1
|
Schichtl ZG, Carvalho OQ, Tan J, Saund SS, Ghoshal D, Wilder LM, Gish MK, Nielander AC, Stevens MB, Greenaway AL. Chemistry of Materials Underpinning Photoelectrochemical Solar Fuel Production. Chem Rev 2025; 125:4768-4839. [PMID: 40327786 PMCID: PMC12123630 DOI: 10.1021/acs.chemrev.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 05/08/2025]
Abstract
Since its inception, photoelectrochemistry has sought to power the generation of fuels, particularly hydrogen, using energy from sunlight. Efficient and durable photoelectrodes, however, remain elusive. Here we review the current state of the art, focusing our discussion on advances in photoelectrodes made in the past decade. We open by briefly discussing fundamental photoelectrochemical concepts and implications for photoelectrode function. We next review a broad range of semiconductor photoelectrodes broken down by material class (oxides, nitrides, chalcogenides, and mature photovoltaic semiconductors), identifying intrinsic properties and discussing their influence on performance. We then identify innovative in situ and operando techniques to directly probe the photoelectrode|electrolyte interface, enabling direct assessment of structure-property relationships for catalytic surfaces in active reaction environments. We close by considering more complex photoelectrochemical fuel-forming reactions (carbon dioxide and nitrogen reduction, as well as alternative oxidation reactions), where product selectivity imposes additional criteria on electrochemical driving force and photoelectrode architecture. By contextualizing recent literature within a fundamental framework, we seek to provide direction for continued progress toward achieving efficient and stable fuel-forming photoelectrodes.
Collapse
Affiliation(s)
- Zebulon G. Schichtl
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - O. Quinn Carvalho
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Jeiwan Tan
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Simran S. Saund
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Debjit Ghoshal
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Logan M. Wilder
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Melissa K. Gish
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Adam C. Nielander
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo
Park, California94025, United States
| | - Michaela Burke Stevens
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo
Park, California94025, United States
| | - Ann L. Greenaway
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| |
Collapse
|
2
|
Zhou X, Wu W, Xu D, Liu C, Zhang Z. Bioinspired Dual-Site Photocathode with Atomic Molybdenum and Alkynyl Networks for Scalable Solar Ammonia Synthesis. ACS NANO 2025; 19:19417-19428. [PMID: 40354507 DOI: 10.1021/acsnano.5c03937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The Haber-Bosch process, while pivotal for global ammonia production, remains energy-intensive and environmentally unsustainable. Here, we report a nitrogenase-inspired photocathode (Mo1/HsGDY@Cu2O) that synergistically integrates light-harvesting Cu2O nanowires, hydrogen-radical-generating alkynyl-rich graphdiyne (HsGDY), and atomically dispersed molybdenum sites for solar-driven nitrogen fixation. Mimicking the Fe/MoFe-cofactor collaboration in nitrogenase, the photocathode enables efficient N2 adsorption at Mo1 sites and hydrogen radical transfer from adjacent alkynyl groups, significantly lowering the energy barrier for N2 hydrogenation. Under 10-sun illumination, the system achieves a record ammonia yield of 78.9 μg cm-2 h-1 with a Faradaic efficiency of 38.9% while maintaining 86% activity over 240 h. The ammonia solution directly enhances Epipremnum aureum root growth by 2.3-fold, demonstrating immediate agricultural utility. Combined with bias-free operation and scalable solar concentration, this work provides a practical blueprint for decarbonizing fertilizer production. Operando spectroscopy and DFT calculations further reveal that the dual-site synergy─Mo1 for N2 activation and alkynyl groups for H• supply─drives the catalytic mechanism, offering a universal strategy for enzyme-inspired energy conversion systems.
Collapse
Affiliation(s)
- Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Weiwei Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Dawei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Liu YA, Lee CC, Górecki K, Stiebritz MT, Duffin C, Solomon JB, Ribbe MW, Hu Y. Heterologous synthesis of a simplified nitrogenase analog in Escherichia coli. SCIENCE ADVANCES 2025; 11:eadw6785. [PMID: 40315313 PMCID: PMC12047441 DOI: 10.1126/sciadv.adw6785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/28/2025] [Indexed: 05/04/2025]
Abstract
The heterologous synthesis of a nitrogen-fixing system in a non-diazotrophic organism is a long-sought-after goal because of the crucial importance of nitrogenase for agronomy, energy, and the environment. Here, we report the heterologous synthesis of a two-component nitrogenase analog from Azotobacter vinelandii, which consists of the reductase component (NifH) and the cofactor maturase (NifEN), in Escherichia coli. Metal, electron paramagnetic resonance, and activity analyses verify the cluster composition and functional competence of the heterologously expressed NifH and NifEN. Nuclear magnetic resonance, nanoscale secondary ion mass spectrometry, and growth experiments further illustrate the ability of the NifH/NifEN system to reduce N2 and incorporate the reduced N into the cellular mass. These results establish NifEN/NifH as a simplified nitrogenase analog that could be optimized and engineered to facilitate transgenic expression and biotechnological adaptations of this important metalloenzyme.
Collapse
Affiliation(s)
- Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Martin T. Stiebritz
- Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, D-91052 Erlangen, Germany
| | - Calder Duffin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| |
Collapse
|
4
|
Palomera N, Feng P. Zinc Oxide/Molybdenum Disulfide as Nanocomposite for Multifunctional Sensor Prototype. MICROMACHINES 2025; 16:358. [PMID: 40283235 PMCID: PMC12029808 DOI: 10.3390/mi16040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 04/29/2025]
Abstract
Different materials are studied for environmental gas sensors as well as photodetection prototypes. A ZnO/MoS2 p-n junction was synthetized to act as a multifunctional sensor prototype. After the ZnO was prepared on a silicon substrate by using DC sputtering at room temperature, molybdenum disulfide layers were spin-coated on a nanostructured zinc oxide flake-shaped surface to form an active layer. The heterostructure's composite surface was examined using scanning electron microscopy, energy-dispersed X-ray, and Raman spectroscopy. Responses to light frequencies, light intensities, and gas chemical tracing were characterized, revealing an enhanced multifunctional performance of the prototype. Characterizations of light-induced photocurrents indicted that the obtained response strength (photocurrent/illumination light power) was up to 0.01 A/W, and the response time was less than 5 ms. In contrast, the gas-sensing measurements showed that its response strength (variation in resistance/original resistance) was up to 3.7% and the response time was down to 150 s when the prototype was exposed to ammonia gas, with the concentration down to 168 ppm. The fabricated prototype appears to have high stability and reproducibility, quick response and recovery times, as well as a high signal-to-noise ratio.
Collapse
Affiliation(s)
| | - Peter Feng
- Department of Physics, University of Puerto Rico, San Juan, PR 00931, USA
| |
Collapse
|
5
|
Garg AK, Kumar V, Rohit, Saini D, Sonkar SK. H 2O 2 Mediated Photoreduction of Nitrates to Ammonia by Iron Filings under Ambient Conditions. J Phys Chem Lett 2025; 16:876-881. [PMID: 39824614 DOI: 10.1021/acs.jpclett.4c03039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Herein, a simple ambient conditioned sunlight promoted photochemical reduction reaction is demonstrated for the of nitrate (NO3-) conversion to ammonia (NH3) with the maximum conversion yield of ∼16 mM using iron filings (f-Fe) in the presence of H2O2. Based on a radical scavenging study of reactive species and the characterization of catalyst f-Fe before and after the reaction, a plausible mechanism has been proposed for the ambient conditioned synthesis of NH3. The results associated with the NH3 synthesis have been verified using the 15N isotopic labeled nitrate (15NO3-), which supports the simpler viability of the reported procedure.
Collapse
Affiliation(s)
- Anjali Kumari Garg
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Vishrant Kumar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
- Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Rohit
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| |
Collapse
|
6
|
Yoon A, Kim T, Kim D, Lee YJ, Hwang SJ, Kim IY. Exfoliation of triazole-based C 3N 4.8, C 3N 6, and C 3N 7 nanosheets for efficient photocatalytic ammonia production. NANOSCALE 2025; 17:2438-2443. [PMID: 39745098 DOI: 10.1039/d4nr03639e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Atomically thin two-dimensional nanosheets of nitrogen-rich C3N4.8, C3N6, and C3N7 are synthesized by sonochemical process. Despite their high nitrogen content, their triazole-based crystal structures remain intact after exfoliation. Among the present materials, the nitrogen-richest C3N7 nanosheets display the highest photocatalytic activity for ammonia production, highlighting the synergetic effect of composition control and exfoliation.
Collapse
Affiliation(s)
- Ayoung Yoon
- Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Taehoon Kim
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Dokyung Kim
- Metropolitan Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Young Joo Lee
- Metropolitan Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - In Young Kim
- Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
7
|
Brinke L, Wagner M, Thiele S, Kerres J. Sulfonamide-Sulfonimide Copolymers as Novel, Fluorine-Lean Type of Proton Exchange Membranes for Fuel Cell Application. Chemistry 2024; 30:e202402025. [PMID: 39087575 DOI: 10.1002/chem.202402025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
In this work, a novel type of fluorine-lean proton exchange membranes is presented, using sulfonamide-sulfonimide functional groups for ion conduction. These groups are constructed on a polystyrene backbone for simple and cost-efficient usage as well as rapid scalability. The polymer is further tailored by adjusting the sulfonamide functionality with various end-groups, namely pentafluorophenyl, 4-fluorophenyl, butyl and octyl groups. These groups affect the pKa, leading to pKa values of 5.7 for the pentafluorophenyl substitution and pKa 10.5 for the alkyl chain. The glass transition temperature of the sulfonamide homopolymers can be reduced from Tg=151 °C (Pentafluorophenyl) to 49 °C (Octyl), making the ionomer more flexible at room temperature. The combination of the non-swelling sulfonamide further mitigates the high water uptake of the sulfonimide while maintaining the nominal ion exchange capacity. This combination leads to extremely high proton conductivities with up to σ=283 mS cm-1 at room temperature, which is clearly outperforming Nafion and approaches values for acid doped systems. This approach can pave the way to a novel type of ion conducting class in proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Leon Brinke
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Maximilian Wagner
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
| | - Simon Thiele
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Jochen Kerres
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Chemical Resource Beneficiation, Faculty of Natural Sciences, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
8
|
Solomon JB, Lee CC, Liu YA, Duffin C, Ribbe MW, Hu Y. Ammonia synthesis via an engineered nitrogenase assembly pathway in Escherichia coli. Nat Catal 2024; 7:1130-1141. [PMID: 39713742 PMCID: PMC11661828 DOI: 10.1038/s41929-024-01229-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/19/2024] [Indexed: 12/24/2024]
Abstract
Heterologous expression of nitrogenase has been actively pursued because of the far-reaching impact of this enzyme on agriculture, energy and environment. Yet, isolation of an active two-component, metallocentre-containing nitrogenase from a non-diazotrophic host has yet to be accomplished. Here, we report the heterologous synthesis of an active Mo-nitrogenase by combining genes from Azotobacter vinelandii and Methanosarcina acetivorans in Escherichia coli. Metal, activity and EPR analyses demonstrate the integrity of the metallocentres in the purified nitrogenase enzyme; whereas growth, nanoSIMS and NMR experiments illustrate diazotrophic growth and 15N enrichment by the E. coli expression strain, as well as accumulation of extracellular ammonia upon deletion of the ammonia transporter that permits incorporation of thus-generated N into the cellular mass of a non-diazotrophic E. coli strain. As such, this study provides a crucial prototype system that could be optimized/modified to enable future transgenic expression and biotechnological adaptations of nitrogenase.
Collapse
Affiliation(s)
- Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
| | - Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
| | - Calder Duffin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
| |
Collapse
|
9
|
Hong F, Su X, Fang Y, He X, Shan B. Manipulating Photoconduction in Supramolecular Networks for Solar-Driven Nitrate Conversion to Ammonia and Oxygen. J Am Chem Soc 2024; 146:25200-25210. [PMID: 39222384 DOI: 10.1021/jacs.4c09052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
For photoelectrodes to be used in practical catalytic applications, challenges exist in achieving the efficient production and transport of photogenerated charge-separated states. Analogous concepts in traditional inorganic photoelectrodes can be applied to their organic-polymer counterparts with improved charge-separation efficiencies. In this work, we develop photoconductive organic networks to form a high-performance photoelectrode for NO3- reduction to NH3. In the integrated network, interfaces between the organic electron-donating photoconductor and electron-accepting catalyst can generate charge carriers efficiently upon illumination, leading to enhanced charge separation for photoelectrocatalysis. The photoelectrode network is capable of converting NO3- to NH3 at an external quantum efficiency of 13%. By coupling with a BiVO4 photoanode in tandem, the system reduces NO3- to NH3 and oxidizes H2O to O2 simultaneously at Faradaic efficiencies of 95-98% with sustained photocurrents and production yields. Investigation of the photoconductive network by steady-state/time-resolved spectroscopies reveals the efficient generation and transport of free charge carriers in the photoelectrode, providing a basis for high photoelectrocatalytic performances.
Collapse
Affiliation(s)
- Feiyang Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinhao Su
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yanjie Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinjia He
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing Shan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
10
|
Zhu R, Zhou Q, Tian Q, Zhao S, Qin W, Wu X, Xu S, Zhang Y. Ppb-Level Ammonia Sensor for Exhaled Breath Diagnosis Based on UV-DOAS Combined with Spectral Reconstruction Fitting Neural Network. ACS Sens 2024; 9:4286-4294. [PMID: 39077941 DOI: 10.1021/acssensors.4c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Ammonia (NH3) in exhaled breath (EB) has been a biomarker for kidney function, and accurate measurement of NH3 is essential for early screening of kidney disease. In this work, we report an optical sensor that combines ultraviolet differential optical absorption spectroscopy (UV-DOAS) and spectral reconstruction fitting neural network (SRFNN) for detecting NH3 in EB. UV-DOAS is introduced to eliminate interference from slow change absorption in the EB spectrum while spectral reconstruction fitting is proposed for the first time to map the original spectra onto the sine function spectra by the principle of least absolute deviations. The sine function spectra are then fitted by the least-squares method to eliminate noise signals and the interference of exhaled nitric oxide. Finally, the neural network is built to enable the detection of NH3 in EB at parts per billion (ppb) level. The laboratory results show that the detection range is 9.50-12425.82 ppb, the mean absolute percentage error (MAPE) is 0.83%, and the detection accuracy is 0.42%. Experimental results prove that the sensor can detect breath NH3 and identify EB in simulated patients and healthy people. Our sensor will serve as a new and effective system for detecting breath NH3 with high accuracy and stability in the medical field.
Collapse
Affiliation(s)
- Rui Zhu
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qiwen Zhou
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qi Tian
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Shuo Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Wanyi Qin
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xijun Wu
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shufeng Xu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Yungang Zhang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
11
|
Assafiri A, Jia C, Thomas DS, Hibbert DB, Zhao C. Fast and Sensitive Detection of Ammonia from Electrochemical Nitrogen Reduction Reactions by 1H NMR with Radiation Damping. SMALL METHODS 2024; 8:e2301373. [PMID: 38353380 DOI: 10.1002/smtd.202301373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Indexed: 08/18/2024]
Abstract
A facile NMR method is reported for analysis of ammonia from the electrochemical reduction of nitrogen, which compares a calibrated colorimetric method, a calibrated 1H NMR method and two 1H NMR direct measurements using external reference materials. Unlike spectrophotometric methods, 1H NMR requires less bench time and does not require separation of ammonia from the electrolyte. A novel approach to the problem of radiation damping in NMR measurements considered the specific role of hardware tuning. Radiation damping is suppressed improving signal-to-noise ratio and detection limit (1.5 µg L-1). The method is demonstrated to be effective for the analysis of ammonia from direct electrochemical nitrogen reduction in KOH, and from lithium-mediated nitrogen reduction in a non-aqueous solution. An uncertainty budget is prepared for the measurement of ammonia.
Collapse
Affiliation(s)
- Aya Assafiri
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Chen Jia
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Donald S Thomas
- NMR Facility, Mark Wainwright Analytical Center, University of New South Wales, Sydney, 2052, Australia
| | - David B Hibbert
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
12
|
Li JY, Du XY, Wang XX, Yuan XY, Guan DH, Xu JJ. Photo-Assisted Li-N 2 Batteries with Enhanced Nitrogen Fixation and Energy Conversion. Angew Chem Int Ed Engl 2024; 63:e202319211. [PMID: 38198190 DOI: 10.1002/anie.202319211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.
Collapse
Affiliation(s)
- Jian-You Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Xing-Yuan Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Xin-Yuan Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - De-Hui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
13
|
Zhong W, Hong QL, Ai X, Zhang C, Li FM, Li XF, Chen Y. RhNi Bimetallenes with Lattice-Compressed Rh Skin towards Ultrastable Acidic Nitrate Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314351. [PMID: 38408278 DOI: 10.1002/adma.202314351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/18/2024] [Indexed: 02/28/2024]
Abstract
Harvesting recyclable ammonia (NH3 ) from acidic nitrate (NO3 - )-containing wastewater requires the utilization of corrosion-resistant electrocatalytic materials with high activity and selectivity towards acidic electrochemical nitrate reduction (NO3 ER). Herein, ultrathin RhNi bimetallenes with Rh-skin-type structure (RhNi@Rh BMLs) are fabricated towards acidic NO3 ER. The Rh-skin atoms on the surface of RhNi@Rh BMLs experience the lattice compression-induced strain effect, resulting in shortened Rh-Rh bond and downshifted d-band center. Experimental and theoretical calculation results corroborate that Rh-skin atoms can inhibit NO2 */NH2 * adsorption-induced Rh dissolution, contributing to the exceptional electrocatalytic durability of RhNi@Rh BMLs (over 400 h) towards acidic NO3 ER. RhNi@Rh BMLs also reveal an excellent catalytic performance, boasting a 98.4% NH3 Faradaic efficiency and a 13.4 mg h-1 mgcat -1 NH3 yield. Theoretical calculations reveal that compressive stress tunes the electronic structure of Rh skin atoms, which facilitates the reduction of NO* to NOH* in NO3 ER. The practicality of RhNi@Rh BMLs has also been confirmed in an alkaline-acidic hybrid zinc-nitrate battery with a 1.39 V open circuit voltage and a 10.5 mW cm-2 power density. This work offers valuable insights into the nature of electrocatalyst deactivation behavior and guides the development of high-efficiency corrosion-resistant electrocatalysts for applications in energy and environment.
Collapse
Affiliation(s)
- Wei Zhong
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qing-Ling Hong
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xuan Ai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Chong Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Xi-Fei Li
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
14
|
Li Y, Kurokawa H, Sekine Y, Kebukawa Y, Nakano Y, Kitadai N, Zhang N, Zang X, Ueno Y, Fujimori G, Nakamura R, Fujishima K, Isa J. Aqueous breakdown of aspartate and glutamate to n-ω-amino acids on the parent bodies of carbonaceous chondrites and asteroid Ryugu. SCIENCE ADVANCES 2023; 9:eadh7845. [PMID: 38100590 PMCID: PMC10848742 DOI: 10.1126/sciadv.adh7845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Amino acids in carbonaceous chondrites may have seeded the origin of life on Earth and possibly elsewhere. Recently, the return samples from a C-type asteroid Ryugu were found to contain amino acids with a similar distribution to Ivuna-type CI chondrites, suggesting the potential of amino acid abundances as molecular descriptors of parent body geochemistry. However, the chemical mechanisms responsible for the amino acid distributions remain to be elucidated particularly at low temperatures (<50°C). Here, we report that two representative proteinogenic amino acids, aspartic acid and glutamic acid, decompose to β-alanine and γ-aminobutyric acid, respectively, under simulated geoelectrochemical conditions at 25°C. This low-temperature conversion provides a plausible explanation for the enrichment of these two n-ω-amino acids compared to their precursors in heavily aqueously altered CI chondrites and Ryugu's return samples. The results suggest that these heavily aqueously altered samples originated from the water-rich mantle of their water/rock differentiated parent planetesimals where protein α-amino acids were decomposed.
Collapse
Affiliation(s)
- Yamei Li
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroyuki Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Earth Science and Astronomy, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yasuhito Sekine
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- Institute of Nature and Environmental Technology, Japan Kanazawa University, Ishikawa, Kanazawa, Kakumachi 920-1192, Japan
- Planetary Plasma and Atmospheric Research Center, Tohoku University, Aramaki-aza-Aoba 6-3, Aoba, Sendai, Miyagi 980-8578, Japan
| | - Yoko Kebukawa
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama 240-8501, Japan
| | - Yuko Nakano
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Norio Kitadai
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Naizhong Zhang
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Xiaofeng Zang
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yuichiro Ueno
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Gen Fujimori
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama 240-8501, Japan
| | - Ryuhei Nakamura
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa 252-0882, Japan
| | - Junko Isa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
15
|
Pay R, Sharrock AV, Elder R, Maré A, Bracegirdle J, Torres D, Malone N, Vorster J, Kelly L, Ryan A, Josephy PD, Allen-Vercoe E, Ackerley DF, Keyzers RA, Harvey JE. Preparation, analysis and toxicity characterisation of the redox metabolites of the azo food dye tartrazine. Food Chem Toxicol 2023; 182:114193. [PMID: 37980979 DOI: 10.1016/j.fct.2023.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Tartrazine (E102, FD&C Yellow 5) is a vibrant yellow azo dye added to many processed foods. The safety of this ubiquitous chemical has not been fully elucidated, and it has been linked to allergic reactions and ADHD in some individuals. In our study, bacterial species isolated from human stool decolourised tartrazine and, upon exposure to air, a purple compound formed. Tartrazine is known to undergo reduction in the gut to sulfanilic acid and 4-amino-3-carboxy-5-hydroxy-1-(4-sulfophenyl)pyrazole (SCAP). These metabolites and their derivatives are relevant to the toxicology of tartrazine. The toxicity of sulfanilic acid has been studied before, but the oxidative instability of SCAP has previously prevented full characterisation. We have verified the chemical identity of SCAP and confirmed that the purple-coloured oxidation derivative is 4-(3-carboxy-5-hydroxy-1-(4-sulfophenyl)-1H-pyrazol-4-yl)imino-5-oxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid (purpurazoic acid, PPA), as proposed by Westöö in 1965. A yellow derivative of SCAP is proposed to be the hydrolysed oxidation product, 4,5-dioxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid. SCAP and PPA are moderately toxic to human cells (IC50 89 and 78 μM against HEK-293, respectively), but had no apparent effect on Escherichia coli and Bacillus subtilis bacteria. These results prompt further analyses of the toxicology of tartrazine and its derivatives.
Collapse
Affiliation(s)
- Ruth Pay
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Abigail V Sharrock
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Riley Elder
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Alaigne Maré
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Joe Bracegirdle
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Dan Torres
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Niall Malone
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Jan Vorster
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Libusha Kelly
- Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ali Ryan
- Department of Biology, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK
| | - P David Josephy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - David F Ackerley
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Robert A Keyzers
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Joanne E Harvey
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
| |
Collapse
|
16
|
Tang Y, Qin D, Tian Z, Chen W, Ma Y, Wang J, Yang J, Yan D, Dixon R, Wang YP. Diurnal switches in diazotrophic lifestyle increase nitrogen contribution to cereals. Nat Commun 2023; 14:7516. [PMID: 37980355 PMCID: PMC10657418 DOI: 10.1038/s41467-023-43370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Uncoupling of biological nitrogen fixation from ammonia assimilation is a prerequisite step for engineering ammonia excretion and improvement of plant-associative nitrogen fixation. In this study, we have identified an amino acid substitution in glutamine synthetase, which provides temperature sensitive biosynthesis of glutamine, the intracellular metabolic signal of the nitrogen status. As a consequence, negative feedback regulation of genes and enzymes subject to nitrogen regulation, including nitrogenase is thermally controlled, enabling ammonia excretion in engineered Escherichia coli and the plant-associated diazotroph Klebsiella oxytoca at 23 °C, but not at 30 °C. We demonstrate that this temperature profile can be exploited to provide diurnal oscillation of ammonia excretion when variant bacteria are used to inoculate cereal crops. We provide evidence that diurnal temperature variation improves nitrogen donation to the plant because the inoculant bacteria have the ability to recover and proliferate at higher temperatures during the daytime.
Collapse
Affiliation(s)
- Yuqian Tang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Debin Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Zhexian Tian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Wenxi Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Yuanxi Ma
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Jilong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Jianguo Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dalai Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Sun F, Gao Y, Li M, Wen Y, Fang Y, Meyer TJ, Shan B. Molecular Self-Assembly in Conductive Covalent Networks for Selective Nitrate Electroreduction to Ammonia. J Am Chem Soc 2023; 145:21491-21501. [PMID: 37733833 DOI: 10.1021/jacs.3c07320] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Electrochemical nitrate (NO3-) reduction in aqueous media provides a useful approach for ammonia (NH3) synthesis. While efforts are focused on developing catalysts, the local microenvironment surrounding the catalyst centers is of great importance for controlling electrocatalytic performance. Here, we demonstrate that a self-assembled molecular iron catalyst integrated in a free-standing conductive hydrogel is capable of selective production of NH3 from NO3- at efficiencies approaching unity. With the electrocatalytic hydrogel, the NH3 selectivity is consistently high under a range of negative biases, which results from the hydrophobicity increase of the polycarbazole-based electrode substrate. In mildly acidic media, proton reduction is suppressed by electro-dewetting of the hydrogel electrode, enhancing the selectivity of NO3- reduction. The electrocatalytic hydrogel is capable of continuous production of NH3 for at least 100 h with NH3 selectivity of ∼89 to 98% at high current densities. Our results highlight the role of constructing an internal hydrophobic surface for electrocatalysts in controlling selectivity in aqueous media.
Collapse
Affiliation(s)
- Feiqing Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yifan Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Mengjie Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yingke Wen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yanjie Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Thomas J Meyer
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bing Shan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
18
|
Liu J, He L, Zhao S, Hu L, Li S, Zhang Z, Du M. A Robust n-n Heterojunction: CuN and BN Boosting for Ambient Electrocatalytic Nitrogen Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302600. [PMID: 37322392 DOI: 10.1002/smll.202302600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Indexed: 06/17/2023]
Abstract
An n-n type heterojunction comprising with CuN and BN dual active sites is synthesized via in situ growth of a conductive metal-organic framework (MOF) [Cu3 (HITP)2 ] (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) on hexagonal boron nitride (h-BN) nanosheets (hereafter denoted as Cu3 (HITP)2 @h-BN) for the electrocatalytic nitrogen reduction reaction (eNRR). The optimized Cu3 (HITP)2 @h-BN shows the outstanding eNRR performance with the NH3 production of 146.2 µg h-1 mgcat -1 and the Faraday efficiency of 42.5% due to high porosity, abundant oxygen vacancies, and CuN/BN dual active sites. The construction of the n-n heterojunction efficiently modulates the state density of active metal sites toward the Fermi level, facilitating the charge transfer at the interface between the catalyst and reactant intermediates. Additionally, the pathway of NH3 production catalyzed by the Cu3 (HITP)2 @h-BN heterojunction is illustrated by in situ FT-IR spectroscopy and density functional theory calculation. This work presents an alternative approach to design advanced electrocatalysts based on conductive MOFs.
Collapse
Affiliation(s)
- Jiameng Liu
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Linghao He
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Shuangrun Zhao
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Lijun Hu
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Sizhuan Li
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Miao Du
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| |
Collapse
|
19
|
Zhang YZ, Li PH, Ren YN, He Y, Zhang CX, Hu J, Cao XQ, Leung MKH. Metal-Based Electrocatalysts for Selective Electrochemical Nitrogen Reduction to Ammonia. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2580. [PMID: 37764608 PMCID: PMC10535433 DOI: 10.3390/nano13182580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Ammonia (NH3) plays a significant role in the manufacture of fertilizers, nitrogen-containing chemical production, and hydrogen storage. The electrochemical nitrogen reduction reaction (e-NRR) is an attractive prospect for achieving clean and sustainable NH3 production, under mild conditions driven by renewable energy. The sluggish cleavage of N≡N bonds and poor selectivity of e-NRR are the primary challenges for e-NRR, over the competitive hydrogen evolution reaction (HER). The rational design of e-NRR electrocatalysts is of vital significance and should be based on a thorough understanding of the structure-activity relationship and mechanism. Among the various explored e-NRR catalysts, metal-based electrocatalysts have drawn increasing attention due to their remarkable performances. This review highlighted the recent progress and developments in metal-based electrocatalysts for e-NRR. Different kinds of metal-based electrocatalysts used in NH3 synthesis (including noble-metal-based catalysts, non-noble-metal-based catalysts, and metal compound catalysts) were introduced. The theoretical screening and the experimental practice of rational metal-based electrocatalyst design with different strategies were systematically summarized. Additionally, the structure-function relationship to improve the NH3 yield was evaluated. Finally, current challenges and perspectives of this burgeoning area were provided. The objective of this review is to provide a comprehensive understanding of metal-based e-NRR electrocatalysts with a focus on enhancing their efficiency in the future.
Collapse
Affiliation(s)
- Yi-Zhen Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Peng-Hui Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Yi-Nuo Ren
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Yun He
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430024, China
| | - Cheng-Xu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiao-Qiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Michael K. H. Leung
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Tzaguy A, Masip-Sánchez A, Avram L, Solé-Daura A, López X, Poblet JM, Neumann R. Electrocatalytic Reduction of Dinitrogen to Ammonia with Water as Proton and Electron Donor Catalyzed by a Combination of a Tri-ironoxotungstate and an Alkali Metal Cation. J Am Chem Soc 2023; 145:19912-19924. [PMID: 37642197 PMCID: PMC10510311 DOI: 10.1021/jacs.3c06167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/31/2023]
Abstract
The electrification of ammonia synthesis is a key target for its decentralization and lowering impact on atmospheric CO2 concentrations. The lithium metal electrochemical reduction of nitrogen to ammonia using alcohols as proton/electron donors is an important advance, but requires rather negative potentials, and anhydrous conditions. Organometallic electrocatalysts using redox mediators have also been reported. Water as a proton and electron donor has not been demonstrated in these reactions. Here a N2 to NH3 electrocatalytic reduction using an inorganic molecular catalyst, a tri-iron substituted polyoxotungstate, {SiFe3W9}, is presented. The catalyst requires the presence of Li+ or Na+ cations as promoters through their binding to {SiFe3W9}. Experimental NMR, CV and UV-vis measurements, and MD simulations and DFT calculations show that the alkali metal cation enables the decrease of the redox potential of {SiFe3W9} allowing the activation of N2. Controlled potential electrolysis with highly purified 14N2 and 15N2 ruled out formation of NH3 from contaminants. Importantly, using Na+ cations and polyethylene glycol as solvent, the anodic oxidation of water can be used as a proton and electron donor for the formation of NH3. In an undivided cell electrolyzer under 1 bar N2, rates of NH3 formation of 1.15 nmol sec-1 cm-2, faradaic efficiencies of ∼25%, 5.1 equiv of NH3 per equivalent of {SiFe3W9} in 10 h, and a TOF of 64 s-1 were obtained. The future development of suitable high surface area cathodes and well solubilized N2 and the use of H2O as the reducing agent are important keys to the future deployment of an electrocatalytic ammonia synthesis.
Collapse
Affiliation(s)
- Avra Tzaguy
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Albert Masip-Sánchez
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Liat Avram
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot, Israel 76100
| | - Albert Solé-Daura
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Xavier López
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Josep M. Poblet
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Ronny Neumann
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel 76100
| |
Collapse
|
21
|
Han B, Liu J, Lee C, Lv C, Yan Q. Recent Advances in Metal-Organic Framework-Based Nanomaterials for Electrocatalytic Nitrogen Reduction. SMALL METHODS 2023; 7:e2300277. [PMID: 37203249 DOI: 10.1002/smtd.202300277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Indexed: 05/20/2023]
Abstract
The production of ammonia under moderate conditions is of environmental and sustainable importance. The electrochemical nitrogen reduction reaction (E-NRR) method has been intensively investigated in the recent decades. Nowadays, the further development of E-NRR is largely hindered by the lack of competent electrocatalysts. Metal-organic frameworks (MOFs) are considered as the next-generation catalysts for E-NRR, featuring their tailorable structures, abundant active sites and favorable porosity. To present a comprehensive review on both the fundamental and advanced development in MOFs catalyst-based E-NRR field, this paper first introduces the basic principles of E-NRR, including the reaction mechanism, major apparatus components, performance criteria, and ammonia detection protocols. Next, the synthesis and characterization methods for MOFs and their derivatives are discussed. In addition, a reaction mechanism study via density functional theory calculations is also presented. After that, the recent advancement of MOF-based catalysts in the E-NRR field as well as the modification approaches on MOFs for E-NRR optimization is elaborated. Finally, the current challenges and outlook of MOF catalyst-based E-NRR field are emphasized.
Collapse
Affiliation(s)
- Bo Han
- SCARCE Laboratory, Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore, 637459, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chade Lv
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qingyu Yan
- SCARCE Laboratory, Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore, 637459, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
22
|
Chen S, Lin S, Ding LX, Wang H. Modified Diacetylmonoxime-Thiosemicarbazide Detection Protocol for Accurate Quantification of Urea. SMALL METHODS 2023; 7:e2300003. [PMID: 37330664 DOI: 10.1002/smtd.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Renewable photo-/electrocatalytic coreduction of CO2 and nitrate to urea is a promising method for high-value utilization of CO2 . However, because of the low yields of the urea synthesis by photo-/electrocatalysis process, the accurate quantification of low concentration urea is challenging. The traditional diacetylmonoxime-thiosemicarbazide (DAMO-TSC) method for urea detection has a high limit of quantification and accuracy, but it is easily affected by NO2 - in the solution, which limits its application scope. Thus, the DAMO-TSC method urgently requires a more rigorous design to eliminate the effects of NO2 - and accurately quantify urea in nitrate systems. Herein, a modified DAMO-TSC method is reported, which consumes NO2 - in solution through a nitrogen release reaction; hence, the remaining products do not affect the accuracy of urea detection. The results of detecting urea solutions with different NO2 - concentrations (within 30 ppm) show that the improved method can effectively control the error of urea detection within 3%.
Collapse
Affiliation(s)
- Sibo Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuting Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liang-Xin Ding
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Haihui Wang
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
He H, Wen H, Li H, Li P, Wang J, Yang Y, Li C, Zhang Z, Du M. Hydrophobicity Tailoring of Ferric Covalent Organic Framework/MXene Nanosheets for High-Efficiency Nitrogen Electroreduction to Ammonia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206933. [PMID: 36995064 PMCID: PMC10214235 DOI: 10.1002/advs.202206933] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/19/2023] [Indexed: 05/27/2023]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) represents a promising sustainable approach for NH3 synthesis. However, the poor NRR performance of electrocatalysts is a great challenge at this stage, mainly owing to their low activity and the competitive hydrogen evolution reaction (HER). Herein, 2D ferric covalent organic framework/MXene (COF-Fe/MXene) nanosheets with controllable hydrophobic behaviors are successfully prepared via a multiple-in-one synthetic strategy. The boosting hydrophobicity of COF-Fe/MXene can effectively repel water molecules to inhibit the HER for enhanced NRR performances. By virtue of the ultrathin nanostructure, well-defined single Fe sites, nitrogen enrichment effect, and high hydrophobicity, the 1H,1H,2H,2H-perfluorodecanethiol modified COF-Fe/MXene hybrid shows a NH3 yield of 41.8 µg h-1 mgcat. -1 and a Faradaic efficiency of 43.1% at -0.5 V versus RHE in a 0.1 m Na2 SO4 water solution, which are vastly superior to the known Fe-based catalysts and even to the noble metal catalysts. This work provides a universal strategy to design and synthesis of non-precious metal electrocatalysts for high-efficiency N2 reduction to NH3 .
Collapse
Affiliation(s)
- Hongming He
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Hao‐Ming Wen
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Hong‐Kai Li
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Ping Li
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Jiajun Wang
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Yijie Yang
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Cheng‐Peng Li
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Zhihong Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001China
| | - Miao Du
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001China
| |
Collapse
|
24
|
Ma X, Li J, Zhou H, Zhao J, Sun H. Li-N 2 Battery for Ammonia Synthesis and Computational Insight. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19032-19042. [PMID: 37026992 DOI: 10.1021/acsami.3c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electrochemical synthesis of ammonia is deemed as an alternative to the fossil-fuel-driven Haber-Bosch (HB) process, in which Li-mediated nitrogen reduction (LiNR) is the most promising scheme. Continuous lithium-mediated nitrogen reduction for ammonia synthesis (C-LiNR) has recently been reported in high-level journals with many foggy internal reactions. Synthesizing ammonia in a separate way may be profitable for understanding the mechanism of LiNR. Herein, an intermittent lithium-mediated nitrogen reduction for ammonia synthesis (I-LiNR) was proposed, three steps required for I-LiNR were achieved in the cathode chamber of a Li-N2 battery. Discharge, stand, and charge in the Li-N2 battery correspond to N2 lithification, protonation, and lithium regeneration, respectively. It can also realize the quasi-continuous process with practical significance because it could be carried out through identical batteries. Products such as Li3N, LiOH, and NH3 are detected experimentally, which demonstrate a definite reaction pathway. The mechanism of the Li-N2 battery, the Li-mediated synthesis of ammonia, and LiOH decomposition are explored through density functional theory calculations. The role of Li in dinitrogen activation is highlighted. It expands the range of LiOH-based Li-air batteries and may guide the study from Li-air to Li-N2; attention has been given to the reaction mechanism of Li-mediated nitrogen reduction. The challenges and opportunities of the procedure are discussed in the end.
Collapse
Affiliation(s)
- Xingyu Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping, Beijing 102249, P. R. China
| | - Jiang Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping, Beijing 102249, P. R. China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping, Beijing 102249, P. R. China
| | - Jianwei Zhao
- Shenzhen HUASUAN Technology Co., Ltd., Shenzhen 518055, P. R. China
| | - Hui Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping, Beijing 102249, P. R. China
| |
Collapse
|
25
|
Jiang M, Zhu M, Wang M, He Y, Luo X, Wu C, Zhang L, Jin Z. Review on Electrocatalytic Coreduction of Carbon Dioxide and Nitrogenous Species for Urea Synthesis. ACS NANO 2023; 17:3209-3224. [PMID: 36786415 DOI: 10.1021/acsnano.2c11046] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical coreduction of carbon dioxide (CO2) and nitrogenous species (such as NO3-, NO2-, N2, and NO) for urea synthesis under ambient conditions provides a promising solution to realize carbon/nitrogen neutrality and mitigate environmental pollution. Although an increasing number of studies have made some breakthroughs in electrochemical urea synthesis, the unsatisfactory Faradaic efficiency, low urea yield rate, and ambiguous C-N coupling reaction mechanisms remain the major obstacles to its large-scale applications. In this review, we present the recent progress on electrochemical urea synthesis based on CO2 and nitrogenous species in aqueous solutions under ambient conditions, providing useful guidance and discussion on the rational design of metal nanocatalyst, the understanding of the C-N coupling reaction mechanism, and existing challenges and prospects for electrochemical urea synthesis. We hope that this review can stimulate more insights and inspiration toward the development of electrocatalytic urea synthesis technology.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
26
|
Xin X, Douair I, Zhao Y, Wang S, Maron L, Zhu C. Dinitrogen cleavage and hydrogenation to ammonia with a uranium complex. Natl Sci Rev 2023; 10:nwac144. [PMID: 36950222 PMCID: PMC10026940 DOI: 10.1093/nsr/nwac144] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
The Haber-Bosch process produces ammonia (NH3) from dinitrogen (N2) and dihydrogen (H2), but requires high temperature and pressure. Before iron-based catalysts were exploited in the current industrial Haber-Bosch process, uranium-based materials served as effective catalysts for production of NH3 from N2. Although some molecular uranium complexes are known to be capable of combining with N2, further hydrogenation with H2 forming NH3 has not been reported to date. Here, we describe the first example of N2 cleavage and hydrogenation with H2 to NH3 with a molecular uranium complex. The N2 cleavage product contains three uranium centers that are bridged by three imido μ 2-NH ligands and one nitrido μ 3-N ligand. Labeling experiments with 15N demonstrate that the nitrido ligand in the product originates from N2. Reaction of the N2-cleaved complex with H2 or H+ forms NH3 under mild conditions. A synthetic cycle has been established by the reaction of the N2-cleaved complex with trimethylsilyl chloride. The isolation of this trinuclear imido-nitrido product implies that a multi-metallic uranium assembly plays an important role in the activation of N2.
Collapse
Affiliation(s)
- Xiaoqing Xin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Iskander Douair
- LPCNO, CNRS and INSA, Université Paul Sabatier, Toulouse 31077, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | |
Collapse
|
27
|
Excluding false positives: A perspective toward credible ammonia quantification in nitrogen reduction reaction. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
28
|
Ouma EA, Huszár H, Horváth L, Szabó G, Janáky C, Bozóki Z. Development of a Near-Infrared Photoacoustic System for Selective, Fast, and Fully Automatized Detection of Isotopically Labeled Ammonia. Anal Chem 2022; 94:14118-14125. [PMID: 36190777 PMCID: PMC9583071 DOI: 10.1021/acs.analchem.2c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Different environmental
and industrial technologies seek
for fast
and automatic ammonia detection systems, capable of the selective
measurement of the concentration of its isotopes at sub-ppm levels,
without any interference with the common contaminants. In this work,
we report the quasi-simultaneous measurement of 14NH3 and 15NH3 concentrations based on a
near-infrared diode laser-based photoacoustic system. Using a widely
tunable external cavity diode laser, four nearby wavelengths within
the range of 1531.3–1531.8 nm were optimal circumstances for
sensitive detection, while avoiding interference with water vapor.
Subsequently, a more robust distributed feedback diode laser was employed
to tune the laser wavelength on the sub-second timescale by varying
its driving current rather than using much slower temperature tuning.
The detection limit of our system is 0.15 and 0.73 ppm for 14NH3 and 15NH3 (with an accuracy
below 0.1%), respectively, and the response time is 3.5 s.
Collapse
Affiliation(s)
- Emily Awuor Ouma
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Helga Huszár
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - László Horváth
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Gábor Szabó
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Zoltán Bozóki
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| |
Collapse
|
29
|
Kim C, Song JY, Choi C, Ha JP, Lee W, Nam YT, Lee DM, Kim G, Gereige I, Jung WB, Lee H, Jung Y, Jeong H, Jung HT. Atomic-Scale Homogeneous RuCu Alloy Nanoparticles for Highly Efficient Electrocatalytic Nitrogen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205270. [PMID: 35901115 DOI: 10.1002/adma.202205270] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Ruthenium (Ru) is the most widely used metal as an electrocatalyst for nitrogen (N2 ) reduction reaction (NRR) because of the relatively high N2 adsorption strength for successive reaction. Recently, it has been well reported that the homogeneous Ru-based metal alloys such as RuRh, RuPt, and RuCo significantly enhance the selectivity and formation rate of ammonia (NH3 ). However, the metal combinations for NRR have been limited to several miscible combinations of metals with Ru, although various immiscible combinations have immense potential to show high NRR performance. In this study, an immiscible combination of Ru and copper (Cu) is first utilized, and homogeneous alloy nanoparticles (RuCu NPs) are fabricated by the carbothermal shock method. The RuCu homogeneous NP alloys on cellulose/carbon nanotube sponge exhibit the highest selectivity and NH3 formation rate of ≈31% and -73 μmol h-1 cm-2 , respectively. These are the highest values of the selectivity and NH3 formation rates among existing Ru-based alloy metal combinations.
Collapse
Affiliation(s)
- Chansol Kim
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ji-Yoon Song
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, 55324, Republic of Korea
| | - Changhyeok Choi
- Advanced Materials Simulations Group, Department of Chemical & Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin Pil Ha
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Wonmoo Lee
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Yoon Tae Nam
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Dong-Myeong Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, 55324, Republic of Korea
| | - Gunjoo Kim
- Catalytic Materials and Process Lab, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Issam Gereige
- Saudi Aramco, Research and Development Center, Dhahran, 31311, Saudi Arabia
| | - Woo-Bin Jung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Hyunjoo Lee
- Catalytic Materials and Process Lab, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Yousung Jung
- Advanced Materials Simulations Group, Department of Chemical & Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeonsu Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, 55324, Republic of Korea
| | - Hee-Tae Jung
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
30
|
Li D, Xu N, Zhao Y, Zhou C, Zhang LP, Wu LZ, Zhang T. A Reliable and Precise Protocol for Urea Quantification in Photo/Electrocatalysis. SMALL METHODS 2022; 6:e2200561. [PMID: 35789080 DOI: 10.1002/smtd.202200561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
To comply with the trend toward green and sustainable development of the fine chemical industry, multitudinous promising technologies (e.g., photocatalysis and electrocatalysis) are beginning to dabble in the green synthesis of fine chemicals, particularly urea synthesis. Whilst numerous advances are made in mechanistic understanding, the low yield reported so far also imposes more stringent requirements on the reliability and anti-interference of the detection method. Herein, the applicability of frequently used methods for urea quantification is methodically compared. In terms of the experimental results, a precise and methodical protocol for urea quantification or evaluation in photo/electrocatalysis is explored and established, with emphasis on screening quantitative methods under specific conditions and indispensable isotopic tracing experiments. The budding urea photo/electrosynthesis urgently demands a rigorous protocol, including the rapid isotopic identification and evaluation criteria, capable of promoting healthy development in the future.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ning Xu
- School of Life Science, Tsinghua University, Beijing, 100084, P. R. China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Azagra M, Pose E, De Chiara F, Perez M, Avitabile E, Servitja J, Brugnara L, Ramon‐Azcón J, Marco‐Rius I. Ammonium quantification in human plasma by proton nuclear magnetic resonance for staging of liver fibrosis in alcohol-related liver disease and nonalcoholic fatty liver disease. NMR IN BIOMEDICINE 2022; 35:e4745. [PMID: 35435283 PMCID: PMC9541340 DOI: 10.1002/nbm.4745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Liver fibrosis staging is a key element driving the prognosis of patients with chronic liver disease. Currently, biopsy is the only technique capable of diagnosing liver fibrosis in patients with alcohol-related liver disease (ArLD) and nonalcoholic fatty liver disease (NAFLD) unequivocally. Noninvasive (e.g. plasma-based) biomarker assays are attractive tools to diagnose and stage disease, yet must prove that they are reliable and sensitive to be used clinically. Here, we demonstrate proton nuclear magnetic resonance as a method to rapidly quantify the endogenous concentration of ammonium ions from human plasma extracts and show their ability to report upon early and advanced stages of ArLD and NAFLD. We show that, irrespective of the disease etiology, ammonium concentration is a more robust and informative marker of fibrosis stage than current clinically assessed blood hepatic biomarkers. Subject to validation in larger cohorts, the study indicates that the method can provide accurate and rapid staging of ArLD and NAFLD without the need for an invasive biopsy.
Collapse
Affiliation(s)
- Marc Azagra
- Institute for Bioengineering of CataloniaThe Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Elisa Pose
- Liver Unit, Hospital Clinic, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
| | - Francesco De Chiara
- Institute for Bioengineering of CataloniaThe Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Martina Perez
- Liver Unit, Hospital Clinic, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
| | - Emma Avitabile
- Liver Unit, Hospital Clinic, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
| | - Joan‐Marc Servitja
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)BarcelonaSpain
| | - Laura Brugnara
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)BarcelonaSpain
| | - Javier Ramon‐Azcón
- Institute for Bioengineering of CataloniaThe Barcelona Institute of Science and TechnologyBarcelonaSpain
- ICREA‐Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain
| | - Irene Marco‐Rius
- Institute for Bioengineering of CataloniaThe Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
32
|
Smita Biswas S, Chakraborty S, Saha A, Eswaramoorthy M. Electrochemical Nitrogen Reduction to Ammonia Under Ambient Conditions: Stakes and Challenges. CHEM REC 2022; 22:e202200139. [PMID: 35866503 DOI: 10.1002/tcr.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/07/2022] [Indexed: 11/11/2022]
Abstract
Aqueous electrochemical nitrogen reduction (ENR) to ammonia (NH3 ) under ambient conditions is considered as an alternative to the energy-intensive Haber-Bosch process for ammonia production. Many metal, non-metal, carbon-based materials along with metal-chalcogenides, metal-nitrides have been explored for their ENR activity. The reported NH3 production through ENR is still in the micro-gram level and often falls in the range of NH3 and NOx contaminations from the surrounding. The quantification of NH3 at very low concentration possess enormous challenge in this field and thus many reported ENR electrocatalysts suffer from reproducibility issue. This review highlights in detail the challenges associated with ENR in aqueous medium and necessitates standardization of protocols to quantify the low concentration of NH3 free of false-positives. It concludes the prospects of electrochemical NH3 production through lithium-mediated N2 reduction.
Collapse
Affiliation(s)
- Suchi Smita Biswas
- Nanomaterials and Catalysis Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India
| | - Soumita Chakraborty
- Nanomaterials and Catalysis Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India
| | - Arunava Saha
- Nanomaterials and Catalysis Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India
| | - Muthusamy Eswaramoorthy
- Nanomaterials and Catalysis Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India.,International Centre for Materials Science, JNCASR, Bengaluru, 560064, India
| |
Collapse
|
33
|
Kaiprathu A, Velayudham P, Teller H, Schechter A. Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient conditions: a focused review. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Andersen EME, Wang H, Khoo JSH, Cerda JF, Koder RL. Oxidation-reduction and photophysical properties of isomeric forms of Safranin. PLoS One 2022; 17:e0265105. [PMID: 35749430 PMCID: PMC9231691 DOI: 10.1371/journal.pone.0265105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Safranine O is widely used in the bioenergetics community as an indicator dye to determine membrane potentials and as an electron transfer mediator in potentiometric titrations. Here we show that two different commercial preparations of Safranine O contain less than sixty percent by weight of the title compound, with the rest primarily consisting of two closely related safranine isomers. All three major isomer components were isolated using reverse phase HPLC and their structures determined using mass spectrometry and two-dimensional NMR. These Safranines have two-electron midpoint potentials ranging from −272 to −315 mV vs. SHE. We have also investigated the absorption and fluorescence spectra of the compounds and found that they display distinct spectral and photophysical properties. While this mixture may aid in Safranine O’s utility as a mediator compound, membrane potential measurements must take this range of dye potentials into account.
Collapse
Affiliation(s)
- Eskil M. E. Andersen
- Department of Biochemistry, The City College of New York, New York, NY, United States of America
| | - Hsin Wang
- Department of Chemistry, The City College of New York, New York, NY, United States of America
| | - Joshua S. H. Khoo
- Department of Physics, The City College of New York, New York, NY, United States of America
| | - Jose F. Cerda
- Department of Chemistry, St. Joseph’s University, Philadelphia, PA, United States of America
| | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY, United States of America
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
35
|
Contreras E, Nixon R, Litts C, Zhang W, Alcorn FM, Jain PK. Plasmon-Assisted Ammonia Electrosynthesis. J Am Chem Soc 2022; 144:10743-10751. [PMID: 35671395 DOI: 10.1021/jacs.2c01272] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ammonia is a promising liquid-phase carrier for the storage, transport, and deployment of carbon-free energy. However, the realization of an ammonia economy is predicated on the availability of green methods for the production of ammonia powered by electricity from renewable sources or by solar energy. Here, we demonstrate the synthesis of ammonium from nitrate powered by a synergistic combination of electricity and light. We use an electrocatalyst composed of gold nanoparticles, which have dual attributes of electrochemical nitrate reduction activity and visible-light-harvesting ability due to their localized surface plasmon resonances. Plasmonic excitation of the electrocatalyst induces ammonium synthesis with up to a 15× boost in activity relative to conventional electrocatalysis. We devise a strategy to account for the effect of photothermal heating of the electrode surface, which allows the observed enhancement to be attributed to non-thermal effects such as energetic carriers and charged interfaces induced by plasmonic excitation. The synergy between electrochemical activation and plasmonic activation is the most optimal at a potential close to the onset of nitrate reduction. Plasmon-assisted electrochemistry presents an opportunity for conventional limits of electrocatalytic conversion to be surpassed due to non-equilibrium conditions generated by plasmonic excitation.
Collapse
Affiliation(s)
- Enrique Contreras
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rachel Nixon
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chloe Litts
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wenxin Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Francis M Alcorn
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prashant K Jain
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
|
37
|
Kolen M, Ripepi D, Smith WA, Burdyny T, Mulder FM. Overcoming Nitrogen Reduction to Ammonia Detection Challenges: The Case for Leapfrogging to Gas Diffusion Electrode Platforms. ACS Catal 2022; 12:5726-5735. [PMID: 35633897 PMCID: PMC9127788 DOI: 10.1021/acscatal.2c00888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/13/2022] [Indexed: 11/28/2022]
Abstract
The nitrogen reduction reaction (NRR) is a promising pathway toward the decarbonization of ammonia (NH3) production. However, unless practical challenges related to the detection of NH3 are removed, confidence in published data and experimental throughput will remain low for experiments in aqueous electrolyte. In this perspective, we analyze these challenges from a system and instrumentation perspective. Through our analysis we show that detection challenges can be strongly reduced by switching from an H-cell to a gas diffusion electrode (GDE) cell design as a catalyst testing platform. Specifically, a GDE cell design is anticipated to allow for a reduction in the cost of crucial 15N2 control experiments from €100-2000 to less than €10. A major driver is the possibility to reduce the 15N2 flow rate to less than 1 mL/min, which is prohibited by an inevitable drop in mass-transport at low flow rates in H-cells. Higher active surface areas and improved mass transport can further circumvent losses of NRR selectivity to competing reactions. Additionally, obstacles often encountered when trying to transfer activity and selectivity data recorded at low current density in H-cells to commercial device level can be avoided by testing catalysts under conditions close to those in commercial devices from the start.
Collapse
Affiliation(s)
- Martin Kolen
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Davide Ripepi
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wilson A. Smith
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Thomas Burdyny
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Fokko M. Mulder
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
38
|
Evidence of substrate binding and product release via belt-sulfur mobilization of the nitrogenase cofactor. Nat Catal 2022; 5:443-454. [DOI: 10.1038/s41929-022-00782-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Kim HS, Jin H, Kim SH, Choi J, Lee DW, Ham HC, Yoo SJ, Park HS. Sacrificial Dopant to Enhance the Activity and Durability of Electrochemical N 2 Reduction Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hee Soo Kim
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KEPCO Research Institute, Korea Electric Power Corporation, 105 Munji-ro, Yuseong-gu, Daejeon 34056, Republic of Korea
| | - Haneul Jin
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seung-Hoon Kim
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Graduate School of Energy & Environment, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jihyun Choi
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dong Wook Lee
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyung Chul Ham
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hyun S. Park
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
40
|
Ripepi D, Zaffaroni R, Kolen M, Middelkoop J, Mulder FM. Operando isotope selective ammonia quantification in nitrogen reduction studies via gas chromatography-mass spectrometry. SUSTAINABLE ENERGY & FUELS 2022; 6:1945-1949. [PMID: 35520473 PMCID: PMC9004585 DOI: 10.1039/d2se00123c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Rapid advances in electrocatalytic ammonia synthesis are impeded by laborious detection methods commonly used in the field and by constant risk of external contaminations, which generates misleading false positives. We developed a facile real-time GC-MS method for sensitive isotope NH3 quantification, requiring no external sample manipulations. This method ensures high detection reliability paramount to accelerate (electro-)catalyst screening.
Collapse
Affiliation(s)
- Davide Ripepi
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology 2629HZ Delft The Netherlands
| | - Riccardo Zaffaroni
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology 2629HZ Delft The Netherlands
| | - Martin Kolen
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology 2629HZ Delft The Netherlands
| | - Joost Middelkoop
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology 2629HZ Delft The Netherlands
| | - Fokko M Mulder
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology 2629HZ Delft The Netherlands
| |
Collapse
|
41
|
Kamat GA, Zamora Zeledón JA, Gunasooriya GTKK, Dull SM, Perryman JT, Nørskov JK, Stevens MB, Jaramillo TF. Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis. Commun Chem 2022; 5:20. [PMID: 36697647 PMCID: PMC9814610 DOI: 10.1038/s42004-022-00635-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/20/2022] [Indexed: 01/28/2023] Open
Abstract
Platinum is an important material with applications in oxygen and hydrogen electrocatalysis. To better understand how its activity can be modulated through electrolyte effects in the double layer microenvironment, herein we investigate the effects of different acid anions on platinum for the oxygen reduction/evolution reaction (ORR/OER) and hydrogen evolution/oxidation reaction (HER/HOR) in pH 1 electrolytes. Experimentally, we see the ORR activity trend of HClO4 > HNO3 > H2SO4, and the OER activity trend of HClO4 [Formula: see text] HNO3 ∼ H2SO4. HER/HOR performance is similar across all three electrolytes. Notably, we demonstrate that ORR performance can be improved 4-fold in nitric acid compared to in sulfuric acid. Assessing the potential-dependent role of relative anion competitive adsorption with density functional theory, we calculate unfavorable adsorption on Pt(111) for all the anions at HER/HOR conditions while under ORR/OER conditions [Formula: see text] binds the weakest followed by [Formula: see text] and [Formula: see text]. Our combined experimental-theoretical work highlights the importance of understanding the role of anions across a large potential range and reveals nitrate-like electrolyte microenvironments as interesting possible sulfonate alternatives to mitigate the catalyst poisoning effects of polymer membranes/ionomers in electrochemical systems. These findings help inform rational design approaches to further enhance catalyst activity via microenvironment engineering.
Collapse
Affiliation(s)
- Gaurav Ashish Kamat
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - José A Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | | | - Samuel M Dull
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Joseph T Perryman
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Jens K Nørskov
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Michaela Burke Stevens
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
42
|
Krzywda PM, Paradelo Rodríguez A, Benes NE, Mei BT, Mul G. Effect of Electrolyte and Electrode Configuration on Cu‐Catalyzed Nitric Oxide Reduction to Ammonia. ChemElectroChem 2022. [DOI: 10.1002/celc.202101273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Piotr M. Krzywda
- Photocatalytic Synthesis Group Faculty of Science & Technology of the University of Twente PO Box 217 Enschede The Netherlands
- Membrane Science and Technology Cluster Faculty of Science & Technology of the University of Twente PO Box 217 Enschede The Netherlands
| | - Ainoa Paradelo Rodríguez
- Photocatalytic Synthesis Group Faculty of Science & Technology of the University of Twente PO Box 217 Enschede The Netherlands
| | - Nieck E. Benes
- Membrane Science and Technology Cluster Faculty of Science & Technology of the University of Twente PO Box 217 Enschede The Netherlands
| | - Bastian T. Mei
- Photocatalytic Synthesis Group Faculty of Science & Technology of the University of Twente PO Box 217 Enschede The Netherlands
| | - Guido Mul
- Photocatalytic Synthesis Group Faculty of Science & Technology of the University of Twente PO Box 217 Enschede The Netherlands
| |
Collapse
|
43
|
Jakopec S, Pantalon Juraj N, Brozovic A, Jadreško D, Perić B, Kirin SI, Raić‐Malić S. Ferrocene conjugates linked by 1,2,3‐triazole and their Zn(II) and Cu(II) complexes: Synthesis, characterization and biological activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Silvio Jakopec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology University of Zagreb Zagreb Croatia
| | - Natalija Pantalon Juraj
- Laboratory for Solid‐State and Complex Compounds Chemistry, Division of Materials Chemistry Ruđer Bošković Institute Zagreb Croatia
| | - Anamaria Brozovic
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology Ruđer Bošković Institute Zagreb Croatia
| | - Dijana Jadreško
- Laboratory for Physical Chemistry of Traces, Division for Marine and Environmental Research Ruđer Bošković Institute Zagreb Croatia
| | - Berislav Perić
- Laboratory for Solid‐State and Complex Compounds Chemistry, Division of Materials Chemistry Ruđer Bošković Institute Zagreb Croatia
| | - Srećko I. Kirin
- Laboratory for Solid‐State and Complex Compounds Chemistry, Division of Materials Chemistry Ruđer Bošković Institute Zagreb Croatia
| | - Silvana Raić‐Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology University of Zagreb Zagreb Croatia
| |
Collapse
|
44
|
Kim JH, Ju H, An BS, An Y, Cho K, Kim SH, Bae YS, Yoon HC. Comparison between Fe 2O 3/C and Fe 3C/Fe 2O 3/Fe/C Electrocatalysts for N 2 Reduction in an Alkaline Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61316-61323. [PMID: 34918900 DOI: 10.1021/acsami.1c20807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cost-effective and nonprecious iron-based catalysts were synthesized, evaluated, and compared for electrocatalytic N2 reduction reaction (NRR) under alkaline conditions in the potential range from -0.4 to 0.1 V [vs reversible hydrogen electrode (RHE)] at low temperature (≤60 °C) and atmospheric pressure. The tested H-type cell was separated by an anion exchange membrane in 6 M KOH alkaline electrolyte (pH = over 14) in order to minimize hydrogen evolution reaction and to directly form NH3 gas. The amount of ammonia synthesized was quantified using an indophenol blue method and cross-checked with 1H nuclear magnetic resonance spectroscopy and ion chromatography using both 14N2 and 15N2 gases. Because of the synergistic effect between the Fe3C, Fe2O3, and Fe composites in the NRR, both the ammonia formation rate and faradaic efficiency in Fe3C/Fe2O3/Fe/C were approximately fourfold higher than those in Fe2O3/C at 60 °C and 0.1 V (vs RHE). These results can provide insights into designing Fe-based electrocatalysts for NRR at atmospheric pressure.
Collapse
Affiliation(s)
- Ji Hye Kim
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - HyungKuk Ju
- Hydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Byeong-Seon An
- Platform Technology Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Yena An
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Kanghee Cho
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Sun Hyung Kim
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Youn-Sang Bae
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyung Chul Yoon
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| |
Collapse
|
45
|
Majumder M, Saini H, Dědek I, Schneemann A, Chodankar NR, Ramarao V, Santosh MS, Nanjundan AK, Kment Š, Dubal D, Otyepka M, Zbořil R, Jayaramulu K. Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS NANO 2021; 15:17275-17298. [PMID: 34751563 DOI: 10.1021/acsnano.1c08455] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The conversion of nitrogen to ammonia offers a sustainable and environmentally friendly approach for producing precursors for fertilizers and efficient energy carriers. Owing to the large energy density and significant gravimetric hydrogen content, NH3 is considered an apt next-generation energy carrier and liquid fuel. However, the low conversion efficiency and slow production of ammonia through the nitrogen reduction reaction (NRR) are currently bottlenecks, making it an unviable alternative to the traditional Haber-Bosch process for ammonia production. The rational design and engineering of catalysts (both photo- and electro-) represent a crucial challenge for improving the efficiency and exploiting the full capability of the NRR. In the present review, we highlight recent progress in the development of graphene-based systems and graphene derivatives as catalysts for the NRR. Initially, the history, fundamental mechanism, and importance of the NRR to produce ammonia are briefly discussed. We also outline how surface functionalization, defects, and hybrid structures (single-atom/multiatom as well as composites) affect the N2 conversion efficiency. The potential of graphene and graphene derivatives as NRR catalysts is highlighted using pertinent examples from theoretical simulations as well as machine learning based performance predictive methods. The review is concluded by identifying the crucial advantages, drawbacks, and challenges associated with principal scientific and technological breakthroughs in ambient catalytic NRR.
Collapse
Affiliation(s)
- Mandira Majumder
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, Jammu & Kashmir 181221, India
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, Jammu & Kashmir 181221, India
| | - Ivan Dědek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| | - Nilesh R Chodankar
- Department of Energy & Materials Engineering, Dongguk University, Seoul 100-715, South Korea
| | - Viswanatha Ramarao
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC) and Department of Chemistry, Jyothy Institute of Technology, Thataguni, Off Kanakpura Road, Bangalore, Karnataka 560082, India
| | - Mysore Sridhar Santosh
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC) and Department of Chemistry, Jyothy Institute of Technology, Thataguni, Off Kanakpura Road, Bangalore, Karnataka 560082, India
- CSIR-Central Institute of Mining & Fuel Research, Digwadih Campus, PO FRI, Dhanbad, Jharkhand 828 108, India
| | - Ashok Kumar Nanjundan
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4001, Australia
| | - Štěpán Kment
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Deepak Dubal
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4001, Australia
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, Jammu & Kashmir 181221, India
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
46
|
Zhao Y, Wu F, Miao Y, Zhou C, Xu N, Shi R, Wu LZ, Tang J, Zhang T. Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:21728-21731. [PMID: 34328664 DOI: 10.1002/anie.202108769] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 11/06/2022]
Abstract
Photo/electrocatalytic ammonia synthesis has recently developed fast while the ammonia yields over state-of-the-art photo/electrocatalysts are still very moderate. Such low concentration of synthesized NH3 brings about a challenge to the reliable quantification of the product in photo/electrocatalysis. Notably, we found that the quantitative detection of ammonia concentration below 0.2 ppm is error-prone, which is likely the case happening in the majority of photo/electrocatalytic NH3 synthesis, thus arising concerns about the rationality and accuracy for low-concentration ammonia quantification in these processes. Herein, we discuss the methodology used and analyze the reliability of various detection methods for the detection of trace ammonia in aqueous media. The challenges facing the detection of low concentration of ammonia in photo/electrocatalysis can be overcome by integration with multiple detection methods. According to the data presented, we also propose an effective criterion for precise quantification of ammonia, avoiding the unreasonable comparisons in photo/electrocatalytic ammonia synthesis.
Collapse
Affiliation(s)
- Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fan Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxuan Miao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Xu
- Tsinghua University Branch of China National Center, Tsinghua University, Beijing, 100084, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
47
|
Sahana T, Mondal A, Anju BS, Kundu S. Metal-free Transformations of Nitrogen-Oxyanions to Ammonia via Oxoammonium Salt. Angew Chem Int Ed Engl 2021; 60:20661-20665. [PMID: 34057773 DOI: 10.1002/anie.202105723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/09/2022]
Abstract
Transformations of nitrogen-oxyanions (NOx - ) to ammonia impart pivotal roles in sustainable biogeochemical processes. While metal-mediated reductions of NOx - are relatively well known, this report illustrates proton-assisted transformations of NOx - anions in the presence of electron-rich aromatics such as 1,3,5-trimethoxybenzene (TMB-H, 1 a) leading to the formation of diaryl oxoammonium salt [(TMB)2 N+ =O][NO3 - ] (2 a) via the intermediacy of nitrosonium cation (NO+ ). Detailed characterizations including UV/Vis, multinuclear NMR, FT-IR, HRMS, X-ray analyses on a set of closely related metastable diaryl oxoammonium [Ar2 N+ =O] species disclose unambiguous structural and spectroscopic signatures. Oxoammonium salt 2 a exhibits 2 e- oxidative reactivity in the presence of oxidizable substrates such as benzylamine, thiol, and ferrocene. Intriguingly, reaction of 2 a with water affords ammonia. Perhaps of broader significance, this work reveals a new metal-free route germane to the conversion of NOx to NH3 .
Collapse
Affiliation(s)
- Tuhin Sahana
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Aditesh Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Balakrishnan S Anju
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| |
Collapse
|
48
|
Sahana T, Mondal A, Anju BS, Kundu S. Metal‐free Transformations of Nitrogen‐Oxyanions to Ammonia via Oxoammonium Salt. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tuhin Sahana
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Thiruvananthapuram 695551 India
| | - Aditesh Mondal
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Thiruvananthapuram 695551 India
| | - Balakrishnan S. Anju
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Thiruvananthapuram 695551 India
| | - Subrata Kundu
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Thiruvananthapuram 695551 India
| |
Collapse
|
49
|
Zhao Y, Wu F, Miao Y, Zhou C, Xu N, Shi R, Wu L, Tang J, Zhang T. Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Fan Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Yingxuan Miao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Ning Xu
- Tsinghua University Branch of China National Center Tsinghua University Beijing 100084 China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junwang Tang
- Department of Chemical Engineering University College London London WC1E 7JE UK
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
50
|
Choe S, Kim SM, Lee Y, Seok J, Jung J, Lee JS, Jang YJ. Rational design of photocatalysts for ammonia production from water and nitrogen gas. NANO CONVERGENCE 2021; 8:22. [PMID: 34338913 PMCID: PMC8329108 DOI: 10.1186/s40580-021-00273-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions.
Collapse
Affiliation(s)
- Seokwoo Choe
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sung Min Kim
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yeji Lee
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jin Seok
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jiyong Jung
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jae Sung Lee
- Department of Energy and Chemical Engineering, Ulsan National Institute and Science and Technology, 50, UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Youn Jeong Jang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|