloy Catalysts in CO 2-to-Fuel Conversion. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356248 DOI: 10.1021/acsami.4c11695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Electrocatalytic carbon dioxide reduction (CO2RR) technology enables the conversion of excessive CO2 into high-value fuels and chemicals, thereby mitigating atmospheric CO2 concentrations and addressing energy scarcity. Single-atom alloys (SAAs) possess the potential to enhance the CO2RR performance by full utilization of atoms and breaking linear scaling relationships. However, quickly screening high-performance metal portfolios of SAAs remains a formidable challenge. In this study, we proposed an active learning (AL) framework to screen high-performance catalysts for CO2RR to yield fuels such as CH4 and CH3OH. After four rounds of AL iterations, the ML model attained optimal prediction performance with the test set R2 of approximately 0.94 and successful prediction was achieved for the binding free energy of *CHO, *COH, *CO, and *H on 380 catalyst surfaces with an accuracy within 0.20 eV. Subsequent analysis of the SAA catalysts' activity, selectivity, and stability led to the discovery of eight previously unexplored SAA catalysts for CO2RR. Notably, the surface activity of Ti@Cu(100), Au@Pt(100), and Ag@Pt(100) shines prominently. Utilizing DFT calculations, we elucidated the complete reaction pathway of the CO2RR on the surfaces of these catalysts, confirming their high catalytic activity with limiting potentials of -0.11, -0.34, and -0.46 eV, respectively, which are significantly lower than those of pure Cu catalysts. The results showcase the exceptional predictive prowess of AL, providing a valuable reference for the design of CO2RR catalysts.
Collapse
Affiliation(s)
- Xin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Pengxin Pu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haisong Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hu Ding
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuan Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhen Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shiquan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tianyong Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
3
|
Berger F, Schumann J, Réocreux R, Stamatakis M, Michaelides A. Bringing Molecules Together: Synergistic Coadsorption at Dopant Sites of Single Atom Alloys. J Am Chem Soc 2024; 146. [PMID: 39356554 PMCID: PMC11487606 DOI: 10.1021/jacs.4c07621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Bringing molecules together on a catalytic surface is a prerequisite for bimolecular and recombination reactions. However, in the absence of attractive interactions between reactants, such as hydrogen bonds, this poses a challenge. In contrast, based on density functional theory, we show that coadsorption at active sites of single-atom alloys (SAAs) is favored and that coadsorption is a general phenomenon observed for catalytically relevant adsorbates on a broad range of SAAs under temperature and pressure conditions commonly employed for catalysis. Dopants located in both terrace sites and in step edge defects exhibit a preference for coadsorption, displaying similar periodic trends. Using kinetic Monte Carlo simulations, we compare the reactivity of a model reaction on both a pure metal and an SAA and show that the preference for coadsorption significantly alters the overall reaction energy profile, even when the barriers for the rate-determining elementary step are identical. In our models, the coadsorption preference enhances the catalytic activity of the SAA surface by several orders of magnitude compared to the pure metal. We also report infrared (IR) spectroscopic signatures of coadsorption, which facilitate experimental detection. Analysis reveals that in these systems repulsive lateral interactions between nearby molecules are more than compensated for by the enhanced binding at dopant sites. Among the broad range of systems considered, SAAs containing early transition metals (TMs) exhibit the strongest coadsorption preference, which can be rationalized by assuming the existence of an optimal number of electrons involved in binding. The strong coadsorption preference, together with facile product desorption from early TMs, renders these systems attractive candidates for catalysis. Moreover, these SAAs could open new routes for reduction reactions because coadsorption with hydrogen is favored.
Collapse
Affiliation(s)
- Fabian Berger
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW Cambridge, U.K.
| | - Julia Schumann
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW Cambridge, U.K.
- Thomas
Young Centre and Department of Chemical Engineering, University College London, WC1E 7JE London, U.K.
| | - Romain Réocreux
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW Cambridge, U.K.
- Thomas
Young Centre and Department of Chemical Engineering, University College London, WC1E 7JE London, U.K.
| | - Michail Stamatakis
- Thomas
Young Centre and Department of Chemical Engineering, University College London, WC1E 7JE London, U.K.
- Department
of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K.
| | - Angelos Michaelides
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW Cambridge, U.K.
| |
Collapse
|
4
|
Qin H, Zhang H, Wu K, Wang X, Fan W. A systematic theoretical study of CO 2 hydrogenation towards methanol on Cu-based bimetallic catalysts: role of the CHO&CH 3OH descriptor in thermodynamic analysis. Phys Chem Chem Phys 2024; 26:19088-19104. [PMID: 38842113 DOI: 10.1039/d4cp01009d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The application of density functional theory (DFT) has enriched our understanding of methanol synthesis through CO2 hydrogenation on Cu-based catalysts. However, variations in catalytic performance under different metal doping conditions have hindered the development of universal catalytic principles. To address these challenges, we systematically investigated the scaling relationships of adsorption energy among different reaction intermediates on pure Cu, Au-Cu, Ni-Cu, Pt-Cu, Pd-Cu and Zn-Cu models. Additionally, by summing the respective adsorption energies of two separate species, we have developed a dual intermediate descriptor of CHO&CH3OH, capable of achieving computational accuracy on par with DFT results using the multiple linear regression method, all the while enabling the rapid prediction of thermodynamic properties at various stages of methanol synthesis. This method facilitates a better understanding of the coupling mechanisms between energy and linear expressions on copper-based substrates, and the universal linear criterion can be applied to other catalytic systems, with the aim of pursuing potential catalysts having both high efficiency and low cost.
Collapse
Affiliation(s)
- Huang Qin
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hai Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Kunmin Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xingzi Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Weidong Fan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Liu J, Zhang Y, Peng C. Recent Advances Hydrogenation of Carbon Dioxide to Light Olefins over Iron-Based Catalysts via the Fischer-Tropsch Synthesis. ACS OMEGA 2024; 9:25610-25624. [PMID: 38911759 PMCID: PMC11191082 DOI: 10.1021/acsomega.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
The massive burning of fossil fuels has been important for economic and social development, but the increase in the CO2 concentration has seriously affected environmental sustainability. In industrial and agricultural production, light olefins are one of the most important feedstocks. Therefore, the preparation of light olefins by CO2 hydrogenation has been intensively studied, especially for the development of efficient catalysts and for the application in industrial production. Fe-based catalysts are widely used in Fischer-Tropsch synthesis due to their high stability and activity, and they also exhibit excellent catalytic CO2 hydrogenation to light olefins. This paper systematically summarizes and analyzes the reaction mechanism of Fe-based catalysts, alkali and transition metal modifications, interactions between active sites and carriers, the synthesis process, and the effect of the byproduct H2O on catalyst performance. Meanwhile, the challenges to the development of CO2 hydrogenation for light olefin synthesis are presented, and future development opportunities are envisioned.
Collapse
Affiliation(s)
- Jiangtao Liu
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| | - Yongchun Zhang
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| | - Chong Peng
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| |
Collapse
|
6
|
Meese AF, Napier C, Kim DJ, Rigby K, Hedtke T, Leshchev D, Stavitski E, Parent LR, Kim JH. Underpotential Deposition of 3D Transition Metals: Versatile Electrosynthesis of Single-Atom Catalysts on Oxidized Carbon Supports. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311341. [PMID: 38332453 DOI: 10.1002/adma.202311341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Use of single-atom catalysts (SACs) has become a popular strategy for tuning activity and selectivity toward specific pathways. However, conventional SAC synthesis methods require high temperatures and pressures, complicated procedures, and expensive equipment. Recently, underpotential deposition (UPD) has been investigated as a promising alternative, yielding high-loading SAC electrodes under ambient conditions and within minutes. Yet only few studies have employed UPD to synthesize SACs, and all have been limited to UPD of Cu. In this work, a flexible UPD approach for synthesis of mono- and bi-metallic Cu, Fe, Co, and Ni SACs directly on oxidized, commercially available carbon electrodes is reported. The UPD mechanism is investigated using in situ X-ray absorption spectroscopy and, finally, the catalytic performance of a UPD-synthesized Co SAC is assessed for electrochemical nitrate reduction to ammonia. The findings expand upon the usefulness and versatility of UPD for SAC synthesis, with hopes of enabling future research toward realization of fast, reliable, and fully electrified SAC synthesis processes.
Collapse
Affiliation(s)
- Aidan Francis Meese
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - Cade Napier
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - David J Kim
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - Kali Rigby
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - Tayler Hedtke
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - Denis Leshchev
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lucas R Parent
- Innovation Partnership Building, University of Connecticut, 159 Discovery Dr., Storrs, CT, 06269, USA
| | - Jae-Hong Kim
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
7
|
He C, Gong Y, Li S, Wu J, Lu Z, Li Q, Wang L, Wu S, Zhang J. Single-Atom Alloys Materials for CO 2 and CH 4 Catalytic Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311628. [PMID: 38181452 DOI: 10.1002/adma.202311628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/27/2023] [Indexed: 01/07/2024]
Abstract
The catalytic conversion of greenhouse gases CH4 and CO2 constitutes an effective approach for alleviating the greenhouse effect and generating valuable chemical products. However, the intricate molecular characteristics characterized by high symmetry and bond energies, coupled with the complexity of associated reactions, pose challenges for conventional catalysts to attain high activity, product selectivity, and enduring stability. Single-atom alloys (SAAs) materials, distinguished by their tunable composition and unique electronic structures, confer versatile physicochemical properties and modulable functionalities. In recent years, SAAs materials demonstrate pronounced advantages and expansive prospects in catalytic conversion of CH4 and CO2. This review begins by introducing the challenges entailed in catalytic conversion of CH4 and CO2 and the advantages offered by SAAs. Subsequently, the intricacies of synthesis strategies employed for SAAs are presented and characterization techniques and methodologies are introduced. The subsequent section furnishes a meticulous and inclusive overview of research endeavors concerning SAAs in CO2 catalytic conversion, CH4 conversion, and synergy CH4 and CO2 conversion. The particular emphasis is directed toward scrutinizing the intricate mechanisms underlying the influence of SAAs on reaction activity and product selectivity. Finally, insights are presented on the development and future challenges of SAAs in CH4 and CO2 conversion reactions.
Collapse
Affiliation(s)
- Chengxuan He
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yalin Gong
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Songting Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jiaxin Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhaojun Lu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Qixin Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Shiqun Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Chen W, Jin X, Zhang L, Wang L, Shi J. Modulating the Structure and Composition of Single-Atom Electrocatalysts for CO 2 reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304424. [PMID: 38044311 PMCID: PMC10916602 DOI: 10.1002/advs.202304424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/05/2023] [Indexed: 12/05/2023]
Abstract
Electrochemical CO2 reduction reaction (eCO2 RR) is a promising strategy to achieve carbon cycling by converting CO2 into value-added products under mild reaction conditions. Recently, single-atom catalysts (SACs) have shown enormous potential in eCO2 RR due to their high utilization of metal atoms and flexible coordination structures. In this work, the recent progress in SACs for eCO2 RR is outlined, with detailed discussions on the interaction between active sites and CO2 , especially the adsorption/activation behavior of CO2 and the effects of the electronic structure of SACs on eCO2 RR. Three perspectives form the starting point: 1) Important factors of SACs for eCO2 RR; 2) Typical SACs for eCO2 RR; 3) eCO2 RR toward valuable products. First, how different modification strategies can change the electronic structure of SACs to improve catalytic performance is discussed; Second, SACs with diverse supports and how supports assist active sites to undergo catalytic reaction are introduced; Finally, according to various valuable products from eCO2 RR, the reaction mechanism and measures which can be taken to improve the selectivity of eCO2 RR are discussed. Hopefully, this work can provide a comprehensive understanding of SACs for eCO2 RR and spark innovative design and modification ideas to develop highly efficient SACs for CO2 conversion to various valuable fuels/chemicals.
Collapse
Affiliation(s)
- Weiren Chen
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Xixiong Jin
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Lingxia Zhang
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024P. R. China
| | - Lianzhou Wang
- Nanomaterials CentreSchool of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Jianlin Shi
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
9
|
Zhang S, Wang R, Zhang X, Zhao H. Recent advances in single-atom alloys: preparation methods and applications in heterogeneous catalysis. RSC Adv 2024; 14:3936-3951. [PMID: 38288153 PMCID: PMC10823358 DOI: 10.1039/d3ra07029h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 01/31/2024] Open
Abstract
Single-atom alloys (SAAs) are a different type of alloy where a guest metal, usually a noble metal (e.g., Pt, Pd, and Ru), is atomically dispersed on a relatively more inert (e.g., Ag and Cu) host metal. As a type of atomic-scale catalyst, single-atom alloy catalysts have broad application prospects in the field of heterogeneous catalysis for hydrogenation, dehydrogenation, oxidation, and other reactions. Numerous experimental and characterization results and theoretical calculations have confirmed that the resultant electronic structure caused by charge transfer between the host metal and guest metal and the special geometric structure of the guest metal are responsible for the high selectivity and catalytic activity of SAA catalysts. In this review, the common methods for the preparation of single-atom alloys in recent years are introduced, including initial wet impregnation, physical vapor deposition, and laser ablation in liquid technique. Afterwards, the applications of single-atom alloy catalysts in selective hydrogenation, dehydrogenation, oxidation reactions, and hydrogenolysis reactions are emphatically reviewed. Finally, several challenges for the future development of SAA catalysts are proposed.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Ruiying Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Xi Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Hua Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
10
|
Hu W, Grandjean D, Vaes J, Pant D, Janssens E. Recent advances in copper chalcogenides for CO 2 electroreduction. Phys Chem Chem Phys 2023; 25:30785-30799. [PMID: 37947074 DOI: 10.1039/d3cp04170k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Transforming CO2 through electrochemical methods into useful chemicals and energy sources may contribute to solutions for global energy and ecological challenges. Copper chalcogenides exhibit unique properties that make them potential catalysts for CO2 electroreduction. In this review, we provide an overview and comment on the latest advances made in the synthesis, characterization, and performance of copper chalcogenide materials for CO2 electroreduction, focusing on the work of the last five years. Strategies to boost their performance can be classified in three groups: (1) structural and compositional tuning, (2) leveraging on heterostructures and hybrid materials, and (3) optimizing size and morphology. Despite overall progress, concerns about selectivity and stability persist and require further investigation. This review outlines future directions for developing the next-generation of copper chalcogenide materials, emphasizing on rational design and advanced characterization techniques for efficient and selective CO2 electroreduction.
Collapse
Affiliation(s)
- Wenjian Hu
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Didier Grandjean
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Jan Vaes
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
- Department of Solid-state Sciences, Ghent University, Krijgslaan 281/S1, 9000 Gent, Belgium
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Zwijnaarde, Belgium
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| |
Collapse
|
11
|
Wang Q, Wang H, Ren X, Pang R, Zhao X, Zhang L, Li S. Synergetic Role of Thermal Catalysis and Photocatalysis in CO 2 Reduction on Cu 2/MoS 2. J Phys Chem Lett 2023; 14:8421-8427. [PMID: 37712525 DOI: 10.1021/acs.jpclett.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO-LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2δ- species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.
Collapse
Affiliation(s)
- Qiuyu Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Hening Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ren
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Pang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xingju Zhao
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shunfang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Wang Y, Zheng M, Zhou X, Pan Q, Li M. CO Electroreduction Mechanism on Single-Atom Zn (101) Surfaces: Pathway to C2 Products. Molecules 2023; 28:4606. [PMID: 37375161 DOI: 10.3390/molecules28124606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Electrocatalytic reduction of carbon dioxide (CO2RR) employs electricity to store renewable energy in the form of reduction products. The activity and selectivity of the reaction depend on the inherent properties of electrode materials. Single-atom alloys (SAAs) exhibit high atomic utilization efficiency and unique catalytic activity, making them promising alternatives to precious metal catalysts. In this study, density functional theory (DFT) was employed to predict stability and high catalytic activity of Cu/Zn (101) and Pd/Zn (101) catalysts in the electrochemical environment at the single-atom reaction site. The mechanism of C2 products (glyoxal, acetaldehyde, ethylene, and ethane) produced by electrochemical reduction on the surface was elucidated. The C-C coupling process occurs through the CO dimerization mechanism, and the formation of the *CHOCO intermediate proves beneficial, as it inhibits both HER and CO protonation. Furthermore, the synergistic effect between single atoms and Zn results in a distinct adsorption behavior of intermediates compared to traditional metals, giving SAAs unique selectivity towards the C2 mechanism. At lower voltages, the Zn (101) single-atom alloy demonstrates the most advantageous performance in generating ethane on the surface, while acetaldehyde and ethylene exhibit significant certain potential. These findings establish a theoretical foundation for the design of more efficient and selective carbon dioxide catalysts.
Collapse
Affiliation(s)
- Yixin Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ming Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qingjiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Mingxia Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
13
|
Luo Y, Ma Z, Xia X, Zhong J, Wu P, Huang Y. TM 2 -B 2 Quadruple Active Sites Supported on a Defective C 3 N Monolayer as Catalyst for the Electrochemical CO 2 Reduction: A Theoretical Perspective. CHEMSUSCHEM 2023; 16:e202202209. [PMID: 36571161 DOI: 10.1002/cssc.202202209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Developing high-performance electrocatalysts for the CO2 reduction reaction (CO2 RR) holds great potential to mitigate the depletion of fossil feedstocks and abate the emission of CO2 . In this contribution, using density functional theory calculations, we systematically investigated the CO2 RR performance catalyzed by TM2 -B2 (TM=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) supported on a defective C3 N monolayer (V-C3 N). Through the screening in terms of stability of catalyst, activity towards CO2 adsorption, and selectivity against hydrogen evolution reaction, Mn2 -, Fe2 -, Co2 -, and Ni2 -B2 @V-C3 N were demonstrated to be a highly promising CO2 RR electrocatalyst. Due to quadruple active sites, these candidates can adsorb two or three CO2 molecules. Strikingly, different products, distributing from C1 to C2+ , can be generated. The high activity originates from the synergistic effect of TM and B atoms, in which they serve as adsorption sites for the C- and O-species, respectively. The high selectivity towards C2+ products at the Fe2 -, and Ni2 -B2 sites stems from moderate C adsorption strength but relatively weak O adsorption strength, in which a universal descriptor, that is, 0.6 ΔEC -0.4 ΔEO =-1.77 eV (ΔEC /ΔEO is the adsorption energy of C/O), was proposed. This work would offer a novel perspective for the design of high active electrocatalysts towards CO2 RR and for the synthesis of C2+ compounds.
Collapse
Affiliation(s)
- Yao Luo
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Zengying Ma
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Xueqian Xia
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Junwen Zhong
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Peng Wu
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| |
Collapse
|
14
|
Li M, Zhang JN. Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: A review. Sci China Chem 2023. [DOI: 10.1007/s11426-023-1565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
Hou X, Ding J, Liu W, Zhang S, Luo J, Liu X. Asymmetric Coordination Environment Engineering of Atomic Catalysts for CO 2 Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020309. [PMID: 36678060 PMCID: PMC9866045 DOI: 10.3390/nano13020309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 05/14/2023]
Abstract
Single-atom catalysts (SACs) have emerged as well-known catalysts in renewable energy storage and conversion systems. Several supports have been developed for stabilizing single-atom catalytic sites, e.g., organic-, metal-, and carbonaceous matrices. Noticeably, the metal species and their local atomic coordination environments have a strong influence on the electrocatalytic capabilities of metal atom active centers. In particular, asymmetric atom electrocatalysts exhibit unique properties and an unexpected carbon dioxide reduction reaction (CO2RR) performance different from those of traditional metal-N4 sites. This review summarizes the recent development of asymmetric atom sites for the CO2RR with emphasis on the coordination structure regulation strategies and their effects on CO2RR performance. Ultimately, several scientific possibilities are proffered with the aim of further expanding and deepening the advancement of asymmetric atom electrocatalysts for the CO2RR.
Collapse
Affiliation(s)
- Xianghua Hou
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Nanning 530004, China
| | - Junyang Ding
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Nanning 530004, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| |
Collapse
|
16
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
17
|
Electrocatalytic Reduction of CO2 to C1 Compounds by Zn-Based Monatomic Alloys: A DFT Calculation. Catalysts 2022. [DOI: 10.3390/catal12121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Electrocatalytic reduction of carbon dioxide to produce usable products and fuels such as alkanes, alkenes, and alcohols, is a very promising strategy. Recent experiments have witnessed great advances in precisely controlling the synthesis of single atom alloys (SAAs), which exhibit unique catalytic properties different from alloys and nanoparticles. However, only certain precious metals, such as Pd or Au, can achieve this transformation. Here, the density functional theory (DFT) calculations were performed to show that Zn-based SAAs are promising electrocatalysts for the reduction of CO2 to C1 hydrocarbons. We assume that CO2 reduction in Zn-based SAAs follows a two-step continuous reaction: first Zn reduces CO2 to CO, and then newly generated CO is captured by M and further reduced to C1 products such as methane or methanol. This work screens seven stable alloys from 16 SAAs (M = Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, V, Mo, Ti, Cr). Among them, Pd@Zn (101) and Cu@Zn (101) are promising catalysts for CO2 reduction. The reaction mechanisms of these two SAAs are discussed in detail. Both of them convert CO2 into methane via the same pathway. They are reduced by the pathway: *CO2 → *COOH → *CO + H2O; *CO → *CHO → *CH2O → *CH3O → *O + CH4 → *OH + CH4 → H2O + CH4. However, their potential determination steps are different, i.e., *CO2 → *COOH (ΔG = 0.70 eV) for Cu@Zn (101) and *CO → *CHO (ΔG = 0.72 eV) for Pd@Zn, respectively. This suggests that Zn-based SAAs can reduce CO2 to methane with a small overpotential. The solvation effect is simulated by the implicit solvation model, and it is found that H2O is beneficial to CO2 reduction. These computational results show an effective monatomic material to form hydrocarbons, which can stimulate experimental efforts to explore the use of SAAs to catalyze CO2 electrochemical reduction to hydrocarbons.
Collapse
|
18
|
Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00139-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractElectrochemical conversion of carbon dioxide into fuel and chemicals with added value represents an appealing approach to reduce the greenhouse effect and realize a carbon-neutral cycle, which has great potential in mitigating global warming and effectively storing renewable energy. The electrochemical CO2 reduction reaction (CO2RR) usually involves multiproton coupling and multielectron transfer in aqueous electrolytes to form multicarbon products (C2+ products), but it competes with the hydrogen evolution reaction (HER), which results in intrinsically sluggish kinetics and a complex reaction mechanism and places higher requirements on the design of catalysts. In this review, the advantages of electrochemical CO2 reduction are briefly introduced, and then, different categories of Cu-based catalysts, including monometallic Cu catalysts, bimetallic catalysts, metal-organic frameworks (MOFs) along with MOF-derived catalysts and other catalysts, are summarized in terms of their synthesis method and conversion of CO2 to C2+ products in aqueous solution. The catalytic mechanisms of these catalysts are subsequently discussed for rational design of more efficient catalysts. In response to the mechanisms, several material strategies to enhance the catalytic behaviors are proposed, including surface facet engineering, interface engineering, utilization of strong metal-support interactions and surface modification. Based on the above strategies, challenges and prospects are proposed for the future development of CO2RR catalysts for industrial applications.
Graphical Abstract
Collapse
|
19
|
Wang H, Zhou X, Yu T, Lu X, Qian L, Liu P, Lei P. Surface restructuring in AgCu single-atom alloy catalyst and self-enhanced selectivity toward CO2 reduction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Zeng Y, Chen Y, Wu Y, Wang D, Liu X, Li L. Mechanism of Photocatalytic Reduction of CO 2 to CH 3OH by Cu Nanoparticle and Metal Atom (Ag, Au, Pd, Zn)-Doped Cu Catalyst: A Theoretical Study. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaping Zeng
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Danyang Wang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiangyang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
21
|
Yang Y, Yang Z, Zhang C, Zhou J, Liu S, Cao Q. Single-Atom Catalysts Supported on the Graphene/Graphdiyne Heterostructure for Effective CO 2 Electroreduction. Inorg Chem 2022; 61:12012-12022. [PMID: 35862301 DOI: 10.1021/acs.inorgchem.2c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrochemical reduction of CO2 to high-energy chemicals is a promising strategy for achieving carbon-neutral energy circulation. However, designing high-performance electrocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. In this work, by means of density functional theory calculations, we systematically investigate the transition metal (TM) anchored on the nitrogen-doped graphene/graphdiyne heterostructure (TM-N4@GRA/GDY) as a single-atom catalyst for CO2 electroreduction applications. The computational results show that Co-N4@GRA/GDY exhibits remarkable activity with a low limiting potential of -0.567 V for the reduction of CO2 to CH4. When the charged Co-N4@GRA/GDY system is immersed in a continuum solvent, the reaction barrier decreases to 0.366 eV, which is ascribed to stronger electron transfer between GDY and transition metal atoms in the GRA/GDY heterostructure. In addition, the GRA/GDY heterostructure system significantly weakens the linear scaling relationship between the adsorption free energy of key CO2 reduction intermediates, which leads to a catalytic activity that is higher than that of the single-GRA system and thus greatly accelerates the CO2RR. The electronic structure analysis reveals that the appropriate d-π interaction will affect the d orbital electron distribution, which is directly relevant to the selectivity and activity of catalysis. We hope these computational results not only provide a potential electrocatalyst candidate but also open up an avenue for improving the catalytic performance for efficient electrochemical CO2RR.
Collapse
Affiliation(s)
- Yun Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Ziqian Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Canyu Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Jiao Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Shixi Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| |
Collapse
|
22
|
Wang Y, Schumann J, Happel EE, Çınar V, Sykes ECH, Stamatakis M, Michaelides A, Hannagan RT. Observation and Characterization of Dicarbonyls on a RhCu Single-Atom Alloy. J Phys Chem Lett 2022; 13:6316-6322. [PMID: 35792939 DOI: 10.1021/acs.jpclett.2c01596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dicarbonyl species are ubiquitous on Rh/oxide catalysts and are known to form on Rh+ centers. However, dicarbonyl species have never been directly observed on single-atom alloys (SAAs) where the active site is metallic. Herein, using surface science and theoretical modeling, we provide evidence of dicarbonyl species at isolated Rh sites on a RhCu(100) SAA. This approach not only enables us to directly visualize dicarbonyl species at Rh sites but also demonstrates that the transition between the mono- and dicarbonyl configuration can be achieved by changing surface temperature and CO pressure. Density functional theory calculations further support the mono- and dicarbonyl assignments and provide evidence that these species should be stable on other SAA combinations. Together, these results provide a picture of the structure and energetics of both the mono- and dicarbonyl configurations on the RhCu(100) SAA surface and should aid with IR assignments on SAA nanoparticle catalysts.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Julia Schumann
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
| | - Elizabeth E Happel
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Volkan Çınar
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - E Charles H Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Michail Stamatakis
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
| | - Ryan T Hannagan
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
23
|
Sun Q, Jia C, Zhao Y, Zhao C. Single atom-based catalysts for electrochemical CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64000-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
DFT Study on the CO2 Reduction to C2 Chemicals Catalyzed by Fe and Co Clusters Supported on N-Doped Carbon. NANOMATERIALS 2022; 12:nano12132239. [PMID: 35808074 PMCID: PMC9268301 DOI: 10.3390/nano12132239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/18/2022]
Abstract
The catalytic conversion of CO2 to C2 products through the CO2 reduction reaction (CO2RR) offers the possibility of preparing carbon-based fuels and valuable chemicals in a sustainable way. Herein, various Fen and Co5 clusters are designed to screen out the good catalysts with reasonable stability, as well as high activity and selectivity for either C2H4 or CH3CH2OH generation through density functional theory (DFT) calculations. The binding energy and cohesive energy calculations show that both Fe5 and Co5 clusters can adsorb stably on the N-doped carbon (NC) with one metal atom anchored at the center of the defected hole via a classical MN4 structure. The proposed reaction pathway demonstrates that the Fe5-NC cluster has better activity than Co5-NC, since the carbon–carbon coupling reaction is the potential determining step (PDS), and the free energy change is 0.22 eV lower in the Fe5-NC cluster than that in Co5-NC. However, Co5-NC shows a better selectivity towards C2H4 since the hydrogenation of CH2CHO to CH3CHO becomes the PDS, and the free energy change is 1.08 eV, which is 0.07 eV higher than that in the C-C coupling step. The larger discrepancy of d band center and density of states (DOS) between the topmost Fe and sub-layer Fe may account for the lower free energy change in the C-C coupling reaction. Our theoretical insights propose an explicit indication for designing new catalysts based on the transition metal (TM) clusters supported on N-doped carbon for multi-hydrocarbon synthesis through systematically analyzing the stability of the metal clusters, the electronic structure of the critical intermediates and the energy profiles during the CO2RR.
Collapse
|
25
|
Rivera de la Cruz JG, Fontecave M. Electrochemical CO 2 reduction on Cu single atom catalyst and Cu nanoclusters: an ab initio approach. Phys Chem Chem Phys 2022; 24:15767-15775. [PMID: 35758310 DOI: 10.1039/d2cp00887d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical CO2 reduction presents a sustainable route to the production of chemicals such as ethylene or ethanol, however the design of selective catalysts is still challenging. The use of single site copper nitrogen doped carbon materials with porphyrin-like Cu graphene structures have shown a significant improvement towards the production of multi carbon products, particularly ethanol. Nonetheless, during reaction the porphyrin like Cu sites transiently convert into metallic copper nanoclusters in a reversible process, making difficult to understand the actual role of each phase. Here, we present a computational study, where adequate structural models to describe the experimentally determined phases of the single atom catalyst (Cu-N-C material) have been constructed. Moreover, the electrochemical reduction of CO2 to ethanol and ethylene has been addressed via periodic DFT calculations on each of the systems. On the basis of the computed free energies of reaction, it was found that the Cu nanoclusters exhibit a superior performance for the CO reduction in comparison with the single site. Moreover, they possess a high activity towards the production of ethanol, suggesting them as the active phase responsible for the catalytic performance of the studied material.
Collapse
Affiliation(s)
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, Paris, France.
| |
Collapse
|
26
|
Wang J, Zheng M, Zhao X, Fan W. Structure-Performance Descriptors and the Role of the Axial Oxygen Atom on M–N 4–C Single-Atom Catalysts for Electrochemical CO 2 Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Mingyue Zheng
- State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Xian Zhao
- Center for Optics Research and Engineering of Shandong University, Shandong University, Oingdao 266237, People’s Republic of China
| | - Weiliu Fan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| |
Collapse
|
27
|
CO2 Electroreduction over Metallic Oxide, Carbon-Based, and Molecular Catalysts: A Mini-Review of the Current Advances. Catalysts 2022. [DOI: 10.3390/catal12050450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is one of the most challenging targets of current energy research. Multi-electron reduction with proton-coupled reactions is more thermodynamically favorable, leading to diverse product distribution. This requires the design of stable electroactive materials having selective product generation and low overpotentials. In this review, we have explored different CO2RR electrocatalysts in the gas phase and H-cell configurations. Five groups of electrocatalysts ranging from metals and metal oxide, single atom, carbon-based, porphyrins, covalent, metal–organic frameworks, and phthalocyanines-based electrocatalysts have been reviewed. Finally, conclusions and prospects have been elaborated.
Collapse
|
28
|
Xu Z, Ao Z, Yang M, Wang S. Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127427. [PMID: 34678562 DOI: 10.1016/j.jhazmat.2021.127427] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 05/14/2023]
Abstract
Heterogeneous catalysts have made outstanding advancements in pollutants elimination as well as energy and materials production over the past decades. Single-atom alloys (SAAs) are novel environmental catalysts prepared by dispersing single metal atoms on other metals. Integrating the advantages of single atom and alloys, SAAs can maximize atom utilization, reduce the use of noble metals and enhance catalytic performances. The synergistic, electronic and geometric effects of SAAs are effective to modulate the activation energy and adsorption strength, consequently breaking linear scaling relationship as well as offering an excellent catalytic activity and selectivity. Moreover, SAAs possess clear atomic structure, active sites and reaction mechanisms, providing an opportunity to tailor catalytic properties and develop effective environmental catalysts. In this review, we provide the recent progress on synthetic strategies, catalytic properties and catalyst design of SAAs. Furthermore, the applications of SAAs in environmental catalysis are introduced towards catalytic conversion and elimination of different air pollutants in many important reactions including (electrochemical) oxidation of volatile organic compounds (VOCs), dehydrogenation of VOCs, CO2 conversion, NOx reduction, CO oxidation, SO3 decomposition, etc. Finally, challenges and opportunities of SAAs in a broad environmental field are proposed.
Collapse
Affiliation(s)
- Zhiling Xu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; SINOPEC Maoming Petrochemical Company, Maoming 525011, China
| | - Zhimin Ao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mei Yang
- SINOPEC Maoming Petrochemical Company, Maoming 525011, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
29
|
A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nat Commun 2022; 13:819. [PMID: 35145110 PMCID: PMC8831533 DOI: 10.1038/s41467-022-28456-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022] Open
Abstract
Nitrogen-doped graphene-supported single atoms convert CO2 to CO, but fail to provide further hydrogenation to methane - a finding attributable to the weak adsorption of CO intermediates. To regulate the adsorption energy, here we investigate the metal-supported single atoms to enable CO2 hydrogenation. We find a copper-supported iron-single-atom catalyst producing a high-rate methane. Density functional theory calculations and in-situ Raman spectroscopy show that the iron atoms attract surrounding intermediates and carry out hydrogenation to generate methane. The catalyst is realized by assembling iron phthalocyanine on the copper surface, followed by in-situ formation of single iron atoms during electrocatalysis, identified using operando X-ray absorption spectroscopy. The copper-supported iron-single-atom catalyst exhibits a CO2-to-methane Faradaic efficiency of 64% and a partial current density of 128 mA cm-2, while the nitrogen-doped graphene-supported one produces only CO. The activity is 32 times higher than a pristine copper under the same conditions of electrolyte and bias.
Collapse
|
30
|
Réocreux R, Stamatakis M. One Decade of Computational Studies on Single-Atom Alloys: Is In Silico Design within Reach? Acc Chem Res 2022; 55:87-97. [PMID: 34904820 DOI: 10.1021/acs.accounts.1c00611] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusSingle-Atom alloys (SAAs) are an emerging class of materials consisting of a coinage metal (Cu, Ag, and Au) doped, at the single-atom limit, with another metal. As catalysts, coinage metals are rarely very active on their own, but when they are, they exhibit high selectivity. On the other hand, transition metals are usually very active but not as selective. Incorporating transition metals (guest elements) into coinage metals (host material) is therefore appealing for combining the activity and selectivity of each constituent in a balanced way. Additionally, first-principles calculations have shown that single atoms embedded in the surface of a coinage metal can exhibit emergent properties. Here, we describe how computational studies based on density functional theory (DFT) and kinetic Monte Carlo (KMC) simulations, often undertaken in close collaboration with experimental research groups, have shaped, over the past decade, the way we understand SAA catalysis.This Account reviews our contributions in elucidating the stability of SAAs, their electronic structure, and the way adsorbates interact and react on SAA catalytic surfaces. By studying in detail the processes that affect the stability of the SAA phase, we have shown that out of several bimetallic combinations of coinage metals with prominent Pt-group metals only PtCu and PdCu are stable surface alloys under vacuum. However, more surface alloy structures are possible in the presence of adsorbates because the latter can stabilize, via strong binding, dopants in the surface of the material. More interestingly, a large number of these surface alloys are resistant to the aggregation of dopant atoms into clusters, thereby favoring the SAA structure. These major results from DFT calculations serve as a guide for experimentalists to explore new SAA catalysts. Further analysis has shown that SAAs have a unique electronic structure with a very sharp d-band feature close to the Fermi level, analogous to the electronic structure of molecular entities. This is one of the reasons that SAAs are particularly sought after: although they are metallic nanoparticles, they have properties akin to those of homogeneous catalysts. In this context, we have contributed extensive screening studies, focusing on molecular fragments of catalytic relevance on a range of SAAs, which have driven the identification of new catalysts. We have also explored the rich chemistry of two-adsorbate systems via kinetic modeling, demonstrating how a spectator species with greater affinity for the dopant can modulate the reactivity of the catalyst via the so-called (punctured) molecular cork effect.Since the first experimental characterization of SAAs about a decade ago, theoretical models have been able to support and explain various experimental observations. These models have served as benchmarks for assessing the predictive capability of the underlying theoretical methods. In turn, the predictions that have been delivered have guided and continue to guide the experimental research efforts in the field. These advancements show that the in silico design of new SAA catalysts is now within reach.
Collapse
Affiliation(s)
- Romain Réocreux
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, U.K
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
31
|
Zhao Z, Lu G. Circumventing the scaling relationship on bimetallic monolayer electrocatalysts for selective CO 2 reduction. Chem Sci 2022; 13:3880-3887. [PMID: 35432893 PMCID: PMC8966713 DOI: 10.1039/d2sc00135g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
Dual-functional active sites are designed to circumvent the scaling relationship between the HER and CO2RR on bimetallic monolayer electrocatalysts.
Collapse
Affiliation(s)
- Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, California 91330, USA
| |
Collapse
|
32
|
Cao N, Zhang N, Qiu YQ, Liu CG. Electroreduction of N 2 to NH 3 catalyzed by a Mn/Re(111) single-atom alloy catalyst with high activity and selectivity: a new insight from a first-principles study. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00435f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Periodic density functional theory calculations show that a Mn/Re(111) single-atom alloy may be an excellent catalyst with high activity and selectivity for the electrocatalytic N2 reduction reaction.
Collapse
Affiliation(s)
- Ning Cao
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City, 132013, P. R. China
- College of Chemical Engineering, Northeast Electric Power University, Jilin City, 132012, P. R. China
| | - Nan Zhang
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City, 132013, P. R. China
- College of Chemical Engineering, Northeast Electric Power University, Jilin City, 132012, P. R. China
| | - Yong-Qing Qiu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Chun-Guang Liu
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City, 132013, P. R. China
| |
Collapse
|
33
|
|
34
|
Kumar A, Iyer J, Jalid F, Ramteke M, Khan TS, Haider MA. Machine Learning Enabled Screening of Single Atom Alloys: Predicting Reactivity Trend for Ethanol Dehydrogenation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amrish Kumar
- Renewable Energy and Chemicals Laboratory Department of Chemical Engineering Indian Institute of Technology Delhi Hauz Khas Delhi 110016 India
| | - Jayendran Iyer
- Renewable Energy and Chemicals Laboratory Department of Chemical Engineering Indian Institute of Technology Delhi Hauz Khas Delhi 110016 India
| | - Fatima Jalid
- Department of Chemical Engineering National Institute of Technology Srinagar Srinagar Jammu and Kashmir 190006 India
| | - Manojkumar Ramteke
- Department of Chemical Engineering Indian Institute of Technology Delhi Hauz Khas Delhi 110016 India
| | - Tuhin S. Khan
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
| | - M. Ali Haider
- Renewable Energy and Chemicals Laboratory Department of Chemical Engineering Indian Institute of Technology Delhi Hauz Khas Delhi 110016 India
| |
Collapse
|
35
|
Chen Z, Yu G, Li B, Zhang X, Jiao M, Wang N, Zhang X, Liu L. In Situ Carbon Encapsulation Confined Nickel-Doped Indium Oxide Nanocrystals for Boosting CO 2 Electroreduction to the Industrial Level. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhipeng Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Guang Yu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Bin Li
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xinxin Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Mingyang Jiao
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Nailiang Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiangping Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Licheng Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| |
Collapse
|
36
|
Zhi X, Jiao Y, Zheng Y, Qiao SZ. Key to C 2 production: selective C-C coupling for electrochemical CO 2 reduction on copper alloy surfaces. Chem Commun (Camb) 2021; 57:9526-9529. [PMID: 34546247 DOI: 10.1039/d1cc03796j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C-C coupling kinetic variations are observed on Cu alloys with Pt, Pd, or Au surface sites. The OC-COH coupling is kinetically more favorable than OC-CHO coupling, which originates from increased reactivity of adsorbed *CO species. Linear energy relations for C-C association/dissociation could simplify the energetic evaluation for C2 production.
Collapse
Affiliation(s)
- Xing Zhi
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| | - Yan Jiao
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| | - Yao Zheng
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| |
Collapse
|
37
|
Zhang B, Zhang B, Jiang Y, Ma T, Pan H, Sun W. Single-Atom Electrocatalysts for Multi-Electron Reduction of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101443. [PMID: 34242473 DOI: 10.1002/smll.202101443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/20/2021] [Indexed: 05/21/2023]
Abstract
The multi-electron reduction of CO2 to hydrocarbons or alcohols is highly attractive in a sustainable energy economy, and the rational design of electrocatalysts is vital to achieve these reactions efficiently. Single-atom electrocatalysts are promising candidates due to their well-defined coordination configurations and unique electronic structures, which are critical for delivering high activity and selectivity and may accelerate the explorations of the activity origin at atomic level as well. Although much effort has been devoted to multi-electron reduction of CO2 on single-atom electrocatalysts, there are still no reviews focusing on this emerging field and constructive perspectives are also urgent to be addressed. Herein recent advances in how to design efficient single-atom electrocatalysts for multi-electron reduction of CO2 , with emphasis on strategies in regulating the interactions between active sites and key reaction intermediates, are summarized. Such interactions are crucial in designing active sites for optimizing the multi-electron reduction steps and maximizing the catalytic performance. Different design strategies including regulation of metal centers, single-atom alloys, non-metal single-atom catalysts, and tandem catalysts, are discussed accordingly. Finally, current challenges and future opportunities for deep electroreduction of CO2 are proposed.
Collapse
Affiliation(s)
- Bingxing Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Baohua Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
38
|
Zhou C, Zhao JY, Liu PF, Chen J, Dai S, Yang HG, Hu P, Wang H. Towards the object-oriented design of active hydrogen evolution catalysts on single-atom alloys. Chem Sci 2021; 12:10634-10642. [PMID: 34447556 PMCID: PMC8356813 DOI: 10.1039/d1sc01018b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022] Open
Abstract
Given a desired property, locating relevant materials is always highly desired but very challenging in a range of areas, including heterogeneous catalysis. Obviously, object-oriented design/screening is an ideal solution to this problem. Herein, we develop an inverse catalyst design workflow in Python (CATIDPy) that utilizes a genetic-algorithm-based global optimization method to guide on-the-fly density functional theory calculations, successfully realizing the highly accelerated location of active single-atom alloy (SAA) catalysts for the hydrogen evolution reaction (HER). 70 binary and 752 ternary SAA candidate catalysts are identified for the HER. Furthermore, via considering the segregation stability and cost of materials, we extracted 6 binary and 142 ternary SAA candidate catalysts that are recommended for experimental synthesis. Remarkably, guided by these theoretical identifications, homogeneously dispersed Ni-based bimetallic catalysts (e.g., NiMo, NiAl, Ni3Al, NiGa, and NiIn) were synthesized experimentally to test the reliability of the CATIDPy workflow, and they showed superior HER performance to bare Ni foam, indicating huge potential for use in real-world water electrolysis techniques. Perhaps more importantly, these results demonstrate the capacity of such a proposed approach for investigating unexplored chemical spaces to efficiently design promising catalysts without knowledge from the expert domain, which has far-reaching implications. An inverse catalyst design workflow in Python (CATIDPy) for discovering unexplored chemical spaces successfully realized the highly accelerated location of active single-atom alloy (SAA) catalysts for the hydrogen evolution reaction (HER).![]()
Collapse
Affiliation(s)
- Chuan Zhou
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology Shanghai 200237 China
| | - Jia Yue Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, East China University of Science and Technology Shanghai 200237 China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, East China University of Science and Technology Shanghai 200237 China
| | - Jianfu Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology Shanghai 200237 China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, East China University of Science and Technology Shanghai 200237 China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, East China University of Science and Technology Shanghai 200237 China
| | - P Hu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology Shanghai 200237 China .,School of Chemistry and Chemical Engineering, The Queen's University of Belfast Belfast BT9 5AG UK
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
39
|
Fu Z, Li Q, Bai X, Huang Y, Shi L, Wang J. Promoting the conversion of CO 2 to CH 4via synergistic dual active sites. NANOSCALE 2021; 13:12233-12241. [PMID: 34240722 DOI: 10.1039/d1nr02582a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbon-based single-atom catalysts (SACs) have shown promising applications in the conversion of CO2 into CO. However, the deep reduction process for the production of high-value hydrocarbons is largely limited due to the weak activation of CO. Herein, on the basis of first-principles calculations, a simple coordination regulation method of the active site is proposed to improve the conversion of CO2. Taking NiN4 as an example, by introducing heteroatoms (B, C, O, P, and S atoms), we reveal that NiN3B can effectively capture *CO and further convert to CH4 with an ultralow limiting potential of -0.42 V. The excellent catalytic performance is probably attributed to the formed synergistic dual active sites between non-metal B and metal Ni atoms. Moreover, NiN3B can maintain good stability and the catalytic performance can be further enhanced by increasing the B-doping concentration. This work demonstrates that coordination regulation is an effective strategy to improve the performance of single-atom catalysts and paves a possible way to advance the development of non-Cu-based CO2RR electrocatalysts for high-value hydrocarbon products.
Collapse
Affiliation(s)
- Zhanzhao Fu
- School of Physics, Southeast University, Nanjing, 211189, China.
| | | | | | | | | | | |
Collapse
|
40
|
Leverett J, Daiyan R, Gong L, Iputera K, Tong Z, Qu J, Ma Z, Zhang Q, Cheong S, Cairney J, Liu RS, Lu X, Xia Z, Dai L, Amal R. Designing Undercoordinated Ni-N x and Fe-N x on Holey Graphene for Electrochemical CO 2 Conversion to Syngas. ACS NANO 2021; 15:12006-12018. [PMID: 34192868 DOI: 10.1021/acsnano.1c03293] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, we propose a top-down approach for the controlled preparation of undercoordinated Ni-Nx (Ni-hG) and Fe-Nx (Fe-hG) catalysts within a holey graphene framework, for the electrochemical CO2 reduction reaction (CO2RR) to synthesis gas (syngas). Through the heat treatment of commercial-grade nitrogen-doped graphene, we prepared a defective holey graphene, which was then used as a platform to incorporate undercoordinated single atoms via carbon defect restoration, confirmed by a range of characterization techniques. We reveal that these Ni-hG and Fe-hG catalysts can be combined in any proportion to produce a desired syngas ratio (1-10) across a wide potential range (-0.6 to -1.1 V vs RHE), required commercially for the Fischer-Tropsch (F-T) synthesis of liquid fuels and chemicals. These findings are in agreement with our density functional theory calculations, which reveal that CO selectivity increases with a reduction in N coordination with Ni, while unsaturated Fe-Nx sites favor the hydrogen evolution reaction (HER). The potential of these catalysts for scale up is further demonstrated by the unchanged selectivity at elevated temperature and stability in a high-throughput gas diffusion electrolyzer, displaying a high-mass-normalized activity of 275 mA mg-1 at a cell voltage of 2.5 V. Our results provide valuable insights into the implementation of a simple top-down approach for fabricating active undercoordinated single atom catalysts for decarbonized syngas generation.
Collapse
Affiliation(s)
- Josh Leverett
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rahman Daiyan
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Lele Gong
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Kevin Iputera
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Zizheng Tong
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Jiangtao Qu
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhipeng Ma
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Qingran Zhang
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Soshan Cheong
- Electron Microscope Unit, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Julie Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Xunyu Lu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Zhenhai Xia
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Liming Dai
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rose Amal
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
41
|
Pan H, Wang X, Xiong Z, Sun M, Murugananthan M, Zhang Y. Enhanced photocatalytic CO 2 reduction with defective TiO 2 nanotubes modified by single-atom binary metal components. ENVIRONMENTAL RESEARCH 2021; 198:111176. [PMID: 33933489 DOI: 10.1016/j.envres.2021.111176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
A binary component catalyst consists of single atoms (SAs- Pt and Au) anchored on self-doped TiO2 nanotubes (TNTs), was developed for photocatalytic CO2 reduction. The defects introduced TNTs substrate was stabilized with atomic Pt and Au via strong metal support interactions (MSI), due to which, the covalent interactions facilitated an effective transfer of photo-generated electrons from the defective sites to the SAs, and in turn an enhanced separation of electron-hole pairs and charge-carrier transmission. The Pt-Au/R-TNTs with 0.33 wt% of SA metals, exhibited a maximum of 149 times higher photocatalytic performance than unmodified R-TNT and a total apparent quantum yield (AQY) of 17.9%, in which the yield of CH4 and C2H6 reached to 360.0 and 28.8 μmol g-1 h-1, respectively. The metals loading shifted the oxidation path of H2O from •OH generation into O2 evolution, that inhibited the self-oxidization of the photocatalyst.
Collapse
Affiliation(s)
- Honghui Pan
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiaoguang Wang
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhiwei Xiong
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Minghui Sun
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Muthu Murugananthan
- Department of Chemistry, PSG College of Technology, Peelamedu, Coimbatore, 641004, India
| | - Yanrong Zhang
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
42
|
Cao S, Wei S, Wei X, Zhou S, Chen H, Hu Y, Wang Z, Liu S, Guo W, Lu X. Can N, S Cocoordination Promote Single Atom Catalyst Performance in CO 2 RR? Fe-N 2 S 2 Porphyrin versus Fe-N 4 Porphyrin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100949. [PMID: 34145743 DOI: 10.1002/smll.202100949] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Single atom catalysts (SACs) are promising electrocatalysts for CO2 reduction reaction (CO2 RR), in which the coordination environment plays a crucial role in intrinsic catalytic activity. Taking the regular Fe porphyrin (Fe-N4 porphyrin) as a probe, the study reveals that the introduction of opposable S atoms into N coordination (Fe-N2 S2 porphyrin) allows for an appropriate electronic structural optimization on active sites. Owing to the additional orbitals around the Fermi level and the abundant Fe dz2 orbital occupation after S substitution, N, S cocoordination can effectively tune SACs and thus facilitating protonation of intermediates during CO2 RR. CO2 RR mechanisms lead to possible C1 products via two-, six-, and eight-electron pathways are systematically elucidated on Fe-N4 porphyrin and Fe-N2 S2 porphyrin. Fe-N4 porphyrin yields the most favorable product of HCOOH with a limiting potential of -0.70 V. Fe-N2 S2 porphyrin exhibits low limiting potentials of -0.38 and -0.40 V for HCOOH and CH3 OH, respectively, surpassing those of most Cu-based catalysts and SACs. Hence, the N, S cocoordination might provide better catalytic environment than regular N coordination for SACs in CO2 RR. This work demonstrates Fe-N2 S2 porphyrin as a high-performance CO2 RR catalyst, and highlights N, S cocoordination regulation as an effective approach to fine tune high atomically dispersed electrocatalysts.
Collapse
Affiliation(s)
- Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Xiaofei Wei
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Sainan Zhou
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Hongyu Chen
- College of Science, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Yuying Hu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
43
|
Yang P, Li L, Zhao ZJ, Gong J. Reveal the nature of particle size effect for CO2 reduction over Pd and Au. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63692-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Kou Z, Li X, Wang T, Ma Y, Zang W, Nie G, Wang J. Fundamentals, On-Going Advances and Challenges of Electrochemical Carbon Dioxide Reduction. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00096-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Qin F, Chen W. Copper-based single-atom alloys for heterogeneous catalysis. Chem Commun (Camb) 2021; 57:2710-2723. [PMID: 33616591 DOI: 10.1039/d1cc00062d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Heterogeneous catalysts, as crucial industrial commodities, play an important role in industrial production, especially in energy catalysis. Traditional noble metal catalysts cannot meet the increasing demand. Therefore, the exploration of cost-effective catalysts with high activity and selectivity is important to promote chemical production. Single-atom alloy (SAA) catalysts reduce the use of precious metals compared with traditional catalysts. The unique structure of SAAs, extremely high atom utilization and high catalytic selectivity give them a prominent position in heterogeneous catalysis. SAAs are widely used in selective hydrogenation/dehydrogenation, carbon dioxide reduction reaction (CO2RR), hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nitric oxide reduction reaction (NORR). Here, the applications and research progress of copper-based single-atom alloys in the various catalytic reactions mentioned above are mainly introduced, and the factors (such as synthesis method, composition content, etc.) affecting the catalytic performance are analyzed using a combination of various characterization and testing methods.
Collapse
Affiliation(s)
- Fengjuan Qin
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
46
|
Xiang SQ, Shi JL, Gao ST, Zhang W, Zhao LB. Thermodynamic and Kinetic Competition between C–H and O–H Bond Formation Pathways during Electrochemical Reduction of CO on Copper Electrodes. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shi-Qin Xiang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jun-Lin Shi
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shu-Ting Gao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Liu-Bin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
47
|
Developing micro-kinetic model for electrocatalytic reduction of carbon dioxide on copper electrode. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Wang Q, Cai C, Dai M, Fu J, Zhang X, Li H, Zhang H, Chen K, Lin Y, Li H, Hu J, Miyauchi M, Liu M. Recent Advances in Strategies for Improving the Performance of CO
2
Reduction Reaction on Single Atom Catalysts. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Qiyou Wang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Chao Cai
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Minyang Dai
- College of Materials Science and Engineering Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 Hunan P. R. China
| | - Junwei Fu
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Xiaodong Zhang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Huangjingwei Li
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Hang Zhang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Kejun Chen
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Yiyang Lin
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Hongmei Li
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Junhua Hu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 Hunan P. R. China
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology Tokyo 152‐8503 Japan
| | - Min Liu
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
49
|
Enhancement of the electrochemical reduction of CO2 to methanol and suppression of H2 evolution over CuO nanowires. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Zhang T, Walsh AG, Yu J, Zhang P. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem Soc Rev 2020; 50:569-588. [PMID: 33170202 DOI: 10.1039/d0cs00844c] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monometallic catalysts, in particular those containing noble metals, are frequently used in heterogeneous catalysis, but they are expensive, rare and the ability to tailor their structures and properties remains limited. Traditionally, alloy catalysts have been used instead that feature enhanced electronic and chemical properties at a reduced cost. Furthermore, the introduction of single metal atoms anchored onto supports provided another effective strategy to increase both the atomic efficiency and the chance of tailoring the properties. Most recently, single-atom alloy catalysts have been developed in which one metal is atomically dispersed throughout the catalyst via alloy bonding; such catalysts combine the traditional advantages of alloy catalysts with the new feature of tailoring properties achievable with single atom catalysts. This review will first outline the atomic scale structural analysis on single-atom alloys using microscopy and spectroscopy tools, such as high-angle annular dark field imaging-scanning transmission electron microscopy and extended X-ray absorption fine structure spectroscopy. Next, progress in research to understand the electronic properties of single-atom alloys using X-ray spectroscopy techniques and quantum calculations will be presented. The catalytic activities of single-atom alloys in a few representative reactions will be further discussed to demonstrate their structure-property relationships. Finally, future perspectives for single-atom alloy catalysts from the structural, electronic and reactivity aspects will be proposed.
Collapse
Affiliation(s)
- Tianjun Zhang
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, B3H 4R2, Halifax, Canada.
| | | | | | | |
Collapse
|