1
|
Song YP, Di YM, Zhang SQ, Lin MJ. Panchromatic Donor-Acceptor Hybrid Materials for Near-Infrared-Activatable Photocatalytic Detoxification of Mustard Gas Simulants. Inorg Chem 2025. [PMID: 40293162 DOI: 10.1021/acs.inorgchem.5c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Crystalline donor-acceptor (D-A) hybrid materials show a significant potential for photocatalytic applications, but achieving broad light absorption and high photocatalytic efficiency remains a challenge. To address this issue, herein, heteropoly blues, as electron donors, and N,N'-bis(N,N-dimethylaminoethyl)-1,4,5,8-naphthalenediimide (NDIDMA), as electron acceptors, have been introduced to these D-A hybrid materials to enhance their light-harvesting and photocatalytic capabilities. Consequently, heteropoly blue/naphthalenediimide D-A hybrid materials H2NDIDMA·[H5PMo8VIMo4VO40]·2DMF (1) have been synthesized. For comparison, the isostructural fully oxidized polyoxometalate-containing counterpart, H2NDIDMA·HPW12O40·2DMF (2), has also been prepared. As expected, hybrid 1 exhibited a broad light absorption range (300-2500 nm) and demonstrated superior photocatalytic decontamination abilities against mustard gas simulants under full-spectrum and near-infrared (NIR) light irradiation compared to hybrid 2. Remarkably, the heteropoly blues in hybrid 1 demonstrated high stability under catalytic conditions and in ambient environments. Additionally, these stable hybrids exhibited excellent recyclability without a loss of activity after five cycles.
Collapse
Affiliation(s)
- Yu-Ping Song
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi-Ming Di
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou 350002, China
| | - Mei-Jin Lin
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
2
|
Yamaguchi M, Yonesato K, Shioya K, Li C, Murata K, Ishii K, Yamaguchi K, Suzuki K. Engineering cofacial porphyrin dimers using lacunary polyoxotungstates. Chem Sci 2025:d5sc00814j. [PMID: 40303458 PMCID: PMC12036599 DOI: 10.1039/d5sc00814j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Cofacial porphyrin dimers have garnered extensive attention for their unique photophysical and catalytic properties, which strongly depend on structural configurations. However, precisely controlling key parameters, such as lateral and rotational displacements, interfacial distance, and stability, remains challenging. Herein, we present a novel strategy for engineering porphyrin dimer structures and properties using multivacant lacunary polyoxometalates (POMs), [SiW10O36]8- or [SiW9O34]10-, as linkers. By adjusting the types and coordination modes of lacunary POMs, three distinct hybrids were obtained via the self-assembly of two 5,10,15,20-tetra(4-pyridyl)porphyrin molecules and four lacunary POM units, each exhibiting modulated stacking geometries, interfacial distances and interactions, and photophysical properties. These hybrids demonstrated efficient visible-light-responsive photosensitized reactions to generate singlet oxygen from ground-state triplet oxygen (3O2), leading to the photooxidation of various organic substrates. Notably, hybrid II, constructed using [SiW10O36]8-, exhibited the strongest π-π interactions, distinct optical properties, and enhanced resistance to -induced degradation. These findings highlight the potential of POMs as versatile tools for the precise control of porphyrin dimer architectures and the development of materials with tailored photophysical and catalytic functions.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kaito Shioya
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kei Murata
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
3
|
Yuan Z, Wang J, Li H, Li L, Ma P, Wang J, Niu J. Visible-Light-Responsive Tetranuclear Ir-Based Polyoxometalates Achieve Photocatalytic Baeyer-Villiger Oxidation of Ketones. Inorg Chem 2025; 64:5846-5855. [PMID: 40102192 DOI: 10.1021/acs.inorgchem.4c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Synthesizing efficient photocatalysts with a broad-spectrum response is crucial for improving solar energy utilization. In this work, we have constructed two examples of tetrameric Ir-based polyoxometalates by introducing an Ir ion. The introduction of Ir ions lowers the band gap energy, and the light absorption range is extended into the visible region. Both displayed satisfactory reactivity for the visible-light-catalyzed Baeyer-Villiger reaction of cyclohexanone, especially compound 1, which reacted up to 95.1% yield for 3 h with TON and TOF values of 951 and 510 h-1, respectively. Meanwhile, 1 also presents excellent cyclic and structural stability, and the yield can still reach 92.2% after five cyclic reactions.
Collapse
Affiliation(s)
- Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| |
Collapse
|
4
|
Jimbo A, Li C, Yonesato K, Yamaguchi K, Suzuki K. Ligand-directed top-down synthesis of trivacant lacunary polyoxomolybdates from plenary Keggin-type [α-XMo 12O 40] 3- (X = P, As, V) in organic media. Dalton Trans 2025. [PMID: 40034008 DOI: 10.1039/d5dt00252d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Lacunary polyoxometalates (POMs), featuring highly reactive vacant sites, serve as valuable building blocks and precursors for the rational design of functional materials with widespread applications in catalysis, analytical chemistry, energy conversion and storage, medicine, and optical materials. While diverse Keggin-type polyoxotungstates, including both plenary and lacunary species, have been synthesized through dehydration condensation reactions and equilibrium displacement in aqueous solvents, the isolation and use of lacunary polyoxomolybdates remain challenging. To address this, the current study proposes a "ligand-directed top-down synthetic approach" for producing lacunary polyoxomolybdates from plenary Keggin-type species in organic solvents. By reacting plenary Keggin-type polyoxomolybdates [α-XMo12O40]3- (X = P, As, V) with 4-methoxypyridine (pyOMe) in acetonitrile, we successfully synthesized the corresponding trivacant lacunary polyoxomolybdates ([XMo9O31(pyOMe)3]3-), where the vacant sites are stabilized by three pyOMe ligands. Remarkably, this approach enables the synthesis of a lacunary vanadomolybdate, a species previously unattainable through equilibrium control in aqueous systems. Furthermore, the reversible coordination of pyOMe ligands to molybdenum atoms at the vacant sites makes these lacunary polyoxomolybdates highly versatile precursors for assembling POM-organic hybrids. Overall, this study introduces an innovative synthetic methodology for POMs, demonstrating notable potential for advancing the development of functional materials.
Collapse
Affiliation(s)
- Atsuhiro Jimbo
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
5
|
Zhao Q, Zeng Y, Jiang Z, Huang Z, Long DL, Cronin L, Xuan W. High-Nuclearity Polyoxometalate-Based Metal-Organic Frameworks for Photocatalytic Oxidative Cleavage of C-C Bond. Angew Chem Int Ed Engl 2025; 64:e202421132. [PMID: 39653655 DOI: 10.1002/anie.202421132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
High-nuclearity polyoxometalate (POM) clusters are attractive building blocks (BBs) for the synthesis of metal-organic frameworks (MOFs) due to their high connectivity and inherently multiple metal centers as functional sites. This work demonstrates a strategy of step-wise growth on ring-shaped [P8W48O184]40- precursor, which produced two new high-nuclearity polyoxotungstates, a half-closed [H16P8W58O218]32- {W58} and a fully-closed [H16P8W64O236]32- {W64}. By in situ synthesis, unique MOFs of copper triazole-benzoic acid (HL) complexes incorporating the negatively-charged {W58} and {W64} as nodes, {Cu11(HL)9W58} HNPOMOF-1 and {Cu9(HL)9W64} HNPOMOF-2, were constructed by delicately tuning the reaction conditions, mainly solution pH, which controls the formation of {W58} and {W64}, and at the same time the protonation of triazole-benzoic acid ligand thus its coordination mode to copper ion that creates the highest nuclearity POM-derived MOFs reported to date. HNPOMOF-1 features 3D framework possessing cage-like cavities filled with exposed carboxyl groups, while the inherent 2D layer-like HNPOMOF-2 allows for facile exfoliation into ultrathin nanosheets, and the resulted HNPOMOF-2NS exhibits superior activity towards photocatalytic oxidative cleavage of C-C bond for a series of lignin models. This work not only provides a strategy to build high-nuclearity POM cluster-based frameworks, but also demonstrates their great potential as functional materials for green catalysis.
Collapse
Affiliation(s)
- Qixin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yang Zeng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiqiang Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhenxuan Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - De-Liang Long
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Leroy Cronin
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Weimin Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
6
|
Guo S, Pan CW, Hou M, Hou YT, Yao S, Lu TB, Zhang ZM. Dual Regulation of Sensitizers and Cluster Catalysts in Metal-Organic Frameworks to Boost H 2 Evolution. Angew Chem Int Ed Engl 2025; 64:e202420398. [PMID: 39586781 DOI: 10.1002/anie.202420398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Photocatalytic efficiency is closely correlated to visible-light absorption ability, electron transfer efficiency and catalytic center activity of photocatalysts, nevertheless, the concurrent management of these factors to improve photocatalytic efficiency remains underexplored. Herein, we proposed a sensitizer/catalyst dual regulation strategy on the polyoxometalate@Metal-Organic Framework (POM@MOF) molecular platform to construct highly efficient photocatalysts. Impressively, Ni-Sb9@UiO-Ir-C6, obtained by coupling strong sensitizing [Ir(coumarin 6)2(bpy)]+ with Ni-Sb9 POM with extremely exposed nickel site [NiO3(H2O)3], can drive H2 evolution with a turnover number of 326923, representing a record value among all the POM@MOF composite photocatalysts. This performance is over 34 times higher than that of the typical Ni4P2@UiO-Ir constructed from [Ir(ppy)2(bpy)]+ and Ni4P2 POM. Systematical investigations revealed that dual regulation of sensitizing and catalytic centers endowed Ni-Sb9@UiO-Ir-C6 with strong visible-light absorption, efficient inter-component electron transfer and high catalytic activity to concurrently promote H2 evolution. This work opens up a new avenue to develop highly active POM@MOF photocatalysts by dual regulation of sensitizing/catalytic centers at the molecular level.
Collapse
Affiliation(s)
- Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Chun-Wei Pan
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Min Hou
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yi-Tong Hou
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shuang Yao
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
7
|
Hong Y, Liu S, Jing Z, Xu H, Zhang X, Ma P, Niu J, Wang J. Visible-Light-Induced Oxidation of Styrene by a Polyoxovanadate-Based Carboxylate Derivative. Inorg Chem 2025; 64:1124-1131. [PMID: 39763083 DOI: 10.1021/acs.inorgchem.4c04711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Revealing the design and synthesis of precisely tailored crystalline catalysts for achieving efficient photocatalytic conversion of styrene into high-value-added products remains a challenging task. In this work, a highly stable crystalline polyoxovanadate functionalized by the dl-tartaric acid ligand H2[V4O4(H2O)6(tart)2]·H2O [1, tart = C4H2O6] was successfully synthesized by conventional aqueous solution methods. The photocatalytic performance was evaluated for the photosynthesis of styrene oxide by employing an oxygen source as the oxidant in the visible light (>420 nm) conditions at room temperature with compound 1 as a heterogeneous catalyst. Furthermore, compound 1 manifested accomplished stability and reusability, maintaining a high reaction activity even after three consecutive reaction cycles. This paper not only contributes to broadening the structural diversity of polyoxovanadate but also sheds new light on green catalytic conversion.
Collapse
Affiliation(s)
- Yumei Hong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Sen Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhen Jing
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Haojie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiaodong Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
8
|
Guo K, Jiao J, Zhang L, Sun H, Miao X, Li J, Han Q. Constructing an Isopolymolybdate-Based Bifunctional Photocatalyst for Promoting Nitroaromatic Reduction and C-H Oxidation. Inorg Chem 2025; 64:58-66. [PMID: 39728302 DOI: 10.1021/acs.inorgchem.4c04145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Amide compounds are widely present in drug molecules and natural products, which can be synthesized by acid-amine condensation. It is urgent to design new photocatalysts for achieving both nitroaromatic reduction and C-H oxidation to obtain raw materials, carboxylic acids, and aromatic amines. Herein, a novel isopolymolybdate-incorporated photoactive metal-organic framework, NiMo12-TPT, was constructed by combining the oxidation catalyst [Mo12O40]8-, Ni(II) cation, and photosensitive ligand 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT). In the structure, the superior electron storage capacity of [Mo12O40]8-, with its multiple metal centers containing d-electrons, is conducive to providing electrons for the reduction of nitrobenzenes. The donor-acceptor structure of the TPT facilitates the separation of intramolecular charges. Furthermore, the π···π interactions between the TPT molecules promote the transfer of electrons and enhance the performance of photocatalysis. Under illumination, NiMo12-TPT can activate the C-H bonds to generate carboxylic acids with excellent selectivity and simultaneously realize the multistep proton-coupled electron transfer (PCET) process for nitroaromatic reduction. Moreover, EPR tests and the quenching experiments indicated that •O2- is the main reactive oxygen species (ROS) in the photocatalytic redox reaction process.
Collapse
Affiliation(s)
- Kaixin Guo
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jiachen Jiao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Lei Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hui Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaoxiao Miao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jie Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
9
|
Ji G, Li X, Zhang J. Anti-Markovnikov Hydroacylation of Aryl Alkenes with Aldehydes Enabled by Photo/Cobalt Dual Catalysis. Org Lett 2025; 27:334-339. [PMID: 39731548 DOI: 10.1021/acs.orglett.4c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Herein we describe a dual photo/cobalt-catalyzed anti-Markovnikov hydroacylation of aryl alkenes using aldehyde as acyl source. The key to success is the cobalt catalyzed hydrogen atom transfer, which enables effective formation of the desired products and efficient regeneration of the photocatalyst under mild conditions. This protocol features broad substrate scopes, good functional group tolerance, high efficiency and regioselectivity.
Collapse
Affiliation(s)
- Guanghao Ji
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| | - Xuan Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| | - Jing Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| |
Collapse
|
10
|
Iwano T, Uchida S. Enhanced Proton Conduction via Proton-Coupled Electron Transfer Reaction by a Keplerate-Type Polyoxometalate Capsule. Inorg Chem 2024; 63:24054-24058. [PMID: 39626213 DOI: 10.1021/acs.inorgchem.4c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Polyoxometalates (POMs), anionic metal-oxide clusters, are actively studied for their versatile structural designs and element selectivity. A series of Keplerate-type POMs with core-shell structures, known as POM capsules, that feature a Keggin-type POM core, has been reported. These POM capsules, with their neutral to negative charge and large molecular surface area, can serve as platforms for proton (H+) conduction. In this study, we aimed to introduce proton carriers into the POM capsule through a proton-coupled electron transfer (PCET) reaction. It is crucial to avoid excessive reduction, as it increases electrostatic interaction between the proton and the POM capsule, hindering proton conduction. The number of incorporated electrons was varied from 0 to 11, and the POM capsule containing 3 electrons exhibited proton conductivity an order of magnitude higher than that of pristine or highly reduced POM capsules. This study serves as a proof of concept, demonstrating that PCET, combined with the core-shell structure, can effectively enhance the proton conductivity without being limited by the choice of constituent elements.
Collapse
Affiliation(s)
- Tsukasa Iwano
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
11
|
Yu H, Wang X, Kong T, Gao MY, Cui X. Assembling molecular semiconductor composites for enhanced photocatalytic cyclohexene oxidation. Chem Commun (Camb) 2024; 60:15051-15054. [PMID: 39620312 DOI: 10.1039/d4cc04194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Here, a molecular semiconductor composite was assembled by integrating atomically precise Ti12-oxo clusters and phosphotungstic acid (PTA) into a cocrystal system. A molecular heterojunction was demonstrated to form between the two units, which allows the charge separation efficiency to be enhanced, resulting in a two-fold increase in photocatalytic activity for cyclohexene oxidation compared to the physically mixed composite.
Collapse
Affiliation(s)
- Haiyan Yu
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China.
| | - Xueting Wang
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China.
| | - Tingting Kong
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China.
| | - Mei-Yan Gao
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
| | - Xiaofeng Cui
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China.
| |
Collapse
|
12
|
Yanai D, Yonesato K, Kikkawa S, Yamazoe S, Yamaguchi K, Suzuki K. Electronic state modulation of Ag 30 nanoclusters within a ring-shaped polyoxometalate. NANOSCALE 2024; 16:18383-18388. [PMID: 39269029 DOI: 10.1039/d4nr02547d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Atomically precise Ag nanoclusters display distinctive properties that are dictated by their structures and electronic states. However, manipulating the electronic states of Ag nanoclusters is challenging owing to their inherent instability and susceptibility to undesired structural changes, decomposition, and aggregation. Recently, we reported the synthesis of a body-centered cubic {Ag30}22+ nanocluster encapsulated within a ring-shaped polyoxometalate (POM) [P8W48O184]40- by reacting 16 Ag+-containing [P8W48O184]40- with Ag+ using N,N-dimethylformamide (DMF) as a mild reducing agent. This led to a redox-induced structural transformation into a face-centered cubic {Ag30}16+ nanocluster. In this study, we demonstrated the modulation of the electronic states of Ag30 nanoclusters within the ring-shaped POM through two different approaches. A face-centered cubic {Ag30}18+ nanocluster, featuring distinct oxidation states compared to previously reported {Ag30}22+ and {Ag30}16+ nanoclusters, was synthesized using tetra-n-butylammonium borohydride, a stronger reducing agent than DMF, in the reaction of 16 Ag+-containing [P8W48O184]40- and Ag+. Additionally, by leveraging the acid-base properties of POMs, we demonstrated the reversible, stepwise modulation of the charge distribution in the Ag30 nanocluster through controlling protonation states of the ring-shaped POM ligand. These results highlight the potential of engineering POM-stabilized Ag nanoclusters with diverse structures and electronic states, thereby facilitating the exploration of novel properties and applications utilizing the unique characteristics of the POM ligands.
Collapse
Affiliation(s)
- Daiki Yanai
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
13
|
Li L, Zhang SQ, Cui X, Zhao G, Tang Z, Li GX. Catalytic Asymmetric Hydrogen Atom Transfer Based on a Chiral Hydrogen Atom Donor Generated from TBADT and Chiral BINOL. Org Lett 2024; 26:8371-8376. [PMID: 39316028 DOI: 10.1021/acs.orglett.4c03175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Enantioselective radical reactions mediated by TBADT have seldom been seen due to the inherent challenges. Herein, we disclose a new chiral hydrogen atom transfer (HAT) reagent that was generated easily from 8H-BINOL, potassium carbonate, and TBADT under irradiation. The new complex 8H-BINOL/DTs could be used as a chiral H donor. A series of azaarenes could be converted into the corresponding chiral compounds via radical addition followed by enantioselective HAT.
Collapse
Affiliation(s)
- Ling Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-Qi Zhang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Gang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuo Tang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-Xun Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Maksimchuk NV, Marikovskaya SM, Larionov KP, Evtushok VY, Yanshole VV, Antonov AA, Kholdeeva OA. Effect of the Polyanion Structure on the Mechanism of Alcohol Oxidation with H 2O 2 Catalyzed by Zr-Substituted Polyoxotungstates. Inorg Chem 2024; 63:18043-18057. [PMID: 39300783 DOI: 10.1021/acs.inorgchem.4c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Zr-monosubstituted polyoxometalates (Zr-POMs) of the Lindqvist (Bu4N)6[{W5O18Zr(μ-OH)}2] (1), Keggin (Bu4N)8[{PW11O39Zr(μ-OH)}2] (2), and Wells-Dawson (Bu4N)11.3K2.5H0.2[{P2W17O61Zr}2(μ-OH)2] (3) structures catalyze oxidation of alcohols using aqueous hydrogen peroxide as an oxidant. With 1 equiv of H2O2 and 1 mol % of Zr-POM, selectivity toward aldehydes and ketones varied from good to excellent, depending on the alcohol nature. Catalytic activity and attainable substrate conversions strongly depended on the Zr-POM structure and most often decreased in the order 1 > 2 ≫ 3. The reaction mechanism was probed using a test substrate, cyclobutanol, radical and 1O2 scavengers, and kinetic and spectroscopic (attenuated total reflectance-Fourier transform infrared (ATR-FT-IR), 31P NMR and electrospray ionization-mass spectrometry (ESI-MS)) tools. The results point to heterolytic alcohol oxidation in the presence of 1 and 2 and homolytic alcohol oxidation in the presence of 3. Kinetic and spectroscopic studies implicated an oxidation mechanism that involves both alcohol and peroxide binding to 2 followed by an inner-sphere heterolytic H-abstraction from the α-C-H bond by the Zr-hydroperoxo group, leading to a carbonyl compound. The unique capability of 1 to generate 1O2 upon interaction with H2O2 complicates the reaction kinetics and improves the product yield. Spectroscopic studies coupled with stoichiometric experiments unveiled that dimeric monoperoxo {Zr2(μ-η2:η2-O2)} and monomeric hydroperoxo {Zr(η2-OOH)} species accomplish the transformation of alcohols to carbonyl compounds.
Collapse
Affiliation(s)
| | | | - Kirill P Larionov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Vasilii Yu Evtushok
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Vadim V Yanshole
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
| | - Artem A Antonov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Oxana A Kholdeeva
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| |
Collapse
|
15
|
Iwano T, Akutsu D, Ubukata H, Ogiwara N, Kikukawa Y, Wang S, Yan LK, Kageyama H, Uchida S. Tuning Proton Conduction by Staggered Arrays of Polar Preyssler-Type Oxoclusters. J Am Chem Soc 2024; 146:26113-26120. [PMID: 39121456 DOI: 10.1021/jacs.4c06743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Polyoxometalates (POMs), anionic nanosized oxoclusters that can be considered as fragments of metal oxides, have been extensively studied for their diverse composition and structure, showing promise in various fields such as catalysis and electronics. Proton conduction, relevant to catalysis and electronics, has attracted interest in materials chemistry, and POM anions are advantageous in terms of their proton carrier density and mobility. Recently, polar POMs have attracted attention for their unique ferroelectric behaviors, yet they have been little studied with regard to proton conduction, as their polarity has generally been believed to have a negative impact. Here, we propose that polar POMs can be used to align polar proton carriers, such as H2O and polymers, to construct efficient proton-conducting pathways. In this study, we present ionic crystals composed of polar Preyssler-type POMs ([Xn+(H2O)P5W30O110](15-n)-, Xn+ = Ca2+, Eu3+) and K+ exhibiting ultrahigh proton conductivity surpassing 10-2 S cm-1, which is required for practical applications. In contrast, ionic crystals with nonpolar Preyssler-type POMs show an order of magnitude lower proton conductivity. Structural and spectroscopic studies combined with theoretical calculations reveal that proton carriers align with the aid of staggered arrays of polar POMs, forming a hydrogen-bonding network favorable for proton conduction. This study integrates molecular chemistry by the design of POMs and solid-state chemistry by exploring long-range proton conduction mechanisms, offering novel insights for future materials design.
Collapse
Affiliation(s)
- Tsukasa Iwano
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Daiki Akutsu
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hiroki Ubukata
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuji Kikukawa
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shuo Wang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Li-Kai Yan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
16
|
Ma WY, Leone M, Derat E, Retailleau P, Reddy CR, Neuville L, Masson G. Photocatalytic Asymmetric Acyl Radical Truce-Smiles Rearrangement for the Synthesis of Enantioenriched α-Aryl Amides. Angew Chem Int Ed Engl 2024; 63:e202408154. [PMID: 38887967 DOI: 10.1002/anie.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7 : 1 to >98 : 2 d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.
Collapse
Affiliation(s)
- Wei-Yang Ma
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Matteo Leone
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Etienne Derat
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
17
|
Zhang X, Tang D, He L, Cao Y. Polyoxometalates Based Catalysts for Carbonylation Reactions: A Review. Chem Asian J 2024; 19:e202400464. [PMID: 38861115 DOI: 10.1002/asia.202400464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
As a type of diverse and structurally adjustable metal-oxo clusters, polyoxometalates (POMs) based materials have been extensively applied as a catalysis in various valuable reactions. This review summarized recent progress in the application of POMs-based catalysts for various carbonylation reactions including (1). Carbonylation of olefins, (2). Carbonylation of formaldehyde, (3). Carbonylation of methanol or dimethyl ether, (4). Oxidative carbonylation of methane, (5). Oxidative carbonylation of phenol and (6). Reductive carbonylation of nitrobenzene. A brief perspective on POMs-based catalysts for the carbonylation reactions is proposed.
Collapse
Affiliation(s)
- Xuehua Zhang
- Yancheng Teachers University, School of Chemical and Environmental Engineering, No. 2 Hope Avenue South Road, Yancheng, 224007, China
| | - Dechang Tang
- CNSG ANHUI HONG SIFANG CO., LTD, No. 1084 Jinzhai South Road, Hefei, 230000, China
| | - Lin He
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No.18 Tianshui Middle Road, Lanzhou, 730000, China
| | - Yanwei Cao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No.18 Tianshui Middle Road, Lanzhou, 730000, China
| |
Collapse
|
18
|
Kawakami K, Yabe T, Amano F, Yamaguchi K, Suzuki K. Pd-incorporated polyoxometalate catalysts for electrochemical CO 2 reduction. Chem Sci 2024:d4sc04304a. [PMID: 39184297 PMCID: PMC11342151 DOI: 10.1039/d4sc04304a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Polyoxometalates (POMs), representing anionic metal-oxo clusters, display diverse properties depending on their structures, constituent elements, and countercations. These characteristics position them as promising catalysts or catalyst precursors for electrochemical carbon dioxide reduction reaction (CO2RR). This study synthesized various salts-TBA+ (tetra-n-butylammonium), Cs+, Sr2+, and Ba2+-of a dipalladium-incorporated POM (Pd2, [γ-H2SiW10O36Pd2(OAc)2]4-) immobilized on a carbon support (Pd2/C). The synthesized catalysts-TBAPd2/C, CsPd2/C, SrPd2/C, and BaPd2/C-were deposited on a gas-diffusion carbon electrode, and the CO2RR performance was subsequently evaluated using a gas-diffusion flow electrolysis cell. Among the catalysts tested, BaPd2/C exhibited high selectivity toward carbon monoxide (CO) production (ca. 90%), while TBAPd2/C produced CO and hydrogen (H2) with moderate selectivity (ca. 40% for CO and ca. 60% for H2). Moreover, BaPd2/C exhibited high selectivity toward CO production over 12 h, while palladium acetate, a precursor of Pd2, showed a significant decline in CO selectivity during the CO2RR. Although both BaPd2/C and TBAPd2/C transformed into Pd nanoparticles and WO x nanospecies during the CO2RR, the influence of countercations on their product selectivity was significant. These results highlight that POMs and their countercations can effectively modulate the catalytic performance of POM-based electrocatalysts in CO2RR.
Collapse
Affiliation(s)
- Kimitake Kawakami
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Fumiaki Amano
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
19
|
Lin JM, Mei ZB, Guo C, Li JR, Kuang Y, Shi JW, Liu JJ, Li X, Li SL, Liu J, Lan YQ. Synthesis of Isotypic Giant Polymolybdate Cages for Efficient Photocatalytic C-C Coupling Reactions. J Am Chem Soc 2024; 146:22797-22806. [PMID: 39087792 DOI: 10.1021/jacs.4c08043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The construction of isotypic high-nuclearity inorganic cages with identical pristine parent structure and increasing nuclearity is highly important for molecular growth and structure-property relationship study, yet it still remains a great challenge. Here, we provide an in situ growth approach for successfully synthesizing a series of new giant hollow polymolybdate dodecahedral cages, Mo250, Mo260-I, and Mo260-E, whose structures are growth based on giant polymolybdate cage Mo240. Remarkably, they show two pathways of nuclear growth based on Mo240, that is, the growth of 10 and 20 Mo centers on the inner and outer surfaces to afford Mo250 and Mo260-I, respectively, and the growth of 10 Mo centers both on the inner and outer surfaces to give Mo260-E. To the best of our knowledge, this is the first study to display the internal and external nuclear growth of a giant hollow polyoxometalate cage. More importantly, regular variations in structure and nuclearity confer these polymolybdate cages with different optical properties, oxidative activities, and hydrogen atom transfer effect, thus allowing them to exhibit moderate to excellent photocatalytic performance in oxidative cross-coupling reactions between different unactivated alkanes and N-heteroarenes. In particular, Mo240 and Mo260-E with better comprehensive abilities can offer the desired coupling product with yield up to 92% within 1 h.
Collapse
Affiliation(s)
- Jiao-Min Lin
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Zhi-Bin Mei
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| | - Jun-Rong Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yi Kuang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jing-Wen Shi
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jing-Jing Liu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| | - Shun-Li Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
20
|
Tsang N, Kibler AJ, Argent SP, Lam HW, Jones KD, Newton GN. Organofunctionalized borotungstate polyoxometalates as tunable photocatalysts for oxidative dimerization of amines. Chem Sci 2024:d4sc03534h. [PMID: 39170724 PMCID: PMC11332656 DOI: 10.1039/d4sc03534h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
Organofunctionalized borotungstate Keggin polyoxometalates, ( n Bu4N)3H[HBW11O39(P(O)Ph)2] (PBW11), ( n Bu4N)3H[HBW11O39(As(O)Ph)2] (AsBW11), and ( n Bu4N)4[HBW11O39(PhSiOSiPh)] (SiBW11), were synthesized and structurally characterized. Cyclic voltammetry showed that the electronic properties of the clusters are dependent on the nature of the appended main group atoms (P, As, or Si). The first reduction potentials were found to shift positively with respect to that of the unmodified parent species ( n Bu4N)5[BW12O40], with PBW11 showing the largest shift at +100 mV. All clusters were evaluated as photocatalysts for the oxidative dimerization of amines where the organophosphonate hybrid PBW11 was found to be the most active. This study demonstrates how organofunctionalization of polyoxometalates may be used to tune and improve their performance as photocatalysts for organic reactions.
Collapse
Affiliation(s)
- Nicole Tsang
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park NG7 2RD UK
| | - Alexander J Kibler
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park NG7 2RD UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham University Park NG7 2RD UK
| | - Hon Wai Lam
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park NG7 2RD UK
| | - Kieran D Jones
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park NG7 2RD UK
| | - Graham N Newton
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park NG7 2RD UK
| |
Collapse
|
21
|
Yonesato K, Yamaguchi K, Suzuki K. Synthesis of polyoxothiometalates through site-selective post-editing sulfurization of polyoxometalates. Chem Sci 2024; 15:11267-11271. [PMID: 39055039 PMCID: PMC11268463 DOI: 10.1039/d4sc02912g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Polyoxometalates (POMs) function as platforms for synthesizing structurally well-defined inorganic molecules with diverse structures, metals, compositions, and arrangements. Although post-editing of the oxygen sites of POMs has great potential for development of unprecedented structures, electronic states, properties, and applications, facile methods for site-selective substitution of the oxygen sites with other atoms remain limited. Herein, we report a direct site-selective oxygen-sulfur substitution method that enables transforming POMs [XW12O40]4- (X = Si, Ge) to Keggin-type polyoxothiometalates (POTMs) [XW12O28S12]4- using sulfurizing reagents in an organic solvent. The resulting POTMs retain the original Keggin-type structure, with all 12 surface W[double bond, length as m-dash]O groups selectively converted to W[double bond, length as m-dash]S without sulfurization of other oxygen sites. These POTMs show high stability against water and O2 in organic solvents and a drastic change in the electronic states and redox properties. The findings of this study represent a facile method for converting POMs to POTMs, leading to the development of their unique properties and applications in diverse fields, including (photo)catalysis, sensing, optics, electronics, energy conversion, and batteries.
Collapse
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
22
|
Sun H, Jimbo A, Li C, Yonesato K, Yamaguchi K, Suzuki K. Self-assembled molecular hybrids comprising lacunary polyoxometalates and multidentate imidazole ligands. Chem Sci 2024; 15:9281-9286. [PMID: 38903217 PMCID: PMC11186312 DOI: 10.1039/d4sc02384f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Self-assembly via coordination bonding facilitates the creation of diverse inorganic-organic molecular hybrids with distinct structures and properties. Recent advances in this field have been driven by the versatility of organic ligands and inorganic units. Lacunary polyoxometalates are a class of well-defined metal-oxide clusters with a customizable number of reactive sites and bond directions, which make them promising inorganic units for self-assembled molecular hybrids. Herein, we report a novel synthesis method for self-assembled molecular hybrids utilizing the reversible coordination of multidentate imidazole ligands to the vacant sites of lacunary polyoxometalates. We synthesized self-assembled molecular hybrids including monomer, dimers, and tetramer, demonstrating the potential of our method for constructing intricate hybrids with tailored properties and functionalities.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Atsuhiro Jimbo
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
23
|
Vilà N, Nguyen L, Lacroix JC, Sun X, Walcarius A, Mbomekallé I. Assessing the Influence of Confinement on the Stability of Polyoxometalate-Functionalized Surfaces: A Soft Sequential Immobilization Approach for Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26521-26536. [PMID: 38713480 DOI: 10.1021/acsami.4c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A functionalization process has been developed and the experimental conditions optimized allowing the immobilization of first-row transition metal (Mn+) containing polyoxometalates (POMs) with the formula [M(H2O)P2W17O61](10-n)- on transparent indium-tin oxide (ITO) electrodes for electrochromic applications. Both flat ITO grafted with 4-sulfophenyl moieties and sulfonate-functionalized vertically oriented silica films on ITO have been used as electrode supports to evaluate possible confinement effects provided by the mesoporous matrix on the stability of the modified surfaces and their electrochromic properties. Functionalization involved a two-step sequential process: (i) the immobilization of hexaaqua metallic ions, such as Fe(H2O)63+, onto the sulfonate-functionalized materials achieved through hydrogen bonding interactions between the sulfonate functions and aqua ligands (water molecules) coordinated to the metallic ions facilitating and stabilizing the attachment of the metallic ions to the sulfonated surfaces; (ii) their coordination to [P2W17O61]10- species to generate "in situ" the target [Fe(H2O)P2W17O61]7- moieties. Comparison of the characterized surfaces clearly evidenced a significant improvement in the long-term stability of the nanostructured [Fe(H2O)P2W17O61]7--functionalized silica films compared to the less constrained flat [Fe(H2O)P2W17O61]7--modified ITO electrodes for which a rapid loss of [P2W17O61]10- species was observed. Concordantly, the [Fe(H2O)P2W17O61]7- POM confined in the mesoporous films coated on ITO gave rise to much better and stable electrochromic properties, with a transmittance modulation of 40% at 515 nm.
Collapse
Affiliation(s)
- Neus Vilà
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France
| | - Linh Nguyen
- Université Paris Cité, CNRS, ITODYS, Paris F-75, France
| | | | - Xiaonan Sun
- Université Paris Cité, CNRS, ITODYS, Paris F-75, France
| | | | - Israël Mbomekallé
- Université Paris Saclay CNRS, Institut de Chimie Physique,Orsay F-91405, France
| |
Collapse
|
24
|
Gu C, Yatabe T, Yamaguchi K, Suzuki K. Photocatalytic aerobic α-oxygenation of amides to imides using a highly durable decatungstate tetraphenylphosphonium salt. Chem Commun (Camb) 2024; 60:4906-4909. [PMID: 38619883 DOI: 10.1039/d4cc01016g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Decatungstate is a potent photocatalyst for hydrogen atom transfer (HAT) but faces degradation issues when using a typical tetra-n-butylammonium salt. Herein, we employed tetraphenylphosphonium as a countercation to yield a highly durable and efficient HAT photocatalyst, enabling α-oxygenation of amides to their corresponding imides using O2 as an oxidant.
Collapse
Affiliation(s)
- Chen Gu
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
25
|
Gu C, Li C, Minezawa N, Okazaki S, Yamaguchi K, Suzuki K. Multi-stimuli-responsive polymer degradation by polyoxometalate photocatalysis and chloride ions. NANOSCALE 2024; 16:8013-8019. [PMID: 38545655 DOI: 10.1039/d4nr00394b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Photocatalytic polymer degradation based on harnessing the abundant light energy present in the environment is one of the promising approaches to address the issue of plastic waste. In this study, we developed a multi-stimuli-responsive photocatalytic polymer degradation system facilitated by the photocatalysis of a polyoxometalate [γ-PV2W10O40]5- in conjunction with chloride ions (Cl-) as harmless and abundant stimuli. The degradation of various polymers was significantly accelerated in the presence of Cl-, which was attributed to the oxidation of Cl- by the polyoxometalate photocatalysis into a highly reactive chlorine radical that can efficiently generate a carbon-centered radical for subsequent polymer degradation. Although organic and organometallic photocatalysts decomposed under the conditions for photocatalytic polymer degradation in the presence of Cl-, [γ-PV2W10O40]5- retained its structure even under these highly oxidative conditions.
Collapse
Affiliation(s)
- Chen Gu
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Noriyuki Minezawa
- Department of Applied Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| | - Susumu Okazaki
- Department of Applied Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
26
|
Leone M, Milton JP, Gryko D, Neuville L, Masson G. TBADT-Mediated Photocatalytic Stereoselective Radical Alkylation of Chiral N-Sulfinyl Imines: Towards Efficient Synthesis of Diverse Chiral Amines. Chemistry 2024; 30:e202400363. [PMID: 38376252 DOI: 10.1002/chem.202400363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
Herein we describe a sustainable and efficient photocatalytic method for the stereoselective radical alkylation of chiral sulfinyl imines. By employing readily available non-prefunctionalized radical precursors and the cost-effective TBADT as a direct HAT photocatalyst, we successfully obtain diverse chiral amines with high yields and excellent diastereoselectivity under mild conditions. This method provides an efficient approach for accessing a diverse array of medicinally relevant compounds, including both natural and synthetic α-amino acids, aryl ethyl amines, and other structural motifs commonly found in approved pharmaceuticals and natural product.
Collapse
Affiliation(s)
- Matteo Leone
- Institut de Chimie des Substances Naturelles (ICSN) CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Joseph P Milton
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN) CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'Lab, 8 Rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN) CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'Lab, 8 Rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
27
|
Kikkawa S, Fujiki Y, Chudatemiya V, Nagakari H, Shibusawa K, Hirayama J, Nakatani N, Yamazoe S. Water-Tolerant Superbase Polyoxometalate [H 2(Nb 6O 19)] 6- for Homogeneous Catalysis. Angew Chem Int Ed Engl 2024; 63:e202401526. [PMID: 38388816 DOI: 10.1002/anie.202401526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
Here, doubly protonated Lindqvist-type niobium oxide cluster [H2(Nb6O19)]6-, fabricated by microwave-assisted hydrothermal synthesis, exhibited superbase catalysis for Knoevenagel and crossed aldol condensation reactions accompanied by activating C-H bond with pKa >26 and proton abstraction from a base indicator with pKa=26.5. Surprisingly, [H2(Nb6O19)]6- exhibited water-tolerant superbase properties for Knoevenagel and crossed aldol condensation reactions in the presence of water, although it is well known that the strong basicity of metal oxides and organic superbase is typically lost by the adsorption of water. Density functional theory calculation revealed that the basic surface oxygens that share the corner of NbO6 units in [H2(Nb6O19)]8- maintained the negative charges even after proton adsorption. This proton capacity and the presence of un-protonated basic sites led to the water tolerance of the superbase catalysis.
Collapse
Affiliation(s)
- Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30, Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan
| | - Yu Fujiki
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Vorakit Chudatemiya
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Hiroki Nagakari
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Kazuki Shibusawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Jun Hirayama
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30, Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan
| | - Naoki Nakatani
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30, Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
28
|
Minezawa N, Suzuki K, Okazaki S. A density functional study of the photocatalytic degradation of polycaprolactone by the decatungstate anion in acetonitrile solution. Phys Chem Chem Phys 2024; 26:11746-11754. [PMID: 38563826 DOI: 10.1039/d4cp00362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A recent experimental study has reported that decatungstate [W10O32]4- can degrade various polyesters in the presence of light and molecular oxygen [Li et al., Nanoscale, 2023, 15, 15038]. We apply density functional theory to the photocatalyst-polycaprolactone model complex in acetonitrile solution and elucidate the degradation mechanisms and catalytic cycle. We consider hydrogen atom transfer (HAT) and single electron transfer (SET) mechanisms. The potential energy profiles show that the former proceeds exergonically in a single step but that the latter involves a subsequent proton transfer and finally yields HAT products as well. Oxygenated polymer species can regain the transferred hydrogen and regenerate the reduced photocatalyst. We propose a photocatalytic cycle that realizes both the photocatalyst regeneration and the polymer degradation.
Collapse
Affiliation(s)
- Noriyuki Minezawa
- Department of Applied Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8589, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Susumu Okazaki
- Department of Applied Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8589, Japan.
| |
Collapse
|
29
|
Singh PP, Sinha S, Gahtori P, Tivari S, Srivastava V. Recent advances of decatungstate photocatalyst in HAT process. Org Biomol Chem 2024; 22:2523-2538. [PMID: 38456306 DOI: 10.1039/d4ob00213j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The decatungstate anion (W10O324-) appears to exhibit especially interesting properties as a photocatalyst. Because of its unique photocatalytic properties, it is now recognised as a promising tool in organic chemistry. This study examines recent advances in decatungstate chemistry, primarily concerned with synthetic and, to some degree, mechanistic challenges. In this short review we have selected to give a number of illustrative examples that demonstrate the various applications of decatungstate in the hydrogen atom transfer (HAT) process.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.-211010, India.
| | - Surabhi Sinha
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.-211010, India.
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002 Uttarakhand, India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.-211002, India.
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.-211002, India.
| |
Collapse
|
30
|
Yamaguchi M, Shioya K, Li C, Yonesato K, Murata K, Ishii K, Yamaguchi K, Suzuki K. Porphyrin-Polyoxotungstate Molecular Hybrid as a Highly Efficient, Durable, Visible-Light-Responsive Photocatalyst for Aerobic Oxidation Reactions. J Am Chem Soc 2024; 146:4549-4556. [PMID: 38285116 DOI: 10.1021/jacs.3c11394] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Organic-polyoxometalate (POM) hybrids have recently attracted considerable interest because of their distinctive properties and wide-ranging applications. For the construction of organic-POM hybrids, porphyrins are promising building units owing to their optical properties and reactivity, including strong visible-light absorption and subsequent singlet-oxygen (1O2*) generation. However, the practical utilization of porphyrins as photocatalysts and photosensitizers is often hindered by their own degradation by 1O2*. Therefore, there is a substantial demand for the development of porphyrin-derived photocatalysts with both high efficiency and durability. Herein, we present a porphyrin-polyoxotungstate molecular hybrid featuring a face-to-face stacked porphyrin dimer (I) fastened by four lacunary polyoxotungstates. Hybrid I exhibited remarkable efficiency and durability in photocatalytic aerobic oxidation reactions, and the selective oxidation of various dienes, alkenes, sulfides, and amines proceeded using just 0.003 mol % of the catalyst. Mechanistic investigations suggested that the high activity of I stems from the efficient generation of 1O2*, resulting from the heavy-atom effect of POMs. Furthermore, despite its high efficiency in 1O2* generation compared to free porphyrins, I exhibited superior durability against 1O2*-induced degradation under photoirradiation.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kaito Shioya
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kei Murata
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
31
|
Xia K, Yatabe T, Yonesato K, Kikkawa S, Yamazoe S, Nakata A, Ishikawa R, Shibata N, Ikuhara Y, Yamaguchi K, Suzuki K. Ultra-stable and highly reactive colloidal gold nanoparticle catalysts protected using multi-dentate metal oxide nanoclusters. Nat Commun 2024; 15:851. [PMID: 38321026 PMCID: PMC10847421 DOI: 10.1038/s41467-024-45066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Owing to their remarkable properties, gold nanoparticles are applied in diverse fields, including catalysis, electronics, energy conversion and sensors. However, for catalytic applications of colloidal gold nanoparticles, the trade-off between their reactivity and stability is a significant concern. Here we report a universal approach for preparing stable and reactive colloidal small (~3 nm) gold nanoparticles by using multi-dentate polyoxometalates as protecting agents in non-polar solvents. These nanoparticles exhibit exceptional stability even under conditions of high concentration, long-term storage, heating and addition of bases. Moreover, they display excellent catalytic performance in various oxidation reactions of organic substrates using molecular oxygen as the sole oxidant. Our findings highlight the ability of inorganic multi-dentate ligands with structural stability and robust steric and electronic effects to confer stability and reactivity upon gold nanoparticles. This approach can be extended to prepare metal nanoparticles other than gold, enabling the design of novel nanomaterials with promising applications.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Ayako Nakata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Ryo Ishikawa
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
32
|
Chang JW, Su KH, Pao CW, Tsai JJ, Su CJ, Chen JL, Lyu LM, Kuo CH, Su AC, Yang HC, Lai YH, Jeng US. Arrayed Pt Single Atoms via Phosphotungstic Acids Intercalated in Silicate Nanochannels for Efficient Hydrogen Evolution Reactions. ACS NANO 2024; 18:1611-1620. [PMID: 38166379 PMCID: PMC10795682 DOI: 10.1021/acsnano.3c09656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024]
Abstract
Single-atom catalysts, known for their high activity, have garnered significant interest. Currently, single-atom catalysts were prepared mainly on 2D substrates with random distribution. Here, we report a strategy for preparing arrayed single Pt (Pt1) atoms, which are templated through coordination with phosphotungstic acids (PTA) intercalated inside hexagonally packed silicate nanochannels for a high single Pt-atom loading of ca. 3.0 wt %. X-ray absorption spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, in conjunction with the density-functional theory calculation, collectively indicate that the Pt single atoms are stabilized via a four-oxygen coordination on the PTA within the nanochannels' inner walls. The critical reduction in the Pt-adsorption energy to nearly the cohesive energy of Pt clustering is attributed to the interaction between PTA and the silicate substrate. Consequently, the transition from single-atom dispersion to clustering of Pt atoms can be controlled by adjusting the number density of PTA intercalated within the silicate nanochannels, specifically when the number ratio of Pt atoms to PTA changes from 3.7 to 18. The 3D organized Pt1-PTA pairs, facilitated by the arrayed silicate nanochannels, demonstrate high and stable efficiency with a hydrogen production rate of ca. 300 mmol/h/gPt─approximately twice that of the best-reported Pt efficiency in polyoxometalate-based photocatalytic systems.
Collapse
Affiliation(s)
- Je-Wei Chang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Kuan-Hsuan Su
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 241037, Taiwan
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Jin-Jia Tsai
- Department
of Chemistry, Tunghai University, Taichung 407302, Taiwan
| | - Chun-Jen Su
- National
Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Jeng-Lung Chen
- National
Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Lian-Ming Lyu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chun-Hong Kuo
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - An-Chung Su
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Hsiao-Ching Yang
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 241037, Taiwan
| | - Ying-Huang Lai
- Department
of Chemistry, Tunghai University, Taichung 407302, Taiwan
| | - U-Ser Jeng
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
- College
of
Semiconductor Research, National Tsing Hua
University, Hsinchu 300044, Taiwan
| |
Collapse
|
33
|
Yokoyama S, Azuma S, Eguchi Y, Kodani K, Hasegawa T, Ogo S, Ota H, Guo SX, Boas JF, Zhang J, Bond AM, Ueda T. Vanadium-Containing Keggin-Type Polyoxometalates, [VM 12O 40] 3- and [VVM 11O 40] 4- (M = Mo, W): Structural Characterization and Voltammetric, NMR, and EPR Studies Related to Electrochemical Reduction at Framework and Central Vanadium Sites. Inorg Chem 2024; 63:117-128. [PMID: 38141018 DOI: 10.1021/acs.inorgchem.3c01921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Vanadium is accommodated in both the framework (VoutV) and central positions (VinV) in the Keggin-type polyoxometalates (POMs) [VinVVoutVM11O40]4- (M = Mo, W; VinVVoutVM11) and in the central position in [VinVM12O40]3- (VinVM12). The structures of the VinVVoutVM11 class have been determined by X-ray crystallography and compared to those of VinVM12 reported previously. A major feature of interest with POMs is their capacity for very extensive reduction, particularly when protonation accompanies the electron transfer step. With VinVVoutVM11 and VinVM12 POMs, knowledge as to whether reduction occurs at V or M sites and the concomitant dependence on acidity has been obtained. Frozen solution EPR spectra obtained following bulk electrolysis showed that the one-electron reduction of VinVMo12 occurs at the molybdenum framework site to give VinVMoVMo11. In contrast, EPR spectra of one-electron reduced VinVW12 at <30 K are consistent with the electron being accommodated on the central V atom in a tetrahedral environment to give VinIVW12. In the case of VinVVoutVM11, the initial reduction occurs at the framework VoutV site to give VinVVoutIVM11. The second electron is delocalized over the Mo framework in two-electron reduced VinVVoutIVMoVMo10, whereas it is accommodated on the central V site in VinIVVoutIVW11. The distance between VinIV and VoutIV in VinIVVoutIVW11 estimated as 3.5 ± 0.2 Å from analysis of the EPR spectrum is consistent with that obtained in VinVVoutVW11 from crystallographic data. Simulations of the cyclic voltammograms as a function of CF3SO3H acid concentration for the initial reduction processes provide excellent agreement with experimental data obtained in acetonitrile (0.10 M [n-Bu4N][PF6]) and allowed acid association constants to be estimated and compared with the literature values available for [XVoutVM11O40]n- (X = S (n = 3), P and As (n= 4); M = Mo, W). The interpretation of the voltammetric data is supported by 51V NMR measurements on the oxidized VV forms of the POMs.
Collapse
Affiliation(s)
- Sousuke Yokoyama
- Department of Applied Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| | - Shinya Azuma
- Department of Applied Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| | - Yohei Eguchi
- Department of Applied Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| | - Keisuke Kodani
- Department of Applied Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| | - Takuya Hasegawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Shuhei Ogo
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku 780-8502, Japan
- Marine Core Research Institute, Kochi University, Nankoku 783-8502, Japan
| | - Hiromi Ota
- Division of Instrumental Analysis, Department of Instrumental Analysis and Cryogenics, Advanced Science Research Center, Okayama University, Okayama, 700-8530, Japan
| | - Si-Xuan Guo
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - John F Boas
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Tadaharu Ueda
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku 780-8502, Japan
- Marine Core Research Institute, Kochi University, Nankoku 783-8502, Japan
- MEDi Center, Kochi University, Kochi 780-0842, Japan
| |
Collapse
|
34
|
Singh G, Mandal D. Modulation of the Band Gap and Redox Properties by Mixed Addenda in Sandwich Polyoxometalates. Inorg Chem 2023; 62:19648-19663. [PMID: 37983558 DOI: 10.1021/acs.inorgchem.3c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Due to the wide range of applications of band-gap engineering in optoelectronics and photocatalysis, the rational design of polyoxometalate (POM) frameworks is highly desired. Here, we have successfully synthesized a series of mixed addenda (Mo and W) sandwich POMs by systematically varying pH, concentrations of salts, and counterions in Weakley-type sandwich POMs by incorporating Mo into the framework of tetrasubstituted sandwich POMs. Crystallographic analysis reveals the centrosymmetric structure; with variation in the Mo to W ratio, Mo preferentially binds to μ2 oxygen connected to transition metals in the sandwich position. UV-visible spectroscopy, electrochemical, and theoretical modeling rationalize the band-gap modulations. Theoretical studies and cyclic voltammograms indicate that during the reduction, the incoming electrons preferentially go to substituted transition metals followed by Mo. Flat band potential calculated from the Mott-Schottky enables tuning of the electronic properties of composites based on these sandwich POMs. Moreover, the dioxygen binding and activation studies of these polyoxometalates have been highlighted.
Collapse
Affiliation(s)
- Ganga Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Debaprasad Mandal
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
35
|
Yuan Z, Britton R. Development and application of decatungstate catalyzed C-H 18F- and 19F-fluorination, fluoroalkylation and beyond. Chem Sci 2023; 14:12883-12897. [PMID: 38023504 PMCID: PMC10664588 DOI: 10.1039/d3sc04027e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Over the past few decades, photocatalytic C-H functionalization reactions have received increasing attention due to the often mild reaction conditions and complementary selectivities to conventional functionalization processes. Now, photocatalytic C-H functionalization is a widely employed tool, supporting activities ranging from complex molecule synthesis to late-stage structure-activity relationship studies. In this perspective, we will discuss our efforts in developing a photocatalytic decatungstate catalyzed C-H fluorination reaction as well as its practical application realized through collaborations with industry partners at Hoffmann-La Roche and Merck, and extension to radiofluorination with radiopharmaceutical chemists and imaging experts at TRIUMF and the BC Cancer Agency. Importantly, we feel that our efforts address a question of utility posed by Professor Tobias Ritter in "Late-Stage Fluorination: Fancy Novelty or Useful Tool?" (ACIE, 2015, 54, 3216). In addition, we will discuss decatungstate catalyzed C-H fluoroalkylation and the interesting electrostatic effects observed in decatungstate-catalyzed C-H functionalization. We hope this perspective will inspire other researchers to explore the use of decatungstate for the purposes of photocatalytic C-H functionalization and further advance the exploitation of electrostatic effects for both rate acceleration and directing effects in these reactions.
Collapse
Affiliation(s)
- Zheliang Yuan
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University Jinhua Zhejiang 321004 China
| | - Robert Britton
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
| |
Collapse
|
36
|
Tan HR, Zhou X, You H, Zheng Q, Zhao SY, Xuan W. A porous Anderson-type polyoxometalate-based metal-organic framework as a multifunctional platform for selective oxidative coupling with amines. Dalton Trans 2023; 52:17019-17029. [PMID: 37933953 DOI: 10.1039/d3dt02620e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Incorporating catalytic units into a crystalline porous matrix represents a facile way to build high-efficiency heterogeneous catalysts, and by rational design of the porous skeleton with appropriate building blocks the catalytic performance can be significantly enhanced for a series of organic transformations owing to the synergistic effect from the multicomponent and confined porous microenvironment around catalytically active sites. Herein, we demonstrate that the design and synthesis of a porous polyoxometalate-based metal-organic framework YL2(H2O)2[CrMo6O18(PET)2]·4H2O (POMOF-1) constructed from Anderson-type [CrMo6O18(PET)2] (PET = pentaerythritol), which can be employed as a multifunctional platform for synthesis of N-containing compounds via selective oxidative coupling with amines. POMOF-1 features microporous 1D channels defined by Y3+ and L, with [CrMo6O18(PET)2] arranged orderly between adjacent Lvia electrostatic interactions. Upon using POMOF-1 as a catalyst and H2O2 as an oxidant, a variety of amines could be effectively converted to value-added amides, imines and azobenzenes via the oxidative cross-coupling with alcohols or homo-coupling. In particular, POMOF-1 showed dramatically improved activity for the N-formylation reaction owing to the synergistic and confinement effect, with the yield of amides up to 95% and 4 times higher than that of homogeneous [CrMo6O18(PET)2]. Meanwhile, the oxidative homo-coupling of arylmethylamines and arylamines can be facilely tuned by adjustment of the amount of oxidant, solvent and additive, affording imines and azobenzenes in high selectivity and yield, respectively. POMOF-1 is robust and can be reused for 5 cycles with little loss of catalytic activity and structural integrity. The work demonstrates that the combination of catalytically active POMs with crystalline porous MOFs holds great potential to build robust and recyclable heterogeneous systems with enhanced activity and selectivity for multifunctional catalysis.
Collapse
Affiliation(s)
- Hong-Ru Tan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Xiang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Hanqi You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Qi Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Sheng-Yin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Weimin Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
37
|
Chen W, Li H, Jin Y, Lei W, Bai Q, Ma P, Wang J, Niu J. Construction of Hexameric Ru-Substitution POMs to Improve Photocatalytic H 2 Evolution. Inorg Chem 2023; 62:18079-18086. [PMID: 37877470 DOI: 10.1021/acs.inorgchem.3c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Converting solar energy into storable hydrogen energy by employing green photocatalytic technology offers a reliable alternative for meeting the energy crisis. The polyoxometalates are a promising candidate for hydrogen production photocatalysts because of their unique electronic and structural properties and controllable design at the molecular level. Introducing noble metals was proven to be an effective method to greatly enhance the photocatalytic efficiency of polyoxometalates. Herein, two unprecedented compounds of hexameric Ru-POMs, Na4H10[As2RuIV2W11O18(OH)4(H2O)6{AsW8RuIVO31(OH)Cl}2(B-β-AsW9O33)4]·93H2O (1) and Na2H19[AsRuIII2W11O20(OH)2(H2O)6(RuIIICl3)(B-β-AsW9O33)6]·90H2O (2), were successfully self-assembled. The H2 evolution rates of 1 and 2 under optimal conditions were 3578.75 and 3027.69 μmol h-1 g-1 with TONs of 255 and 205, respectively. The stability of 1 was demonstrated by a series of characterizations. Besides, a possible photocatalytic mechanism was proposed.
Collapse
Affiliation(s)
- Wenjing Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Yuzhen Jin
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Wenjing Lei
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Qingyun Bai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| |
Collapse
|
38
|
Li R, Wang Y, Zeng F, Si C, Zhang D, Xu W, Shi J. Advances in Polyoxometalates as Electron Mediators for Photocatalytic Dye Degradation. Int J Mol Sci 2023; 24:15244. [PMID: 37894924 PMCID: PMC10607072 DOI: 10.3390/ijms242015244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing concerns over the environment and the growing demand for sustainable water treatment technologies have sparked substantial interest in the field of photocatalytic dye removal. Polyoxometalates (POMs), known for their intricate metal-oxygen anion clusters, have received considerable attention due to their versatile structures, compositions, and efficient facilitation of photo-induced electron transfers. This paper provides an overview of the ongoing research progress in the realm of photocatalytic dye degradation utilizing POMs and their derivatives. The details encompass the compositions of catalysts, catalytic efficacy, and light absorption propensities, and the photocatalytic mechanisms inherent to POM-based materials for dye degradation are exhaustively expounded upon. This review not only contributes to a better understanding of the potential of POM-based materials in photocatalytic dye degradation, but also presents the advancements and future prospects in this domain of environmental remediation.
Collapse
Affiliation(s)
| | | | | | | | - Dan Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China; (R.L.); (Y.W.); (F.Z.); (C.S.); (W.X.)
| | | | - Junyou Shi
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China; (R.L.); (Y.W.); (F.Z.); (C.S.); (W.X.)
| |
Collapse
|
39
|
Jimbo A, Li C, Yonesato K, Ushiyama T, Yamaguchi K, Suzuki K. Molecular hybrids of trivacant lacunary polyoxomolybdate and multidentate organic ligands. Chem Sci 2023; 14:10280-10284. [PMID: 37772125 PMCID: PMC10530144 DOI: 10.1039/d3sc03713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Functional molecular inorganic-organic hybrids of lacunary polyoxometalates and organic ligands attract much attention for advanced material applications. However, the inherent instability of lacunary polyoxomolybdates hinders the synthesis of hybrids and their utilization. Herein, we present a viable approach for the synthesis of molecular hybrids of trivacant lacunary Keggin-type polyoxomolybdates and multidentate organic ligands including carboxylates and phosphonates, which is based on the use of a lacunary structure stabilized by removable pyridyl ligands as a starting material.
Collapse
Affiliation(s)
- Atsuhiro Jimbo
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomoki Ushiyama
- NIPPON STEEL Eco-Tech Corporation 2-1-38 Shiohama Kisarazu Chiba 292-0838 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
40
|
Li C, Gu C, Yamaguchi K, Suzuki K. Highly efficient degradation of polyesters and polyethers by decatungstate photocatalysis. NANOSCALE 2023; 15:15038-15042. [PMID: 37668707 DOI: 10.1039/d3nr03978a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Photocatalytic polymer degradation has been recognized as a promising solution to the global disposal of waste plastics. In this work, we revealed that various polyesters and polyethers were efficiently degraded in the presence of a polyoxometalate photocatalyst, specifically, decatungstate ([W10O32]4-, W10). A catalytic amount of W10 initiated the degradation of various polyesters and polyethers under photo-irradiation with a xenon lamp (λ > 350 nm) using O2 (1 atm) as the oxidant in acetonitrile or water. Moreover, this system can promote polymer degradation even under sunlight. The degradation efficiency, assessed from the degradation rate (Mw0 - Mw)/Mw0 (%) (where Mw0 is the Mw before the reaction), of W10 was notably higher than those of previously reported photocatalysts such as titanium oxide, other polyoxometalates, organometallic compounds, and organic dyes.
Collapse
Affiliation(s)
- Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Chen Gu
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
41
|
Repp S, Remmers M, Rein ASJ, Sorsche D, Gao D, Anjass M, Mondeshki M, Carrella LM, Rentschler E, Streb C. Coupled reaction equilibria enable the light-driven formation of metal-functionalized molecular vanadium oxides. Nat Commun 2023; 14:5563. [PMID: 37689696 PMCID: PMC10492840 DOI: 10.1038/s41467-023-41257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
The introduction of metal sites into molecular metal oxides, so-called polyoxometalates, is key for tuning their structure and reactivity. The complex mechanisms which govern metal-functionalization of polyoxometalates are still poorly understood. Here, we report a coupled set of light-dependent and light-independent reaction equilibria controlling the mono- and di-metal-functionalization of a prototype molecular vanadium oxide cluster. Comprehensive mechanistic analyses show that coordination of a Mg2+ ion to the species {(NMe2H2)2[VV12O32Cl]}3- results in formation of the mono-functionalized {(NMe2H2)[(MgCl)VV12O32Cl]}3- with simultaneous release of a NMe2H2+ placeholder cation. Irradiation of this species with visible light results in one-electron reduction of the vanadate, exchange of the second NMe2H2+ with Mg2+, and formation/crystallization of the di-metal-functionalized [(MgCl)2VIVVV11O32Cl]4-. Mechanistic studies show how stimuli such as light or competing cations affect the coupled equilibria. Transfer of this synthetic concept to other metal cations is also demonstrated, highlighting the versatility of the approach.
Collapse
Affiliation(s)
- Stefan Repp
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Moritz Remmers
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | | | - Dieter Sorsche
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dandan Gao
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Montaha Anjass
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Chemistry, University of Sharjah, Sharjah-27272, Sharjah, United Arab Emirates
| | - Mihail Mondeshki
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Luca M Carrella
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Eva Rentschler
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
42
|
Kazemi F, Zamani HA, Abedi MR, Ebrahimi M. Synthesis and comparison of three photocatalysts for degrading tramadol as an analgesic and widely used drug in water samples. ENVIRONMENTAL RESEARCH 2023; 225:114821. [PMID: 36427639 DOI: 10.1016/j.envres.2022.114821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Tramadol is an analgesic drug that is mainly excreted in the urine. The entry of Tramadol into water samples causes their biological contamination. Therefore, three catalysts such as bismuth ferrite, cobalt-doped bismuth ferrite, and a magnetized Keggin type of polyoxometalate (α-Fe2O3@phosphotungstic acid), were synthesized as photocatalysts to degrade Tramadol in water samples. The morphology and properties of the prepared photocatalysts were evaluated using several techniques. Effects of several factors, including tramadol concentration, pH, hydrogen peroxide concentration, and photocatalyst amount, were studied and optimized by a design experiment procedure based on Box-Behnken design for reducing the number of experiments and cost and investigating the interactions between factors in the photocatalytic degradation process of Tramadol. These factors were optimized for each prepared photocatalyst individually. Under the optimum conditions, the percentages of tramadol degradation and kinetics of the degradation process were evaluated in the presence of each photocatalyst. The tramadol degradation percentages using bismuth ferrite, cobalt-doped bismuth ferrite, and α-Fe2O3 @phosphotungstic acid were 81.10% for 120 min, 90.63% for 80 min, and 91.32% for 80 min, respectively. The rate constants of tramadol degradation were 0.0145, 0.0329, and 0.0312 min-1 for bismuth ferrite, cobalt-doped bismuth ferrite, and α-Fe2O3 @phosphotungstic acid, respectively. The results indicated the highest percentage of tramadol degradation and rate of the degradation process were obtained using α-Fe2O3 @phosphotungstic acid and cobalt-doped bismuth ferrite, respectively.
Collapse
Affiliation(s)
- Farshid Kazemi
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hassan Ali Zamani
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mohammad Reza Abedi
- Department of Applied Chemistry, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Mahmoud Ebrahimi
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
43
|
Chen X, Wu H, Shi X, Wu L. Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis. NANOSCALE 2023. [PMID: 37158109 DOI: 10.1039/d3nr01176c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polyoxometalate-based frameworks (POM-based frameworks) are extended structures assembled from metal-oxide cluster units and organic frameworks that simultaneously possess the virtues of POMs and frameworks. They have been attracting immense attention because of their diverse architectures and charming topologies and also due to their probable application prospects in the areas of catalysis, separation, and energy storage. In this review, the recent progress in POM-based frameworks including POM-based metal organic frameworks (PMOFs), POM-based covalent organic frameworks (PCOFs), and POM-based supramolecular frameworks (PSFs) is systematically summarized. The design and construction of a POM-based framework and its application in photocatalysis and photothermal catalysis are introduced, respectively. Finally, our brief outlooks on the current challenges and future development of POM-based frameworks for photocatalysis and photothermal catalysis are provided.
Collapse
Affiliation(s)
- Xiaofei Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Hongzhuo Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Xinjian Shi
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
44
|
Sakthinathan I, Köhling J, Wagner V, McCormac T. Layer-by-Layer Construction of a Nanoarchitecture by Polyoxometalates and Polymers: Enhanced Electrochemical Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2861-2872. [PMID: 36598164 DOI: 10.1021/acsami.2c17397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this contribution, a nanoarchitectural approach was employed to produce a nanolayer of polyoxometalate (POM) on the surface of a glassy carbon electrode (GCE) to achieve a higher surface area with higher electrocatalytic activity toward the electrochemical hydrogen evolution reaction (HER). To accomplish this, the well-known layer-by-layer (LbL) technique was employed, which involved the alternate adsorption of the POM, Na0.3[N(C4H9)4]7.7 [(Mo3O8)4(O3PC(O)(C3H6NH2CH2C4H3S)PO3)4], abbreviated as [(TBA)Mo12(AleThio)4], and polyethyleneimine (PEI) polymer. This nanolayered electrode exhibited catalytic properties toward the HER in 0.5 M H2SO4 with the resulting polarization curves indicating an increase in the HER activity with the increasing number of POM layers, and the overpotential required for this reaction was lowered by 0.83 V when compared with a bare GCE. The eighth PEI/[(TBA)Mo12(AleThio)4] bilayer exhibited a significantly lower HER overpotential of -0.077 V at a current density of 10 mA cm-2. Surface characterization of the LbL-assembled nanolayers was carried out using X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy. We believe that the synergetic effect of the positively charged PEI polymer and the catalytically active molybdate POM is the cause for the successful response to the electrochemical HER.
Collapse
Affiliation(s)
- Indherjith Sakthinathan
- Electrochemistry Research Group, Department of Applied Science, Dundalk Institute of Technology, Dublin Road, Dundalk A91K584, County Louth, Ireland
| | - Jonas Köhling
- Physics & Earth Sciences, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Veit Wagner
- Physics & Earth Sciences, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Timothy McCormac
- Electrochemistry Research Group, Department of Applied Science, Dundalk Institute of Technology, Dublin Road, Dundalk A91K584, County Louth, Ireland
| |
Collapse
|
45
|
Xia K, Yamaguchi K, Suzuki K. Recent Advances in Hybrid Materials of Metal Nanoparticles and Polyoxometalates. Angew Chem Int Ed Engl 2023; 62:e202214506. [PMID: 36282183 DOI: 10.1002/anie.202214506] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/25/2022]
Abstract
Polyoxometalates (POMs), anionic metal-oxygen nanoclusters that possess various composition-dependent properties, are widely used to modify the existing properties of metal nanoparticles and to endow them with new ones. Herein, we present an overview of recent advances in hybrid materials that consist of metal nanoparticles and POMs. Following a brief introduction on the inception of this area and its development, representative properties and applications of these materials in various fields such as electrochemistry, photochemistry, and catalysis are introduced. We discuss how the combination of two classic inorganic materials facilitates cooperative and synergistic behavior, and we also give personal perspectives on the future development of this field.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
46
|
Li H, Xiao W, Tian Z, Liu Z, Shi L, Wang Y, Liu Y, Liu Y. Reaction mechanism of nanomedicine based on porphyrin skeleton and its application prospects. Photodiagnosis Photodyn Ther 2022; 41:103236. [PMID: 36494023 DOI: 10.1016/j.pdpdt.2022.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Research on porphyrin-based photosensitizing drugs is becoming increasingly popular. They possess unique diagnostic capabilities and therapeutic effects that have gained wide recognition in oncology drug development. In recent years, the rapid growth of nanotechnology has brought great hope for nanopharmaceutical formulations. By combining porphyrins with various nanomaterials, people have improved the properties of porphyrin compounds, making drug delivery easier. Porphyrin-based nanoparticles can enhance the effect of photodynamic therapy for cancer treatment, providing opportunities for achieving complex targeting strategies and versatility with promising applications in drug carriers, tumor imaging, and treatment. This paper reviews recent porphyrin nanodrugs, including inorganic-organic hybrid nanoparticles, nanomicelles, self-assembled nanoparticles, and combination therapeutic nanodrugs, and their actions and effects on cancer cells when performing photodynamic therapy. It also discusses the drawbacks as well as the prospects for development.
Collapse
Affiliation(s)
- Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Wenli Xiao
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Lei Shi
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Ying Wang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Yujie Liu
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
47
|
|
48
|
Liang C, Cui M, Zhao W, Dong L, Ma S, Liu X, Wang D, Jiang Z, Wang F. Hybridizing electron-mediated H 5PMo 10V 2O 40 with CdS/g-C 3N 4 for efficient photocatalytic performance of Z-scheme heterojunction in wastewater treatment. CHEMOSPHERE 2022; 305:135315. [PMID: 35716713 DOI: 10.1016/j.chemosphere.2022.135315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Photocatalytic technology has been considered as a promising method to alleviate environmental pollution owing to the dual characteristics of redox. The novel V-based H5PMo10V2O40 (HPA-2) photocatalyst with Z-scheme heterostructure was constructed. The energy level of HPA-2 matches well with CdS and g-C3N4 (CN) according to Mott-Schottky and UV-Vis diffused reflectance tests, which allows the efficient separation of photogenerated electrons. The optimized CdS/HPA-2/CN showed superior ability in Rhodamine B (RhB) degradation and reduction of Cr (Ⅵ) under visible light irradiation. The maximum rate constant reached 0.092 min-1 for RhB degradation at 60 min and 0.260 min-1 for Cr (Ⅵ) reduction at 20 min, respectively. The photocatalytic mechanism was analyzed by adding scavengers. The effect of active species for RhB degradation was determined as h+ > ·O2- > ·OH, while ·O2- and e- were essential for the reduction of Cr (Ⅵ). Besides, cyclic tests exhibit excellent repeatability and stable structure of CdS/HPA-2/CN after four cycles. Meanwhile, the detailed degradation process of RhB involving de-ethylation, hydroxylation, substitution and decarboxylation was determined according to LC-MS and evaluated by Fukui function calculation. Furthermore, total organic carbon content decreased to 6.2% of the initial value. In this work, as an electron mediator, HPA-2 provides the inspiration for construction of Z-scheme heterojunction, and CdS/HPA-2/CN exhibits enormous potential in the environmental remediation by photocatalysis.
Collapse
Affiliation(s)
- Chong Liang
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
| | - Mingyu Cui
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
| | - Wei Zhao
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
| | - Linyang Dong
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
| | - Shangshang Ma
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
| | - Xutang Liu
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
| | - Dingkai Wang
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
| | - Zhijie Jiang
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
| | - Fei Wang
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
| |
Collapse
|
49
|
Sunada Y, Yamaguchi K, Suzuki K. “Template synthesis” of discrete metal clusters with two- or three-dimensional architectures. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|