1
|
Bie C, Yang J, Zeng X, Wang Z, Sun X, Yang Z, Yu J, Zhang X. Nanoconfinement Effects in Electrocatalysis and Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411184. [PMID: 39989153 PMCID: PMC11962712 DOI: 10.1002/smll.202411184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Indexed: 02/25/2025]
Abstract
Recently, the enzyme-inspired nanoconfinement effect has garnered significant attention for enhancing the efficiency of electrocatalysts and photocatalysts. Despite substantial progress in these fields, there remains a notable absence of comprehensive and insightful articles providing a clear understanding of nanoconfined catalysts. This review addresses this gap by delving into nanoconfined catalysts for electrocatalytic and photocatalytic energy conversion. Initially, the effect of nanoconfinement on the thermodynamics and kinetics of reactions is explored. Subsequently, the primary and secondary structures of nanoconfined catalysts are categorized, their properties are outlined, and typical methods for their construction are summarized. Furthermore, an overview of the state-of-the-art applications of nanoconfined catalysts is provided, focusing on reactions of hydrogen and oxygen evolution, oxygen reduction, carbon dioxide reduction, hydrogen peroxide production, and nitrogen reduction. Finally, the current challenges and future prospects in nanoconfined catalysts are discussed. This review aims to provide in-depth insights and guidelines to advance the development of electrocatalytic and photocatalytic energy conversion technology by nanoconfined catalysts.
Collapse
Affiliation(s)
- Chuanbiao Bie
- Laboratory of Solar FuelFaculty of Materials Science and ChemistryChina University of Geosciences68 Jincheng StreetWuhan430078P. R. China
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Jindi Yang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Xiangkang Zeng
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Zhuyuan Wang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Xin Sun
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Zhe Yang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Jiaguo Yu
- Laboratory of Solar FuelFaculty of Materials Science and ChemistryChina University of Geosciences68 Jincheng StreetWuhan430078P. R. China
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide (GETCO2)The University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
2
|
Hyziuk P, Flaibani M, Posocco P, Sashuk V. Creating a suprazyme: integrating a molecular enzyme mimic with a nanozyme for enhanced catalysis. Chem Sci 2024:d4sc04577g. [PMID: 39371455 PMCID: PMC11450938 DOI: 10.1039/d4sc04577g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Enzyme mimics, due to their limited complexity, traditionally display low catalytic efficiency. Herein we present a strategy that enables the transformation of a slow-acting catalyst into a highly active one by creating a non-covalent suprastructure, termed "suprazyme". We show that cucurbit[7]uril macrocycles, rudimentary molecular enzyme mimics, embedded within an anionic monolayer on the surface of gold nanoparticles, outperform individual cucurbit[7]urils as well as nanoparticles, which also exhibit catalytic enzyme-like activity and thus act as nanozymes, by over 50 times, showcasing a 1044-fold acceleration in a model oxime formation reaction. The superior performance of such a suprazyme is attributed to a synergistic interplay between the organic monolayer and macrocycles, which is accompanied by a decreased local polarity and pH that favors the acid-catalyzed condensation process. The proposed approach holds promise for developing diverse suprazymes, contingent upon achieving a complementary structure and mechanism of action between the molecular catalyst and nanoparticles.
Collapse
Affiliation(s)
- Pavlo Hyziuk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Matteo Flaibani
- Department of Engineering and Architecture, University of Trieste Via Alfonso Valerio, n. 6/A 34127 Trieste Italy
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste Via Alfonso Valerio, n. 6/A 34127 Trieste Italy
| | - Volodymyr Sashuk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
3
|
DiNardi RG, Rasheed S, Capomolla SS, Chak MH, Middleton IA, Macreadie LK, Violi JP, Donald WA, Lusby PJ, Beves JE. Photoswitchable Catalysis by a Self-Assembled Molecular Cage. J Am Chem Soc 2024; 146:21196-21202. [PMID: 39051845 PMCID: PMC11311219 DOI: 10.1021/jacs.4c04846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
A heteroleptic [Pd2L2L'2]4+ coordination cage containing a photoswitchable azobenzene-derived ligand catalyzes the Michael addition reaction between methyl vinyl ketone and benzoyl nitromethane within its cavity. The corresponding homoleptic cages are catalytically inactive. The heteroleptic cage can be reversibly disassembled and reassembled using 530 and 405 nm light, respectively, allowing catalysis within the cage to be switched OFF and ON at will.
Collapse
Affiliation(s)
- Ray G. DiNardi
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Samina Rasheed
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | | | - Man Him Chak
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Isis A. Middleton
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | | | - Jake P. Violi
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - William A. Donald
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | - Jonathon E. Beves
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Peelikuburage BGD, Martens WN, Waclawik ER. Light switching for product selectivity control in photocatalysis. NANOSCALE 2024; 16:10168-10207. [PMID: 38722105 DOI: 10.1039/d4nr00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Artificial switchable catalysis is a new, rapidly expanding field that offers great potential advantages for both homogeneous and heterogeneous catalytic systems. Light irradiation is widely accepted as the best stimulus to artificial switchable chemical systems. In recent years, tremendous progress has been made in the synthesis and application of photo-switchable catalysts that can control when and where bond formation and dissociation take place in reactant molecules. Photo-switchable catalysis is a niche area in current catalysis, on which systematic analysis and reviews are still lacking in the scientific literature, yet it offers many intriguing and versatile applications, particularly in organic synthesis. This review aims to highlight the recent advances in photo-switchable catalyst systems that can result in two different chemical product outcomes and thus achieve a degree of control over organic synthetic reactions. Furthermore, this review evaluates different approaches that have been employed to achieve dynamic control over both the catalytic function and the selectivity of several different types of synthesis reactions, along with the remaining challenges and potential opportunities. Owing to the great diversity of the types of reactions and conditions adopted, a quantitative comparison of efficiencies between considered systems is not the focus of this review, instead the review showcases how insights from successful adopted strategies can help better harness and channel the power of photoswitchability in this new and promising area of catalysis research.
Collapse
Affiliation(s)
- Bayan G D Peelikuburage
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Wayde N Martens
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Eric R Waclawik
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
5
|
Benny R, De S. Interplay between anti- anti and syn- anti conformations of thiourea modulating ON-OFF catalysis. Dalton Trans 2023; 52:16767-16772. [PMID: 37902552 DOI: 10.1039/d3dt02398b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The design, synthesis and operation of a readily accessible two-state switch are demonstrated. The switch initially exists in an intramolecularly hydrogen-bonded self-locked state, as evidenced by the solution-state NMR and solid-state structure. The switch can be reversibly altered between anti-anti and syn-anti conformations by adding and removing Cu+ ions, as evidenced by the NMR and crystallographic study. The anti-anti form was found to be catalytically active in the Michael addition reaction, whereas the syn-anti form was catalytically inactive.
Collapse
Affiliation(s)
- Renitta Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India.
| | - Soumen De
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India.
| |
Collapse
|
6
|
Qiu Q, Sun Z, Joubran D, Li X, Wan J, Schmidt-Rohr K, Han GGD. Optically Controlled Recovery and Recycling of Homogeneous Organocatalysts Enabled by Photoswitches. Angew Chem Int Ed Engl 2023; 62:e202300723. [PMID: 36688731 DOI: 10.1002/anie.202300723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
We address a critical challenge of recovering and recycling homogeneous organocatalysts by designing photoswitchable catalyst structures that display a reversible solubility change in response to light. Initially insoluble catalysts are UV-switched to a soluble isomeric state, which catalyzes the reaction, then back-isomerizes to the insoluble state upon completion of the reaction to be filtered and recycled. The molecular design principles that allow for the drastic solubility change over 10 times between the isomeric states, 87 % recovery by the light-induced precipitation, and multiple rounds of catalyst recycling are revealed. This proof of concept will open up opportunities to develop highly recyclable homogeneous catalysts that are important for the synthesis of critical compounds in various industries, which is anticipated to significantly reduce environmental impact and costs.
Collapse
Affiliation(s)
- Qianfeng Qiu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Zhenhuan Sun
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Danielle Joubran
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xiang Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Joshua Wan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
7
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
8
|
Gabellini C, Şologan M, Pellizzoni E, Marson D, Daka M, Franchi P, Bignardi L, Franchi S, Posel Z, Baraldi A, Pengo P, Lucarini M, Pasquato L, Posocco P. Spotting Local Environments in Self-Assembled Monolayer-Protected Gold Nanoparticles. ACS NANO 2022; 16:20902-20914. [PMID: 36459668 PMCID: PMC9798909 DOI: 10.1021/acsnano.2c08467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Organic-inorganic (O-I) nanomaterials are versatile platforms for an incredible high number of applications, ranging from heterogeneous catalysis to molecular sensing, cell targeting, imaging, and cancer diagnosis and therapy, just to name a few. Much of their potential stems from the unique control of organic environments around inorganic sites within a single O-I nanomaterial, which allows for new properties that were inaccessible using purely organic or inorganic materials. Structural and mechanistic characterization plays a key role in understanding and rationally designing such hybrid nanoconstructs. Here, we introduce a general methodology to identify and classify local (supra)molecular environments in an archetypal class of O-I nanomaterials, i.e., self-assembled monolayer-protected gold nanoparticles (SAM-AuNPs). By using an atomistic machine-learning guided workflow based on the Smooth Overlap of Atomic Positions (SOAP) descriptor, we analyze a collection of chemically different SAM-AuNPs and detect and compare local environments in a way that is agnostic and automated, i.e., with no need of a priori information and minimal user intervention. In addition, the computational results coupled with experimental electron spin resonance measurements prove that is possible to have more than one local environment inside SAMs, being the thickness of the organic shell and solvation primary factors in the determining number and nature of multiple coexisting environments. These indications are extended to complex mixed hydrophilic-hydrophobic SAMs. This work demonstrates that it is possible to spot and compare local molecular environments in SAM-AuNPs exploiting atomistic machine-learning approaches, establishes ground rules to control them, and holds the potential for the rational design of O-I nanomaterials instructed from data.
Collapse
Affiliation(s)
- Cristian Gabellini
- Department
of Engineering and Architecture, University
of Trieste, 34127 Trieste, Italy
| | - Maria Şologan
- Department
of Chemical and Pharmaceutical Sciences and INSTM Trieste Research
Unit, University of Trieste, 34127 Trieste, Italy
| | - Elena Pellizzoni
- Department
of Chemical and Pharmaceutical Sciences and INSTM Trieste Research
Unit, University of Trieste, 34127 Trieste, Italy
| | - Domenico Marson
- Department
of Engineering and Architecture, University
of Trieste, 34127 Trieste, Italy
| | - Mario Daka
- Department
of Chemical and Pharmaceutical Sciences and INSTM Trieste Research
Unit, University of Trieste, 34127 Trieste, Italy
| | - Paola Franchi
- Department
of Chemistry “G. Ciamician”, University of Bologna, I-40126 Bologna, Italy
| | - Luca Bignardi
- Department
of Physics, University of Trieste, 34127 Trieste, Italy
| | - Stefano Franchi
- Elettra
Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Zbyšek Posel
- Department
of Informatics, Jan Evangelista Purkyně
University, 400 96 Ústí nad Labem, Czech Republic
| | | | - Paolo Pengo
- Department
of Chemical and Pharmaceutical Sciences and INSTM Trieste Research
Unit, University of Trieste, 34127 Trieste, Italy
| | - Marco Lucarini
- Department
of Chemistry “G. Ciamician”, University of Bologna, I-40126 Bologna, Italy
| | - Lucia Pasquato
- Department
of Chemical and Pharmaceutical Sciences and INSTM Trieste Research
Unit, University of Trieste, 34127 Trieste, Italy
| | - Paola Posocco
- Department
of Engineering and Architecture, University
of Trieste, 34127 Trieste, Italy
| |
Collapse
|
9
|
Reardon TJ, Na B, Parquette JR. Dissipative self-assembly of a proline catalyst for temporal regulation of the aldol reaction. NANOSCALE 2022; 14:14711-14716. [PMID: 36169284 DOI: 10.1039/d2nr03991e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The spatiotemporal regulation of chemical reactivity in biological systems permits a network of metabolic reactions to take place within the same cellular environment. The exquisite control of reactivity is often mediated by out-of-equilibrium structures that remain functional only as long as fuel is present to maintain the higher energy, active state. An important goal in supramolecular chemistry aims to develop functional, energy dissipating systems that approach the sophistication of biological machinery. The challenge is to create strategies that couple the energy consumption needed to promote a molecule to a higher energy, assembled state to a functional property such as catalytic activity. In this work, we demonstrated that the assembly of a spiropyran (SP) dipeptide (1) transiently promoted the proline-catalyzed aldol reaction in water when visible light was present as fuel. The transient catalytic activity emerged from 1 under light illumination due to the photoisomerization of the monomeric, O-protonated (1-MCH+) merocyanine form to the spiropyran (1-SP) state, which rapidly assembled into nanosheets capable of catalyzing the aldol reaction in water. When the light source was removed, thermal isomerization to the more stable MCH+ form caused the nanosheets to dissociate into a catalytically inactive, monomeric state. Under these conditions, the aldol reaction could be repeatedly activated and deactivated by switching the light source on and off.
Collapse
Affiliation(s)
- Thomas J Reardon
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave. Columbus, Ohio 43210, USA.
| | - Baichuan Na
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave. Columbus, Ohio 43210, USA.
| | - Jon R Parquette
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave. Columbus, Ohio 43210, USA.
| |
Collapse
|
10
|
Santamaria-Garcia VJ, Flores-Hernandez DR, Contreras-Torres FF, Cué-Sampedro R, Sánchez-Fernández JA. Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular Systems. Int J Mol Sci 2022; 23:7998. [PMID: 35887350 PMCID: PMC9317886 DOI: 10.3390/ijms23147998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. This review focuses on the approaches reported in the literature for tailoring properties of the photosensitive supramolecular systems, including MOFs, MOPs, and HOFs. We discuss relevant aspects regarding their chemical structure, action mechanisms, design principles, applications, and future perspectives.
Collapse
Affiliation(s)
- Vivian J. Santamaria-Garcia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Domingo R. Flores-Hernandez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Flavio F. Contreras-Torres
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Rodrigo Cué-Sampedro
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
11
|
Liu R, Zhang X, Xia F, Dai Y. Azobenzene-based photoswitchable catalysts: State of the art and perspectives. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Kravets M, Misztalewska-Turkowicz I, Sashuk V. Probing E/Z Isomerism Using Pillar[4]pyridinium/Gold Nanoparticle Ensembles and Their Photoresponsive Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4942-4947. [PMID: 35426683 PMCID: PMC9047399 DOI: 10.1021/acs.langmuir.2c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Despite the fundamental importance and broad applicability of E/Z dicarboxylic acids, their discrimination remains challenging and greatly unexplored. Herein, we present a general approach for the recognition of E/Z diacids using supramolecular interactions coupled with plasmonic response. The method allows detecting both single isomers and their light-induced interconversion, which ultimately entails multiple reversible nanoparticle aggregations. Such a molecular recognition-coupled responsive nanoscale self-assembly resembles natural mechanisms and can be a versatile means of building artificial complexity.
Collapse
Affiliation(s)
- Mykola Kravets
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Volodymyr Sashuk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
13
|
An Z, Zhang JM, Lv MY, Li XQ, Wu L, Shang HB, Li D. Light-Driven Polarity Switching of the Chromatographic Stationary Phase with Photoreversibility. Anal Chem 2021; 93:17051-17059. [PMID: 34894658 DOI: 10.1021/acs.analchem.1c03822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regrettably, conventional chromatographic columns have immutable polarity, resulting in requirements of at least two columns with polarity difference and sophisticated mechanical switching valves, which hinders the development of "micro-smart" multidimensional tandem chromatography. In this work, light-driven polarity switching was realized in a single capillary column based on the reversible trans-cis isomerization of 4-[3-(triethoxysilyl)propoxy]azobenzene as the stationary phase under light irradiation, with the change in dipole moment. As a result, the stationary phase offers precise and dynamic control of polarity based on the cis-trans azobenzene ratio, which depends on irradiation wavelength and time. Thus, the continuous adjustment of polarity enables diversified chromatographic separation modes, for example, step-polarity gradient and polarity-conversion separation modes, taking advantage of the superior freedom of polarity switching in time and spatial dimensions. The photosensitive column also shows good reproducibility of polarity photoreversibility and high separation efficiency. The present study might offer brand new insight into developing miniaturization and intellectualization of multidimensional chromatography via designing smart responsive switching valves or stationary phases, besides mechanical means.
Collapse
Affiliation(s)
- Zhengjiu An
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Jie-Min Zhang
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Ming-Yu Lv
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Xin-Qi Li
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hai-Bo Shang
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China.,Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| | - Donghao Li
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China.,Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Park Road 977, Yanji City 133002, Jilin Province, China
| |
Collapse
|
14
|
Pratihar S, Sarmah K, Shelte AR, Guha AK. Tetra metallic Copper Complex to Nanoscale Copper: Selective and Switchable Dehydrogenation-Hydrogenation under light. Chemistry 2021; 28:e202103383. [PMID: 34672401 DOI: 10.1002/chem.202103383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/11/2022]
Abstract
Discrete photoactive ultrafine nanocluster of copper with less than hundreds of atoms comprising stimuli-responsive switchable redox-active states is highly desired to control two different antagonistic reactions. Herein, we disclosed mixed-valent tetra metallic copper complex ( C-1 ) of N-O-N Schiff base ligand, in which its five different Cu-Cu interaction was utilized for the generation of photoactive nanoscale copper [LCu(0) n , S-1 ] via the reduction of coordinated imine to the amine of C-1 . The presence of ligand providing stability and assist to homogenize the material ( S-1 ) in the organic solvent. It showed stimuli (O 2 /light) responsive switchable performance between its reduced ( S-1 ) and oxidized [LCu(0) n-m CuO m , S-2 ] state and serve as highly and poorly active (bi-state, relative rate > 5-12 fold) catalyst for dehydrogenation of alcohols to aldehydes and hydrogenation of nitroaromatics to amino aromatics under the light.
Collapse
Affiliation(s)
- Sanjay Pratihar
- Central Salt and Marine Chemicals Research Institute CSIR, Inorganic Material and Catalysis Division, G B Marg, Bhavnagar, Gujarat, 364002, Bhavnagar, INDIA
| | | | - Amishwar Raysing Shelte
- CSIR-CSMCRI: Central Salt and Marine Chemicals Research Institute CSIR, Inorganic Materials and Catalysis, 364002, INDIA
| | | |
Collapse
|
15
|
Dynamic emulsion droplets enabled by interfacial assembly of azobenzene-functionalized nanoparticles under light and magnetic field. J Colloid Interface Sci 2021; 583:586-593. [PMID: 33038608 DOI: 10.1016/j.jcis.2020.09.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS The ability to control the assembly of micro/nanosized particles at liquid-liquid interface with external inputs promises new opportunities in nanofabrication and biomedicines. This work aims to demonstrate a way to control of dynamic assembly of nanoparticles at liquid-liquid interface by light and magnetic field, which consequently enables the formation of dynamic emulsion droplets. EXPERIMENTS Magnetic Fe3O4 nanoparticles functionalized with azobenzene moieties (Fe3O4@AZO) were synthesized and were dispersed in toluene/(N,N-dimethylformamide, DMF) binary solvent. After irradiation with UV or visible light, the assembly behavior of these Fe3O4 nanoparticles were evaluated by electron microscopy and fluorescent microscopy. FINDINGS Under UV light, Fe3O4@AZO nanoparticles were self-assembled due to the increase of dipolar interaction from the photoisomerization of azobenzene and polar molecules, DMF, were harvested from a binary solvent of DMF/toluene. While under visible light, a relief of dipolar interactions between Fe3O4@AZO nanoparticles can induce the secondary assembly of these Fe3O4@AZO nanoparticles at DMF-toluene interface, resulting in DMF droplets covered by a layer of nanoparticle superlattices. More importantly, coupled with a magnetic field, these emulsion droplets can be shaped into one dimensional ones during the interfacial assembly process, thereby giving rise to dynamic emulsions controlled by light and magnetic field.
Collapse
|
16
|
Affiliation(s)
- Grzegorz Sobczak
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44–52 01-224 Warsaw Poland
| | - Volodymyr Sashuk
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44–52 01-224 Warsaw Poland
| |
Collapse
|
17
|
Islam Sk A, Kundu K, Kundu PK. Azobenzene Isomerization-Induced Photomodulation of Electronic Properties of N-Heterocyclic Carbenes. Chemistry 2020; 26:4214-4219. [PMID: 31943364 DOI: 10.1002/chem.201905161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 11/07/2022]
Abstract
Azobenzene-based protonated N-heterocyclic carbenes (NHCs), N,N'-bis(azobenzene)imidazolium chlorides (IAz-X⋅HCl; X=OMe, Br, H) were successfully synthesized and switching abilities of the attached azobenzene units along with the concomitant photoinduced generation of geometric isomers were studied. Upon irradiation with 365 nm UV light, a p-methoxy-azobenzene derivative get transformed from all-trans isomer to nearly all-cis isomer at the photostationary state. The extent of photomodulation of electronic properties in the NHC ring of the p-methoxy-azobenzene derivative is determined through the Tolman Electronic Parameter (TEP). Iridium complex, [(IAz-OMe)IrCl(CO)2 ] was synthesized and infrared spectra were recorded in dichloromethane solution as film in NaCl crystals and by drop-casting in an ATR crystal. Comparison in averaged carbonyl stretching frequency between all-trans isomer ( ν ˜ t t av ) and all-cis isomer ( ν ˜ c c a v ) indicates a significant decrement of Δtt-cc ν ˜ av =2.7 cm-1 (film) and 3.8 cm-1 (ATR). Therefore, moderate to excellent enhancement of electron density (Δtt-cc TEP=2.3 cm-1 [film] and 3.2 cm-1 [ATR]) at the C-2 position of the NHC is achieved through trans→cis isomerization of the remotely placed azobenzene units. This fine phototuning of electron-donating ability at the catalytic center would pave the way to control NHC/NHC-metal catalyzed organic transformations through external stimuli.
Collapse
Affiliation(s)
- Aminul Islam Sk
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, India
| | - Kshama Kundu
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Pintu K Kundu
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, India
| |
Collapse
|
18
|
Niedek D, Erb FR, Topp C, Seitz A, Wende RC, Eckhardt AK, Kind J, Herold D, Thiele CM, Schreiner PR. In Situ Switching of Site-Selectivity with Light in the Acetylation of Sugars with Azopeptide Catalysts. J Org Chem 2020; 85:1835-1846. [PMID: 31763833 DOI: 10.1021/acs.joc.9b01913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present a novel concept for the in situ control of site-selectivity of catalytic acetylations of partially protected sugars using light as external stimulus and oligopeptide catalysts equipped with an azobenzene moiety. The isomerizable azobenzene-peptide backbone defines the size and shape of the catalytic pocket, while the π-methyl-l-histidine (Pmh) moiety transfers the electrophile. Photoisomerization of the E- to the Z-azobenzene catalyst (monitored via NMR) with an LED (λ = 365 nm) drastically changes the chemical environment around the catalytically active Pmh moiety, so that the light-induced change in the catalyst shape alters site-selectivity. As a proof of principle, we employed (4,6-O-benzylidene)methyl-α-d-pyranosides, which provide a change in regioselectivity from 2:1 (E) to 1:5 (Z) for the monoacetylated products at room temperature. The validity of this new catalyst-design concept is further demonstrated with the regioselective acetylation of the natural product quercetin. In situ irradiation NMR spectroscopy was used to quantify photostationary states under continuous irradiation with UV light.
Collapse
Affiliation(s)
- Dominik Niedek
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Frederik R Erb
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Christopher Topp
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Alexander Seitz
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Raffael C Wende
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - André K Eckhardt
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Jonas Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Dominik Herold
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| |
Collapse
|
19
|
Bhattacharyya S, Maity M, Chowdhury A, Saha ML, Panja SK, Stang PJ, Mukherjee PS. Coordination-Assisted Reversible Photoswitching of Spiropyran-Based Platinum Macrocycles. Inorg Chem 2020; 59:2083-2091. [PMID: 31971781 PMCID: PMC10615217 DOI: 10.1021/acs.inorgchem.9b03572] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Control over the stimuli-responsive behavior of smart molecular systems can influence their capability to execute complex functionalities. Herein, we report the development of a suite of spiropyran-based multi-stimuli-responsive self-assembled platinum(II) macrocycles (5-7), rendering coordination-assisted enhanced photochromism relative to the corresponding ligands. 5 showed shrinking and swelling during photoreversal, while 6 and 7 are fast and fatigue-free supramolecular photoswitches. 6 turns out to be a better fatigue-resistant photoswitch and can retain an intact photoswitching ability of up to 20 reversible cycles. The switching behavior of the macrocycles can also be precisely controlled by tuning the pH of the medium. Our present strategy for the construction of rapid stimuli-responsive supramolecular architectures via coordination-driven self-assembly represents an efficient route for the development of smart molecular switches.
Collapse
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
- Department of Industrial Chemistry , Mizoram University , Aizawl , Mizoram 796004 , India
| | - Manik Lal Saha
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Sumit Kumar Panja
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| |
Collapse
|
20
|
Grewal S, Roy S, Kumar H, Saraswat M, Bari NK, Sinha S, Venkataramani S. Temporal control in tritylation reactions through light-driven variation in chloride ion binding catalysis – a proof of concept. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01090a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A proof-of-concept on temporal control in the tritylation reactions has been demonstrated using a designed tripodal triazole-linked azo(hetero)arene-based photoswitchable catalyst.
Collapse
Affiliation(s)
- Surbhi Grewal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali
- India
| | - Saonli Roy
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali
- India
| | - Himanshu Kumar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali
- India
| | - Mayank Saraswat
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali
- India
| | - Naimat K. Bari
- Institute of Nano Science and Technology (INST)
- Mohali-160 062
- India
| | - Sharmistha Sinha
- Institute of Nano Science and Technology (INST)
- Mohali-160 062
- India
| | - Sugumar Venkataramani
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali
- India
| |
Collapse
|
21
|
Ren CZJ, Solís Muñana P, Dupont J, Zhou SS, Chen JLY. Reversible Formation of a Light-Responsive Catalyst by Utilizing Intermolecular Cooperative Effects. Angew Chem Int Ed Engl 2019; 58:15254-15258. [PMID: 31414710 DOI: 10.1002/anie.201907078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Indexed: 12/20/2022]
Abstract
A photoresponsive system where structure formation is coupled to catalytic activity is presented. The observed catalytic activity is reliant on intermolecular cooperative effects that are present when amphiphiles assemble into vesicular structures. Photoresponsive units within the amphiphilic pre-catalysts allow for switching between assembled and disassembled states, thereby modulating the catalytic activity. The ability to reversibly form cooperative catalysts within a dynamic self-assembled system represents a conceptually new tool for the design of complex artificial systems in water.
Collapse
Affiliation(s)
- Chloe Z-J Ren
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Pablo Solís Muñana
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Julien Dupont
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Silvia Siru Zhou
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Jack L-Y Chen
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
22
|
Ren CZ, Solís Muñana P, Dupont J, Zhou SS, Chen JL. Reversible Formation of a Light‐Responsive Catalyst by Utilizing Intermolecular Cooperative Effects. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chloe Z.‐J. Ren
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Pablo Solís Muñana
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Julien Dupont
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Silvia Siru Zhou
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Jack L.‐Y. Chen
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
23
|
Rad N, Danylyuk O, Sashuk V. Reversing Chemoselectivity: Simultaneous Positive and Negative Catalysis by Chemically Equivalent Rims of a Cucurbit[7]uril Host. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nazar Rad
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Oksana Danylyuk
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Volodymyr Sashuk
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
24
|
Rad N, Danylyuk O, Sashuk V. Reversing Chemoselectivity: Simultaneous Positive and Negative Catalysis by Chemically Equivalent Rims of a Cucurbit[7]uril Host. Angew Chem Int Ed Engl 2019; 58:11340-11343. [PMID: 31206979 DOI: 10.1002/anie.201905027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/16/2019] [Indexed: 12/18/2022]
Abstract
Enzyme catalysis has always been an inspiration and an unattainable goal for chemists due to features such as high specificity, selectivity, and efficiency. Here, we disclose a feature neither common in enzymes nor ever described for enzyme mimics, but one that could prove crucial for the catalytic performance of the latter, namely the ability to catalyze and inhibit two different reactions at the same time. Remarkably, this can be realized by two identical, spatially resolved catalytic sites. In the future, such a synchronized catalyst action could be used not only for controlling chemoselectivity, as in the present case, but also for regulating other types of chemical reactivity.
Collapse
Affiliation(s)
- Nazar Rad
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Oksana Danylyuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Volodymyr Sashuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
25
|
Bhattacharyya S, Chowdhury A, Saha R, Mukherjee PS. Multifunctional Self-Assembled Macrocycles with Enhanced Emission and Reversible Photochromic Behavior. Inorg Chem 2019; 58:3968-3981. [DOI: 10.1021/acs.inorgchem.9b00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
Dorel R, Feringa BL. Photoswitchable catalysis based on the isomerisation of double bonds. Chem Commun (Camb) 2019; 55:6477-6486. [DOI: 10.1039/c9cc01891c] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photoswitchable catalysis is a young but rapidly evolving field that offers great potential for non-invasive dynamic control of both activity and selectivity in catalysis. This Feature Article summarises the key developments accomplished over the past years through the incorporation of photoswitchable double bonds into the structure of catalytically competent molecules.
Collapse
Affiliation(s)
- Ruth Dorel
- Stratingh Institute for Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
27
|
Sarmah K, Mukhopadhyay S, Maji TK, Pratihar S. Switchable Bifunctional Bistate Reusable ZnO–Cu for Selective Oxidation and Reduction Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kasturi Sarmah
- Department of Chemical Sciences, Tezpur University, Napaam, Assam−784028, India
| | | | - Tarun K. Maji
- Department of Chemical Sciences, Tezpur University, Napaam, Assam−784028, India
| | - Sanjay Pratihar
- Department of Chemical Sciences, Tezpur University, Napaam, Assam−784028, India
| |
Collapse
|
28
|
Abstract
Heterogeneous catalytic systems based on the use of stimuli-responsive materials can be switched from an “on” active state to an “off” inactive state, which contributes to endowing the catalysts with unique functional properties, such as adaptability, recyclability and precise spatial and temporal control on different types of chemical reactions. All these properties constitute a step toward the development of nature-inspired catalytic systems. Even if this is a niche area in the field of catalysis, it is possible to find in literature intriguing examples of dynamic catalysts, whose systematic analysis and review are still lacking. The aim of this work is to examine the recent developments of stimuli-responsive heterogeneous catalytic systems from the viewpoint of different approaches that have been proposed to obtain a dynamic control of catalytic efficiency. Because of the variety of reactions and conditions, it is difficult to make a quantitative comparison between the efficiencies of the considered systems, but the analysis of the different strategies can inspire the preparation of new smart catalytic systems.
Collapse
|
29
|
Guo N, Yam KM, Zhang C. Light controllable catalytic activity of Au clusters decorated with photochromic molecules. NANOTECHNOLOGY 2018; 29:245705. [PMID: 29596057 DOI: 10.1088/1361-6528/aabac3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au8) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.
Collapse
Affiliation(s)
- Na Guo
- Department of Physics and Centre for 2D Advanced Materials, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | | | | |
Collapse
|