1
|
Eads CN, Wang W, Küst U, Prumbs J, Temperton RH, Scardamaglia M, Schnadt J, Knudsen J, Shavorskiy A. Resolving active species during the carbon monoxide oxidation over Pt(111) on the microsecond timescale. Nat Commun 2025; 16:1216. [PMID: 39890813 PMCID: PMC11785939 DOI: 10.1038/s41467-025-56576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Catalytic studies traditionally rely on steady-state conditions resulting in time-averaged datasets that do not differentiate between active and spectator species. This limitation can cause misinterpretations of catalytic function, as the signal of short-lived intermediates responsible for producing desired reaction products is often masked by more intense spectator species. Time-resolved ambient pressure X-ray photoelectron spectroscopy (tr-APXPS) mitigates this issue by combining microsecond time resolution under reaction conditions. Using tr-APXPS, we investigate the oxidation of CO over Pt(111) by concurrently tracking reaction products, surface intermediates, and catalyst response. Our findings reveal that chemisorbed oxygen, rather than Pt surface oxide, is the main species reacting with CO to form CO2, supporting a primary Langmuir-Hinshelwood mechanism. The results shed new light on a heavily-debated reaction in catalysis. Beyond using CO pulses to determine active species, we demonstrate how careful tuning of pulsing parameters can be used for dynamic catalyst operation to enhance CO2 formation.
Collapse
Affiliation(s)
| | - Weijia Wang
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Ulrike Küst
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Julia Prumbs
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
| | | | | | - Joachim Schnadt
- MAX IV Laboratory, Lund University, Lund, Sweden
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Jan Knudsen
- MAX IV Laboratory, Lund University, Lund, Sweden
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | | |
Collapse
|
2
|
Wang Y, Tian Y, Rennison AP, Blennow A, Westh P, Svensson B, Møller MS. Applying the Sabatier Principle to Decipher the Surface-Structure-Dependent Catalysis of Different Starch Granules by Pullulanase. JACS AU 2025; 5:55-60. [PMID: 39886568 PMCID: PMC11775686 DOI: 10.1021/jacsau.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025]
Abstract
Interfacial enzyme catalysis is widespread in both nature and industry. Granular starch is a sustainable and abundant raw material for which a rigorous correlation of the surface structure with enzymatic degradation is lacking. Here pullulanase-catalyzed debranching of 12 granular starches varying in amylopectin contents and branch chain contents and lengths is shown to present a biphasic relationship characteristic of the Sabatier principle. Introducing normalization of the specific rate (v 0/E 0) by a substrate-dependent constant C, related to the Arrhenius prefactor of k cat, reveals that optimal activity according to the Sabatier principle occurs at moderate substrate binding strength. The density of pullulanase attack sites (kinΓmax), determined using combined conventional and inverse Michaelis-Menten kinetics, was increased by branching enzyme treatment. Medium kinΓmax and branch chain length conferred the highest activity depending on substrate load. Correlation analysis demonstrated that starch granular crystallinity, surface order, and average branch chain length influence the enzymatic degradation by affecting the C constant. Therefore, C should be considered together with the enzyme binding strength to understand the degradation of starch granules. The Sabatier principle could serve as a diagnostic tool to characterize enzyme performance on substrates having different surface structures and guide rational modification of granular starches for specific purposes.
Collapse
Affiliation(s)
- Yu Wang
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Yu Tian
- Department
of Plant and Environmental Sciences, University
of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Andrew Philip Rennison
- Applied
Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | | | - Peter Westh
- Interfacial
Enzymology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Birte Svensson
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Marie Sofie Møller
- Applied
Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| |
Collapse
|
3
|
Allan MG, Yang RA, Marino S, Gordon MJ, Christopher P, Nikolla E. Visible Light Photolysis at Single Atom Sites in Semiconductor Perovskite Oxides. J Am Chem Soc 2025; 147:898-909. [PMID: 39729622 DOI: 10.1021/jacs.4c13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO3). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh+(CO)2), that could act as site blockers or poisons during a catalytic cycle. For the first time, we demonstrate that CO removal can occur at mild temperatures (323 K) under low-energy red light (635 nm) irradiation, which is not possible for supported isolated-site Rh catalysts (0.2 wt % Rh/γ-Al2O3). Photolysis of supported Rh+(CO)2 complexes (e.g., 0.2 wt % Rh/γ-Al2O3) has been demonstrated but is limited to high energy UV photons. Rigorous kinetic experiments elucidate disparate mechanisms for CO photodepletion from Rh-doped SrTiO3 and supported isolated site Rh/γ-Al2O3. CO photodepletion from supported isolated site Rh/γ-Al2O3 involves a direct metal to ligand charge transfer mechanism, whereas Rh-doped SrTiO3 is governed by electron-hole pair formation in the perovskite. We show that under visible, low-energy red light, surface Rh species in Rh-doped SrTiO3 introduce midgap energy states above the valence band that facilitate electronic excitations leading to surface CO removal. Isolated Rh sites in Rh-doped SrTiO3 also exhibit exceptional stability under multiple CO photodepletion cycles. Overall, incorporating single sites into photoactive perovskite oxides is an effective strategy to influence surface chemistries with visible light.
Collapse
Affiliation(s)
- Michael G Allan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel A Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Silvia Marino
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael J Gordon
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Eranda Nikolla
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Hosseini P, Rodríguez‐Camargo A, Jiang Y, Zhang S, Scheu C, Yao L, Lotsch BV, Tschulik K. Shedding Light on the Active Species in a Cobalt-Based Covalent Organic Framework for the Electrochemical Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413555. [PMID: 39587979 PMCID: PMC11744715 DOI: 10.1002/advs.202413555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 11/27/2024]
Abstract
While considerable efforts have been devoted to developing functionalized covalent organic frameworks (COFs) as oxygen evolution electrocatalysts in recent years, studies related to the investigation of the true catalytically active species for the oxygen evolution reaction (OER) remain lacking in the field. In this work, the active species of a cobalt-functionalized COF (TpBpy-Co) is studied as electrochemical OER catalyst through a series of electrochemical measurements and post-electrolysis characterizations. These results suggest that cobalt oxide-based nanoparticles are formed in TpBpy-Co from Co(II) ions coordinated to the COF backbone when exposing TpBpy-Co to alkaline media, and these newly formed nanoparticles serve as the primary active species for oxygen evolution. The study thus emphasizes that caution is warranted when assessing the catalytic activity of COF electrocatalysts, as the pristine COF may act as the pre-catalyst, with the active species forming only under catalyst operating conditions. Specifically, strong coordination between COFs and metal centers under electrochemical operation conditions is crucial to avoid unintended transformation of COF electrocatalysts. This work thus contributes to the rational development of earth-abundant COF OER catalysts for the production of green hydrogen from renewable resources.
Collapse
Affiliation(s)
- Pouya Hosseini
- Faculty of Chemistry and Biochemistry Analytical Chemistry IIRuhr‐Universität BochumUniversitätsstrasse15044801BochumGermany
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| | - Andrés Rodríguez‐Camargo
- Nanochemistry DepartmentMax Planck Institute for Solid State ResearchHeisenbergstraße 170569StuttgartGermany
- Department of ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Yiqun Jiang
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| | - Siyuan Zhang
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| | - Christina Scheu
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| | - Liang Yao
- Nanochemistry DepartmentMax Planck Institute for Solid State ResearchHeisenbergstraße 170569StuttgartGermany
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesGuangdong Basic Research Center of Excellence for Energy and Information Polymer MaterialsSouth China University of TechnologyGuangdong510640China
| | - Bettina V. Lotsch
- Nanochemistry DepartmentMax Planck Institute for Solid State ResearchHeisenbergstraße 170569StuttgartGermany
- Department of ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
- Department of ChemistryUniversity of Munich (LMU)Butenandtstraße 5–1381377MünchenGermany
| | - Kristina Tschulik
- Faculty of Chemistry and Biochemistry Analytical Chemistry IIRuhr‐Universität BochumUniversitätsstrasse15044801BochumGermany
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| |
Collapse
|
5
|
Tian Q, Jing L, Wang W, Ye X, Chai X, Zhang X, Hu Q, Yang H, He C. Hydrogen Peroxide Electrosynthesis via Selective Oxygen Reduction Reactions Through Interfacial Reaction Microenvironment Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414490. [PMID: 39610213 DOI: 10.1002/adma.202414490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Indexed: 11/30/2024]
Abstract
The electrochemical two-electron oxygen reduction reaction (2e- ORR) offers a compelling alternative for decentralized and on-site H2O2 production compared to the conventional anthraquinone process. To advance this electrosynthesis system, there is growing interest in optimizing the interfacial reaction microenvironment to boost electrocatalytic performance. This review consolidates recent advancements in reaction microenvironment engineering for the selective electrocatalytic conversion of O2 to H2O2. Starting with fundamental insights into interfacial electrocatalytic mechanisms, an overview of various strategies for constructing the favorable local reaction environment, including adjusting electrode wettability, enhancing mesoscale mass transfer, elevating local pH, incorporating electrolyte additives, and employing pulsed electrocatalysis techniques is provided. Alongside these regulation strategies, the corresponding analyses and technical remarks are also presented. Finally, a summary and outlook on critical challenges, suggesting future research directions to inspire microenvironment engineering and accelerate the practical application of H2O2 electrosynthesis is delivered.
Collapse
Affiliation(s)
- Qiang Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingyan Jing
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenyi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xieshu Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyan Chai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xue Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
6
|
Zhang X, Sun H, Wang YR, Shi Z, Zhong RL, Sun CY, Liu JY, Su ZM, Lan YQ. Dynamic Control of Asymmetric Charge Distribution for Electrocatalytic Urea Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408510. [PMID: 39155823 DOI: 10.1002/adma.202408510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Constructing dual catalytic sites with charge density differences is an efficient way to promote urea electrosynthesis from parallelNO 3 - ${\mathrm{NO}}_3^ - $ and CO2 reduction yet still challenging in static system. Herein, a dynamic system is constructed by precisely controlling the asymmetric charge density distribution in an Au-doped coplanar Cu7 clusters-based 3D framework catalyst (Au@cpCu7CF). In Au@cpCu7CF, the redistributed charge between Au and Cu atoms changed periodically with the application of pulse potentials switching between -0.2 and -0.6 V and greatly facilitated the electrosynthesis of urea. Compared with the static condition of pristine cpCu7CF (FEurea = 5.10%), the FEurea of Au@cpCu7CF under pulsed potentials is up to 55.53%. Theoretical calculations demonstrated that the high potential of -0.6 V improved the adsorption of *HNO2 and *NH2 on Au atoms and inhibited the reaction pathways of by-products. While at the low potential of -0.2 V, the charge distribution between Au and Cu atomic sites facilitated the thermodynamic C-N coupling step. This work demonstrated the important role of asymmetric charge distribution under dynamic regulation for urea electrosynthesis, providing a new inspiration for precise control of electrocatalysis.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Hao Sun
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Yi-Rong Wang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhan Shi
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Rong-Lin Zhong
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Chun-Yi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Jing-Yao Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
7
|
Poh YR, Kawamata Y, Yuen-Zhou J. Physicochemical Principles of AC Electrosynthesis: Reversible Reactions. J Am Chem Soc 2024; 146:24978-24988. [PMID: 39214628 DOI: 10.1021/jacs.4c06664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Electrolysis integrates renewable energy into chemical manufacturing and is key to sustainable chemistry. Controlling the waveform beyond direct current (DC) addresses the long-standing obstacle of chemoselectivity, yet it also expands the parameter set to optimize, creating a demand for theoretical predictions. Here, we report the first analytical theory for predicting chemoselectivity in an alternating current (AC) electrosynthesis. The mechanism is a selective reversal of the unwanted redox reaction during periods of opposite polarity, reflected in the final reaction outcome as a time-averaged effect. In the ideal scenario of all redox reactions being reversible, square AC waveform biases the outcome toward more overoxidation/over-reduction, whereas sine AC waveform exhibits the opposite effect. However, in a more realistic scenario of some redox reactions being quasi-reversible, sine AC may behave mostly like square AC. These predictions are in numerical agreement with model experiments employing acetophenone and align qualitatively with the literature precedent. Collectively, this study provides theoretical proof for a growing trend that promotes changing waveforms to overcome limitations challenging to address by varying canonical electrochemical parameters.
Collapse
Affiliation(s)
- Yong Rui Poh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Li Z, Wang L, Sun L, Yang W. Dynamic Cation Enrichment during Pulsed CO 2 Electrolysis and the Cation-Promoted Multicarbon Formation. J Am Chem Soc 2024; 146:23901-23908. [PMID: 39054919 DOI: 10.1021/jacs.4c06404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recently, pulsed electrolysis has been demonstrated as an emerging electrochemical technique that significantly promotes the performance of various electrocatalysis applications. The ionic nature of aqueous electrolytes implies a likely change in ionic distribution under these alternating potential conditions. However, despite the well-known importance of cations, the impact of pulsed electrolysis on the cation distribution remains unexplored as well as its influences on the performance. Herein, we explore the cation effects on the pulsed electrochemical CO2 reduction (p-CO2RR) using the most widely utilized alkali metal cations, including Li+, Na+, K+, and Cs+. It is discovered that the nature of cations can significantly influence the product ratio of C2+ over C1 (mostly CH4) during p-CO2RR in an order of Li+< Na+< K+< Cs+, much more profoundly than those of static cases. We report direct experimental evidence for the cation enrichment caused by pulsed electrolysis, depending on the radius of the hydrated ions. With further quasi-in situ analysis of the catalyst surface, the cation-promoted Cu dissolution-and-redeposition process was identified; this is found to alter the surface CuxO/Cu ratio during the pulsed process. We demonstrate that both the cation enrichment and the cation-adjusted surface CuxO/Cu composition impact the C2+/C1 ratio through the control of the surface-adsorbed CO population. These results reveal the presence of pulse-induced cation redistribution in emerging pulsed electrolysis techniques and provide a comprehensive understanding of alkali metal cation effects for improving the selectivity of p-CO2RR.
Collapse
Affiliation(s)
- Zhuofeng Li
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang, China
| | - Wenxing Yang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang, China
| |
Collapse
|
9
|
Murphy MA, Gathmann SR, Getman R, Grabow L, Abdelrahman OA, Dauenhauer PJ. Catalytic resonance theory: the catalytic mechanics of programmable ratchets. Chem Sci 2024:d4sc04069d. [PMID: 39129768 PMCID: PMC11307141 DOI: 10.1039/d4sc04069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Catalytic reaction networks of multiple elementary steps operating under dynamic conditions via a programmed input oscillation are difficult to interpret and optimize due to reaction system complexity. To understand these dynamic systems, individual elementary catalytic reactions oscillating between catalyst states were evaluated to identify their three fundamental characteristics that define their ability to promote reactions away from equilibrium. First, elementary catalytic reactions exhibit directionality to promote reactions forward or backward from equilibrium as determined by a ratchet directionality metric comprised of the input oscillation duty cycle and the reaction rate constants. Second, catalytic ratchets are defined by the catalyst state of strong or weak binding that permits reactants to proceed through the transition state. Third, elementary catalytic ratchets exhibit a cutoff frequency which defines the transition in applied frequency for which the catalytic ratchet functions to promote chemistry away from equilibrium. All three ratchet characteristics are calculated from chemical reaction parameters including rate constants derived from linear scaling parameters, reaction conditions, and catalyst electronic state. The characteristics of the reaction network's constituent elementary catalytic reactions provided an interpretation of complex reaction networks and a method of predicting the behavior of dynamic surface chemistry on oscillating catalysts.
Collapse
Affiliation(s)
- Madeline A Murphy
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- Department of Chemical Engineering & Materials Science, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
| | - Sallye R Gathmann
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- Department of Chemical Engineering & Materials Science, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
| | - Rachel Getman
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University Columbus OH 43210 USA
| | - Lars Grabow
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, S222 Cullen College of Engineering Bldg 1 4226 Martin Luther King Boulevard Houston TX 77204 USA
| | - Omar A Abdelrahman
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, S222 Cullen College of Engineering Bldg 1 4226 Martin Luther King Boulevard Houston TX 77204 USA
| | - Paul J Dauenhauer
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- Department of Chemical Engineering & Materials Science, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
| |
Collapse
|
10
|
Sekar P, Bericat-Vadell R, Patehebieke Y, Broqvist P, Wallentin CJ, Görlin M, Sá J. Decoupling Plasmonic Hot Carrier from Thermal Catalysis via Electrode Engineering. NANO LETTERS 2024; 24:8619-8625. [PMID: 38973705 PMCID: PMC11261604 DOI: 10.1021/acs.nanolett.4c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Increased attention has been directed toward generating nonequilibrium hot carriers resulting from the decay of collective electronic oscillations on metal known as surface plasmons. Despite numerous experimental endeavors, demonstrating hot carrier-mediated photocatalysis without a heating contribution has proven challenging, particularly for single electron transfer reactions where the thermal contribution is generally detrimental. An innovative engineering solution is proposed to enable single electron transfer reactions with plasmonics. It consists of a photoelectrode designed as an energy filter and photocatalysis performed with light function modulation instead of continuously. The photoelectrode, consisting of FTO/TiO2 amorphous (10 nm)/Au nanoparticles, with TiO2 acting as a step-shape energy filter to enhance hot electron extraction and charge-separated state lifetime. The extracted hot electrons were directed toward the counter electrode, while the hot holes performed a single electron transfer oxidation reaction. Light modulation prevented local heat accumulation, effectively decoupling hot carrier catalysis from the thermal contribution.
Collapse
Affiliation(s)
- Pandiaraj Sekar
- Department
of Chemistry-Ångström, Physical Chemistry Division, Uppsala University, Uppsala 751 20, Sweden
| | - Robert Bericat-Vadell
- Department
of Chemistry-Ångström, Physical Chemistry Division, Uppsala University, Uppsala 751 20, Sweden
| | - Yeersen Patehebieke
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemivägen
10, Gothenburg 412 58, Sweden
| | - Peter Broqvist
- Department
of Chemistry-Ångström, Structural Chemistry Division, Uppsala University, Uppsala 751 20, Sweden
| | - Carl-Johan Wallentin
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemivägen
10, Gothenburg 412 58, Sweden
| | - Mikaela Görlin
- Department
of Chemistry-Ångström, Structural Chemistry Division, Uppsala University, Uppsala 751 20, Sweden
| | - Jacinto Sá
- Department
of Chemistry-Ångström, Physical Chemistry Division, Uppsala University, Uppsala 751 20, Sweden
- Institute
of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| |
Collapse
|
11
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
12
|
Razeghi MH, Gholipour O, Sardroodi JJ, Keshipour S, Hassanzadeh A. Magnetic cobalt metal organic framework for photocatalytic water splitting hydrogen evolution. DISCOVER NANO 2024; 19:82. [PMID: 38714578 PMCID: PMC11076441 DOI: 10.1186/s11671-024-04019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/10/2024]
Abstract
Using water as a renewable and safe energy source for hydrogen generation has reduced the need to use toxic fossil fuels. Photocatalytic approaches provide a worthy solution to avoid the high expenditure on complicated electrochemical pathways to promote Hydrogen Evolution Reactions. However, several types of photocatalysts including noble metal-based catalysts have already been in use for this purpose, which are generally considered high-cost as well. The present study aims to use the benefits of metal-organic frameworks (MOFs) with semiconductor-like characteristics, highly porous structures and high design flexibility. These properties of MOFs allow more efficient and effective mass transport as well as exposure to light.in this paper, using MOF technology and benefiting from the characteristics of Fe3O4 nanoparticles as catalyst support for more efficient separation of catalyst, we have synthesized a novel composite. Our proposed photocatalyst demonstrates efficient harvest of light in all wavelengths from UV to visible to generate electron/hole pairs suitable for water splitting with a turnover frequency of 0.222 h-1 at ambient conditions without requiring any additives.
Collapse
Affiliation(s)
| | - Ozra Gholipour
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Jaber J Sardroodi
- Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Sajjad Keshipour
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Ali Hassanzadeh
- Department of Physical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
13
|
Foley BL, Razdan NK. Clarifying mechanisms and kinetics of programmable catalysis. iScience 2024; 27:109543. [PMID: 38638837 PMCID: PMC11024910 DOI: 10.1016/j.isci.2024.109543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/09/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Programmable catalysis-the purposeful oscillation of catalytic potential energy surfaces (PES)-has emerged as a promising method for the acceleration of catalyzed reaction rates. However, theoretical study of programmable catalysis has been limited by onerous computational demands of integrating the stiff differential equations that describe periodic cycling between PESs. This work details methods that reduce the computational cost of finding the limit cycle by ≳108×. These methods produce closed-form analytical solutions for didactic case studies, examination of which provides physical insights of programmable catalysis mechanisms. Generalization of these analyses to more complex reaction networks, including CO oxidation on Pt (111) surfaces, exposes the key catalyst properties required to achieve enhanced rates and conversions via one of two programmable catalysis mechanisms: quasi-static (high frequency) and stepwise (intermediate frequency). Analytical description of each mechanism is critical in understanding the consequences of the Sabatier principle on achievable rate enhancement through programmed catalysis.
Collapse
Affiliation(s)
- Brandon L. Foley
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Neil K. Razdan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Lee H, Ren H. Tuning Electrocatalytic Oxygen Reduction Reaction with Dynamic Control of Electrochemical Interfaces. J Am Chem Soc 2024. [PMID: 38607685 DOI: 10.1021/jacs.3c13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Herein, we report the tuning of the activity and selectivity of the oxygen reduction reaction (ORR) through the dynamic regulation of the electrochemical interfaces to surpass the performance of conventional electrocatalysis. This is achieved by applying an oscillating potential between the ORR operating potential and anion adsorbing potential on a gold electrode. Oscillating potential enhances the selectivity for H2O2 by up to 1.35 times compared to the static potential, as confirmed by rotating ring-disk electrode and fluorescence assay measurements. We showed that the enhanced selectivity depends on dynamic adsorption and desorption of anions, and the enhancement occurs in the millisecond time scale or shorter. The transient selectivity to H2O2 can reach ∼97% within the first 5 ms after potential switching. Our results suggest that the dynamic interface can create a transient but unique microenvironment for new reactivity that cannot be reproduced under static conditions, which offers a new dimension in controlling electrocatalysis.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Oh KR, Onn TM, Walton A, Odlyzko ML, Frisbie CD, Dauenhauer PJ. Fabrication of Large-Area Metal-on-Carbon Catalytic Condensers for Programmable Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:684-694. [PMID: 38150675 DOI: 10.1021/acsami.3c14623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Catalytic condensers stabilize charge on either side of a high-k dielectric film to modulate the electronic states of a catalytic layer for the electronic control of surface reactions. Here, carbon sputtering provided for fast, large-scale fabrication of metal-carbon catalytic condensers required for industrial application. Carbon films were sputtered on HfO2 dielectric/p-type Si with different thicknesses (1, 3, 6, and 10 nm), and the enhancement of conductance and capacitance of carbon films was observed upon increasing the carbon thickness following thermal treatment at 400 °C. After Pt deposition on the carbon films, the Pt catalytic condenser exhibited a high capacitance of ∼210 nF/cm2 that was maintained at a frequency ∼1000 Hz, satisfying the requirement for a dynamic catalyst to implement catalytic resonance. Temperature-programmed desorption of carbon monoxide yielded CO desorption peaks that shifted in temperature with the varying potential applied to the condenser (-6 or +6 V), indicating a shift in the binding energy of carbon monoxide on the Pt condenser surface. A substantial increase in capacitance (∼2000 nF/cm2) of the Pt-on-carbon devices was observed at elevated temperatures of 400 °C that can modulate ∼10% of charge per metal atom when 10 V potential was applied. A large catalytic condenser of 42 cm2 area Pt/C/HfO2/Si exhibited a high capacitance of 9393 nF with a low leakage current/capacitive current ratio (<0.1), demonstrating the practicality and versatility of the facile, large-scale fabrication method for metal-carbon catalytic condensers.
Collapse
Affiliation(s)
- Kyung-Ryul Oh
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Tzia Ming Onn
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Amber Walton
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Michael L Odlyzko
- Characterization Facility, University of Minnesota, 100 Union St. SE, Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Onn TM, Oh KR, Adrahtas DZ, Soeherman JK, Hopkins JA, Frisbie CD, Dauenhauer PJ. Flexible and Extensive Platinum Ion Gel Condensers for Programmable Catalysis. ACS NANO 2024; 18:983-995. [PMID: 38146996 DOI: 10.1021/acsnano.3c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Catalytic condensers composed of ion gels separating a metal electrode from a platinum-on-carbon active layer were fabricated and characterized to achieve more powerful, high surface area dynamic heterogeneous catalyst surfaces. Ion gels comprised of poly(vinylidene difluoride)/1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide were spin coated as a 3.8 μm film on a Au surface, after which carbon sputtering of a 1.8 nm carbon film and electron-beam evaporation of 2 nm Pt clusters created an active surface exposed to reactant gases. Electronic characterization indicated that most charge condensed within the Pt nanoclusters upon application of a potential bias, with the condenser device achieving a capacitance of ∼20 μF/cm2 at applied frequencies of up to 120 Hz. The maximum charge of ∼1014 |e-| cm-2 was condensed under stable device conditions at 200 °C on catalytic films with ∼1015 sites cm-2. Grazing incidence infrared spectroscopy measured carbon monoxide adsorption isobars, indicating a change in the CO* binding energy of ∼19 kJ mol-1 over an applied potential bias of only 1.25 V. Condensers were also fabricated on flexible, large area Kapton substrates allowing stacked or tubular form factors that facilitate high volumetric active site densities, ultimately enabling a fast and powerful catalytic condenser that can be fabricated for programmable catalysis applications.
Collapse
Affiliation(s)
- Tzia Ming Onn
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Kyung-Ryul Oh
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Demetra Z Adrahtas
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Jimmy K Soeherman
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Justin A Hopkins
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Abstract
Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
18
|
Jung S, Pizzolitto C, Biasi P, Dauenhauer PJ, Birol T. Programmable catalysis by support polarization: elucidating and breaking scaling relations. Nat Commun 2023; 14:7795. [PMID: 38016999 PMCID: PMC10684597 DOI: 10.1038/s41467-023-43641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
The Sabatier principle and the scaling relations have been widely used to search for and screen new catalysts in the field of catalysis. However, these powerful tools can also serve as limitations of catalyst control and breakthrough. To overcome this challenge, this work proposes an efficient method of studying catalyst control by support polarization from first-principles. The results demonstrate that the properties of catalysts are determined by support polarization, irrespective of the magnitude of spontaneous polarization of support. The approach enables elucidating the scaling relations between binding energies at various polarization values of support. Moreover, we observe the breakdown of scaling relations for the surface controlled by support polarization. By studying the surface electronic structure and decomposing the induced charge into contributions from different atoms and orbitals, we identify the inherent structural property of the interface that leads to the breaking of the scaling relations. Specifically, the displacements of the underlying oxide support impose its symmetry on the catalyst, causing the scaling relations between different adsorption sites to break.
Collapse
Affiliation(s)
- Seongjoo Jung
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455, USA
| | | | | | - Paul J Dauenhauer
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455, USA
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455, USA
| | - Turan Birol
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Zhang Z, Lu Z. Nonequilibrium Theoretical Framework and Universal Design Principles of Oscillation-Driven Catalysis. J Phys Chem Lett 2023; 14:7541-7548. [PMID: 37586077 DOI: 10.1021/acs.jpclett.3c01677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
At stationary environmental conditions, a catalyst's reaction kinetics may be restricted by its available designs and thermodynamic laws. Thus, its stationary performances may experience practical or theoretical restraints (e.g., catalysts cannot invert the spontaneous direction of a chemical reaction). However, many works have reported that if environments change rapidly, catalysts can be driven away from stationary states and exhibit anomalous performance. We present a general geometric nonequilibrium theory to explain anomalous catalytic behaviors driven by rapidly oscillating environments where stationary-environment restraints are broken. It leads to a universal design principle of novel catalysts with oscillation-pumped performances. Even though a single free energy landscape cannot describe catalytic kinetics at various environmental conditions, we propose a novel control-conjugate landscape to encode the reaction kinetics over a range of control parameters λ, inspired by the Arrhenius form. The control-conjugate landscape significantly simplifies the design principle applicable to large-amplitude environmental oscillations.
Collapse
Affiliation(s)
- Zhongmin Zhang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Zhiyue Lu
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
20
|
Joshi PB, Wilson AJ. Potential-Dependent Temporal Dynamics of CO Surface Concentration in Electrocatalytic CO 2 Reduction. J Phys Chem Lett 2023:5754-5759. [PMID: 37319405 DOI: 10.1021/acs.jpclett.3c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Beyond the identity and structure of an intermediate, changes in its concentration on and near the electrode surface with time are a critical component to understand and improve selectivity and reactivity in electrochemical transformations. We apply pulsed-potential electrochemical Raman scattering microscopy to measure the potential-dependent temporal evolution of CO formed during electrocatalytic CO2 reduction in acetonitrile on Ag electrodes. At driving potentials positive of the onset potential as determined by cyclic voltammetry, CO accumulates on the electrode surface at time scales longer than 1 s. Near the ensemble onset potential, CO resides on the electrode surface for approximately 100 ms. At potentials known to evolve CO from the electrode surface, CO remains adsorbed on the electrode for less than 10 ms. The time scales accessible in our strategy are nearly 3 orders of magnitude faster than transient Raman or infrared measurements, allowing direct measurement of the temporal evolution of intermediates.
Collapse
Affiliation(s)
- Padmanabh B Joshi
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Andrew J Wilson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
21
|
Merkouri LP, Paksoy AI, Ramirez Reina T, Duyar MS. The Need for Flexible Chemical Synthesis and How Dual-Function Materials Can Pave the Way. ACS Catal 2023; 13:7230-7242. [PMID: 37288092 PMCID: PMC10242687 DOI: 10.1021/acscatal.3c00880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Since climate change keeps escalating, it is imperative that the increasing CO2 emissions be combated. Over recent years, research efforts have been aiming for the design and optimization of materials for CO2 capture and conversion to enable a circular economy. The uncertainties in the energy sector and the variations in supply and demand place an additional burden on the commercialization and implementation of these carbon capture and utilization technologies. Therefore, the scientific community needs to think out of the box if it is to find solutions to mitigate the effects of climate change. Flexible chemical synthesis can pave the way for tackling market uncertainties. The materials for flexible chemical synthesis function under a dynamic operation, and thus, they need to be studied as such. Dual-function materials are an emerging group of dynamic catalytic materials that integrate the CO2 capture and conversion steps. Hence, they can be used to allow some flexibility in the production of chemicals as a response to the changing energy sector. This Perspective highlights the necessity of flexible chemical synthesis by focusing on understanding the catalytic characteristics under a dynamic operation and by discussing the requirements for the optimization of materials at the nanoscale.
Collapse
Affiliation(s)
| | - Aysun Ipek Paksoy
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, United
Kingdom
| | - Tomas Ramirez Reina
- Inorganic
Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Melis S. Duyar
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, United
Kingdom
| |
Collapse
|
22
|
Xu W, Shu Y, Xu M, Xie J, Li Y, Dong H. Unexpected electro-catalytic activity of the CO reduction reaction on Cr-embedded poly-phthalocyanine realized by strain engineering: a computational study. Phys Chem Chem Phys 2023; 25:12872-12881. [PMID: 37165891 DOI: 10.1039/d3cp00861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The electrochemical conversion of carbon monoxide (CO) into value-added products is highly promising for carbon utilization and CO removal. Based on previous theoretical studies, we computationally explored the effect of strain engineering on electrocatalysis of the CO reduction reaction (CORR) by two-dimensional (2D) transition metal embedded polyphthalocyanines (MPPcs). By calculating the adsorption energy of CO and the free energies of key intermediates on the MPPcs under uniaxial and biaxial strains, it was revealed that only CrPPc under biaxial strain has the potential to exhibit significant enhancement of the catalytic performance. The free energy diagrams of the CORR catalyzed by CrPPc were plotted under specific biaxial strains, where both the optimal reaction pathway and rate-determining step are found to be evidently changed. What's more, the 5% compressive strain imposed on CrPPc results in an ultra-low limiting potential (UL = -0.09 V) with high selectivity on CH4 as the final product, indicating unexpected electro-catalytic activity. Our study clearly elucidates that moderate strain could greatly enhance the electrocatalytic performance of 2D materials in the CORR.
Collapse
Affiliation(s)
- Wenzhen Xu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
- College of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Yunpeng Shu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Mengmeng Xu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Juan Xie
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Chen Z, Liu Z, Xu X. Dynamic evolution of the active center driven by hemilabile coordination in Cu/CeO 2 single-atom catalyst. Nat Commun 2023; 14:2512. [PMID: 37130833 PMCID: PMC10154346 DOI: 10.1038/s41467-023-38307-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Hemilability is an important concept in homogeneous catalysis where both the reactant activation and the product formation can occur simultaneously through a reversible opening and closing of the metal-ligand coordination sphere. However, this effect has rarely been discussed in heterogeneous catalysis. Here, by employing a theoretical study on CO oxidation over substituted Cu1/CeO2 single atom catalysts, we show that dynamic evolution of metal-support coordination can significantly change the electronic structure of the active center. The evolution of the active center is shown to either strengthen or weaken the metal-adsorbate bonding as the reaction proceeds from reactants, through intermediates, to products. As a result, the activity of the catalyst can be increased. We explain our observations by extending hemilability effects to single atom heterogenous catalysts and anticipate that introducing this concept can offer a new insight into the important role active site dynamics have in catalysis toward the rational design of more sophisticated single atom catalyst materials.
Collapse
Affiliation(s)
- Zheng Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Zhangyun Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.
- Hefei National Laboratory, Hefei, 230088, P. R. China.
| |
Collapse
|
24
|
Cheruvathoor Poulose A, Zoppellaro G, Konidakis I, Serpetzoglou E, Stratakis E, Tomanec O, Beller M, Bakandritsos A, Zbořil R. Reply to: Primary role of photothermal heating in light-driven reduction of nitroarenes. NATURE NANOTECHNOLOGY 2023; 18:327-328. [PMID: 36997758 DOI: 10.1038/s41565-023-01353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Affiliation(s)
- Aby Cheruvathoor Poulose
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | - Ioannis Konidakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology, Heraklion, Greece
| | - Efthymis Serpetzoglou
- Institute of Electronic Structure and Laser Foundation for Research and Technology, Heraklion, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology, Heraklion, Greece
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | | | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| |
Collapse
|
25
|
Nkinahamira F, Yang R, Zhu R, Zhang J, Ren Z, Sun S, Xiong H, Zeng Z. Current Progress on Methods and Technologies for Catalytic Methane Activation at Low Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204566. [PMID: 36504369 PMCID: PMC9929156 DOI: 10.1002/advs.202204566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Methane (CH4 ) is an attractive energy source and important greenhouse gas. Therefore, from the economic and environmental point of view, scientists are working hard to activate and convert CH4 into various products or less harmful gas at low-temperature. Although the inert nature of CH bonds requires high dissociation energy at high temperatures, the efforts of researchers have demonstrated the feasibility of catalysts to activate CH4 at low temperatures. In this review, the efficient catalysts designed to reduce the CH4 oxidation temperature and improve conversion efficiencies are described. First, noble metals and transition metal-based catalysts are summarized for activating CH4 in temperatures ranging from 50 to 500 °C. After that, the partial oxidation of CH4 at relatively low temperatures, including thermocatalysis in the liquid phase, photocatalysis, electrocatalysis, and nonthermal plasma technologies, is briefly discussed. Finally, the challenges and perspectives are presented to provide a systematic guideline for designing and synthesizing the highly efficient catalysts in the complete/partial oxidation of CH4 at low temperatures.
Collapse
Affiliation(s)
- François Nkinahamira
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Ruijie Yang
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong999077P. R. China
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Jingwen Zhang
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Zhaoyong Ren
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Senlin Sun
- State Key Laboratory of Urban Water Resource and EnvironmentShenzhen Key Laboratory of Organic Pollution Prevention and ControlSchool of Civil and Environmental EngineeringHarbin Institute of Technology ShenzhenShenzhen518055P. R. China
| | - Haifeng Xiong
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong999077P. R. China
| |
Collapse
|
26
|
Electrolysis in reduced gravitational environments: current research perspectives and future applications. NPJ Microgravity 2022; 8:56. [PMID: 36470890 PMCID: PMC9722834 DOI: 10.1038/s41526-022-00239-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/12/2022] [Indexed: 12/09/2022] Open
Abstract
Electrochemical energy conversion technologies play a crucial role in space missions, for example, in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). They are also vitally important for future long-term space travel for oxygen, fuel and chemical production, where a re-supply of resources from Earth is not possible. Here, we provide an overview of currently existing electrolytic energy conversion technologies for space applications such as proton exchange membrane (PEM) and alkaline electrolyzer systems. We discuss the governing interfacial processes in these devices influenced by reduced gravitation and provide an outlook on future applications of electrolysis systems in, e.g., in-situ resource utilization (ISRU) technologies. A perspective of computational modelling to predict the impact of the reduced gravitational environment on governing electrochemical processes is also discussed and experimental suggestions to better understand efficiency-impacting processes such as gas bubble formation and detachment in reduced gravitational environments are outlined.
Collapse
|
27
|
Maitre PA, Bieniek MS, Kechagiopoulos PN. Plasma-Catalysis of Nonoxidative Methane Coupling: A Dynamic Investigation of Plasma and Surface Microkinetics over Ni(111). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:19987-20003. [PMID: 36483684 PMCID: PMC9720725 DOI: 10.1021/acs.jpcc.2c03503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/13/2022] [Indexed: 05/25/2023]
Abstract
A heterogeneous catalytic microkinetic model is developed and implemented in a zero-dimensional (0D) plasma model for the dynamic study of methane nonoxidative coupling over Ni(111) at residence times and power densities consistent with experimental reactors. The microkinetic model is thermodynamically consistent and is parameterized based on the heats of chemisorption of surface species on Ni(111). The surface network explicitly accounts for the interactions of plasma species, namely, molecules, radicals, and vibrationally excited states, with the catalyst active sites via adsorption and Eley-Rideal reactions. The Fridman-Macheret model is used to describe the enhancement of the rate of the dissociative adsorption of vibrationally excited CH4, H2, and C2H6. In combination with a previously developed detailed kinetic scheme for nonthermal methane plasma, 0D simulation results bring insights into the complex dynamic interactions between the plasma phase and the catalyst during methane nonoxidative coupling. Differential turnover frequencies achieved by plasma-catalysis are higher than those of equivalent plasma-only and catalysis-only simulations combined; however, this performance can only be sustained momentarily. Hydrogen produced from dehydrogenation of ethane via electron collisions within the plasma is found to quickly saturate the surface and even promote the conversion of surface CH3* back to methane.
Collapse
|
28
|
Onn TM, Gathmann SR, Guo S, Solanki SPS, Walton A, Page BJ, Rojas G, Neurock M, Grabow LC, Mkhoyan KA, Abdelrahman OA, Frisbie CD, Dauenhauer PJ. Platinum Graphene Catalytic Condenser for Millisecond Programmable Metal Surfaces. J Am Chem Soc 2022; 144:22113-22127. [DOI: 10.1021/jacs.2c09481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Tzia Ming Onn
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Sallye R. Gathmann
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Silu Guo
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Surya Pratap S. Solanki
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- William A. Brookshire Department of Chemical and Biomolecular Engineering and Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas77204, United States
| | - Amber Walton
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Benjamin J. Page
- Department of Chemical Engineering, University Massachusetts Amherst, 686 N. Pleasant Street, Amherst, Massachusetts01003, United States
| | - Geoffrey Rojas
- Characterization Facility, University of Minnesota, 100 Union Street SE, Minneapolis, Minnesota55455, United States
| | - Matthew Neurock
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Lars C. Grabow
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- William A. Brookshire Department of Chemical and Biomolecular Engineering and Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas77204, United States
| | - K. Andre Mkhoyan
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Omar A. Abdelrahman
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering, University Massachusetts Amherst, 686 N. Pleasant Street, Amherst, Massachusetts01003, United States
| | - C. Daniel Frisbie
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Paul J. Dauenhauer
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| |
Collapse
|
29
|
Amano S, Esposito M, Kreidt E, Leigh DA, Penocchio E, Roberts BMW. Using Catalysis to Drive Chemistry Away from Equilibrium: Relating Kinetic Asymmetry, Power Strokes, and the Curtin-Hammett Principle in Brownian Ratchets. J Am Chem Soc 2022; 144:20153-20164. [PMID: 36286995 PMCID: PMC9650702 DOI: 10.1021/jacs.2c08723] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Chemically fueled autonomous molecular machines are catalysis-driven systems governed by Brownian information ratchet mechanisms. One fundamental principle behind their operation is kinetic asymmetry, which quantifies the directionality of molecular motors. However, it is difficult for synthetic chemists to apply this concept to molecular design because kinetic asymmetry is usually introduced in abstract mathematical terms involving experimentally inaccessible parameters. Furthermore, two seemingly contradictory mechanisms have been proposed for chemically driven autonomous molecular machines: Brownian ratchet and power stroke mechanisms. This Perspective addresses both these issues, providing accessible and experimentally useful design principles for catalysis-driven molecular machinery. We relate kinetic asymmetry to the Curtin-Hammett principle using a synthetic rotary motor and a kinesin walker as illustrative examples. Our approach describes these molecular motors in terms of the Brownian ratchet mechanism but pinpoints both chemical gating and power strokes as tunable design elements that can affect kinetic asymmetry. We explain why this approach to kinetic asymmetry is consistent with previous ones and outline conditions where power strokes can be useful design elements. Finally, we discuss the role of information, a concept used with different meanings in the literature. We hope that this Perspective will be accessible to a broad range of chemists, clarifying the parameters that can be usefully controlled in the design and synthesis of molecular machines and related systems. It may also aid a more comprehensive and interdisciplinary understanding of biomolecular machinery.
Collapse
Affiliation(s)
- Shuntaro Amano
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
- Institute
of Supramolecular Science and Engineering (ISIS), University of Strasbourg, 67000Strasbourg, France
| | - Massimiliano Esposito
- Department
of Physics and Materials Science, University
of Luxembourg, avenue de la Faïencerie, 1511Luxembourg City, G.D. Luxembourg
| | - Elisabeth Kreidt
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
- Department
of Chemistry and Chemical Biology, University
of Dortmund, Otto-Hahn-Str.
6, 44227Dortmund, Germany
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
| | - Emanuele Penocchio
- Department
of Physics and Materials Science, University
of Luxembourg, avenue de la Faïencerie, 1511Luxembourg City, G.D. Luxembourg
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Benjamin M. W. Roberts
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
| |
Collapse
|
30
|
Kreitz B, Wehinger GD, Goldsmith CF, Turek T. Microkinetic modeling of the transient CO2 methanation with DFT‐based uncertainties in a Berty reactor. ChemCatChem 2022. [DOI: 10.1002/cctc.202200570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bjarne Kreitz
- Brown University School of Engineering 184 Hope Street 02906 Providence UNITED STATES
| | - Gregor D. Wehinger
- Technische Universitat Clausthal Institute for Chemical and Electrochemical Engineering GERMANY
| | | | - Thomas Turek
- TU Clausthal Institut für Chemische und Elektrochemische Verfahrenstechnik Leibnizstr. 17 38678 Clausthal-Zellerfeld GERMANY
| |
Collapse
|
31
|
Exner KS. On the Optimization of Nitrogen‐Reduction Electrocatalysts: Breaking Scaling Relation or Catalytic Resonance Theory? ChemCatChem 2022. [DOI: 10.1002/cctc.202200366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Steffen Exner
- Universität Duisburg-Essen: Universitat Duisburg-Essen Theoretical Inorganic Chemistry Universitätsstr. 5 45141 Essen GERMANY
| |
Collapse
|
32
|
Onn TM, Gathmann SR, Wang Y, Patel R, Guo S, Chen H, Soeherman JK, Christopher P, Rojas G, Mkhoyan KA, Neurock M, Abdelrahman OA, Frisbie CD, Dauenhauer PJ. Alumina Graphene Catalytic Condenser for Programmable Solid Acids. JACS AU 2022; 2:1123-1133. [PMID: 35647588 PMCID: PMC9131479 DOI: 10.1021/jacsau.2c00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Precise control of electron density at catalyst active sites enables regulation of surface chemistry for the optimal rate and selectivity to products. Here, an ultrathin catalytic film of amorphous alumina (4 nm) was integrated into a catalytic condenser device that enabled tunable electron depletion from the alumina active layer and correspondingly stronger Lewis acidity. The catalytic condenser had the following structure: amorphous alumina/graphene/HfO2 dielectric (70 nm)/p-type Si. Application of positive voltages up to +3 V between graphene and the p-type Si resulted in electrons flowing out of the alumina; positive charge accumulated in the catalyst. Temperature-programmed surface reaction of thermocatalytic isopropanol (IPA) dehydration to propene on the charged alumina surface revealed a shift in the propene formation peak temperature of up to ΔT peak∼50 °C relative to the uncharged film, consistent with a 16 kJ mol-1 (0.17 eV) reduction in the apparent activation energy. Electrical characterization of the thin amorphous alumina film by ultraviolet photoelectron spectroscopy and scanning tunneling microscopy indicates that the film is a defective semiconductor with an appreciable density of in-gap electronic states. Density functional theory calculations of IPA binding on the pentacoordinate aluminum active sites indicate significant binding energy changes (ΔBE) up to 60 kJ mol-1 (0.62 eV) for 0.125 e- depletion per active site, supporting the experimental findings. Overall, the results indicate that continuous and fast electronic control of thermocatalysis can be achieved with the catalytic condenser device.
Collapse
Affiliation(s)
- Tzia Ming Onn
- Department
of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Sallye R. Gathmann
- Department
of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Yuxin Wang
- Department
of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Roshan Patel
- Department
of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Silu Guo
- Department
of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Han Chen
- Department
of Chemical Engineering, University of Massachusetts
Amherst, 686 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Jimmy K. Soeherman
- Department
of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Phillip Christopher
- Department
of Chemical Engineering, University of California,
Santa Barbara, 3335 Engineering
II, Santa Barbara, California 93106, United States
| | - Geoffrey Rojas
- Characterization
Facility, University of Minnesota, 100 Union Street SE, Minneapolis, Minnesota 55455, United States
| | - K. Andre Mkhoyan
- Department
of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Matthew Neurock
- Department
of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Omar A. Abdelrahman
- Department
of Chemical Engineering, University of Massachusetts
Amherst, 686 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - C. Daniel Frisbie
- Department
of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Paul J. Dauenhauer
- Department
of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Fang S, Hu YH. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem Soc Rev 2022; 51:3609-3647. [PMID: 35419581 DOI: 10.1039/d1cs00782c] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-photo catalysis, which is the catalysis with the participation of both thermal and photo energies, not only reduces the large energy consumption of thermal catalysis but also addresses the low efficiency of photocatalysis. As a whole greater than the sum of its parts, thermo-photo catalysis has been proven as an effective and promising technology to drive chemical reactions. In this review, we first clarify the definition (beyond photo-thermal catalysis and plasmonic catalysis), classification, and principles of thermo-photo catalysis and then reveal its superiority over individual thermal catalysis and photocatalysis. After elucidating the design principles and strategies toward highly efficient thermo-photo catalytic systems, an ample discussion on the synergetic effects of thermal and photo energies is provided from two perspectives, namely, the promotion of photocatalysis by thermal energy and the promotion of thermal catalysis by photo energy. Subsequently, state-of-the-art techniques applied to explore thermo-photo catalytic mechanisms are reviewed, followed by a summary on the broad applications of thermo-photo catalysis and its energy management toward industrialization. In the end, current challenges and potential research directions related to thermo-photo catalysis are outlined.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| |
Collapse
|
34
|
Teixeira MFS, Olean-Oliveira A, Anastácio FC, David-Parra DN, Cardoso CX. Electrocatalytic Reduction of CO2 in Water by a Palladium-Containing Metallopolymer. NANOMATERIALS 2022; 12:nano12071193. [PMID: 35407311 PMCID: PMC9000595 DOI: 10.3390/nano12071193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/28/2023]
Abstract
The palladium–salen complex was immobilized by electropolymerization onto a Pt disc electrode and applied as an electrocatalyst for the reduction of CO2 in an aqueous solution. Linear sweep voltammetry measurements and rotating disk experiments were carried out to study the electrochemical reduction of carbon dioxide. The onset overpotential for carbon dioxide reduction was approximately −0.22 V vs. NHE on the poly-Pd(salen) modified electrode. In addition, by combining the electrochemical study with a kinetic study, the rate-determining step of the electrochemical CO2 reduction reaction (CO2RR) was found to be the radial reduction of carbon dioxide to the CO adsorbed on the metal.
Collapse
Affiliation(s)
- Marcos F. S. Teixeira
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente CEP 19060-900, SP, Brazil; (A.O.-O.); (F.C.A.); (D.N.D.-P.)
- Correspondence:
| | - André Olean-Oliveira
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente CEP 19060-900, SP, Brazil; (A.O.-O.); (F.C.A.); (D.N.D.-P.)
| | - Fernanda C. Anastácio
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente CEP 19060-900, SP, Brazil; (A.O.-O.); (F.C.A.); (D.N.D.-P.)
| | - Diego N. David-Parra
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente CEP 19060-900, SP, Brazil; (A.O.-O.); (F.C.A.); (D.N.D.-P.)
| | - Celso X. Cardoso
- Department of Physics, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente CEP 19060-900, SP, Brazil;
| |
Collapse
|
35
|
Fraysse KS, Meaney SP, Gates WP, Langley DP, Tabor RF, Stoddart PR, Greene GW. Frequency Dependent Silica Dissolution Rate Enhancement under Oscillating Pressure via an Electrochemical Pressure Solution-like, Surface Resonance Mechanism. J Am Chem Soc 2022; 144:3875-3891. [PMID: 35226480 DOI: 10.1021/jacs.1c11545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From atomic force microscopy (AFM) experiments, we report a new phenomenon in which the dissolution rate of fused silica is enhanced by more than 5 orders of magnitude by simply pressing a second, dissimilar surface against it and oscillating the contact pressure at low kHz frequencies in deionized water. The silica dissolution rate enhancement was found to exhibit a strong dependence on the pressure oscillation frequency consistent with a resonance effect. This harmonic enhancement of the silica dissolution rate was only observed at asymmetric material interfaces (e.g., diamond on silica) with no evidence of dissolution rate enhancement observed at symmetric material interfaces (i.e., silica on silica) within the experimental time scales. The apparent requirement for interface dissimilarity, the results of analogous experiments performed in anhydrous dodecane, and the observation that the silica "dissolution pits" continue to grow in size under contact stresses well below the silica yield stress refute a mechanical deformation or chemo-mechanical origin to the observed phenomenon. Instead, the silica dissolution rate enhancement exhibits characteristics consistent with a previously described 'electrochemical pressure solution' mechanism, albeit, with greatly amplified kinetics. Using a framework of electrochemical pressure solution, an electrochemical model of mineral dissolution, and a recently proposed "surface resonance" theory, we present an electro-chemo-mechanical mechanism that explains how oscillating the contact pressure between dissimilar surfaces in water can amplify surface dissolution rates by many orders of magnitude. This reaction rate enhancement mechanism has implications not only for dissolution but also for potentially other reactions occurring at the solid-liquid interface, e.g. catalysis.
Collapse
Affiliation(s)
- Kilian Shani Fraysse
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Waurn Ponds, 3216, Australia
| | - Shane P Meaney
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | - Will P Gates
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Waurn Ponds, 3216, Australia
| | - Daniel P Langley
- School of Science, Computing and Engineering Technology, Swinburne University of Technology, Hawthorn, 3122, Australia.,Biomedical Manufacturing, CSIRO Manufacturing, Clayton, 3168, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | - Paul R Stoddart
- School of Science, Computing and Engineering Technology, Swinburne University of Technology, Hawthorn, 3122, Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Waurn Ponds, 3216, Australia
| |
Collapse
|
36
|
Wittreich GR, Liu S, Dauenhauer PJ, Vlachos DG. Catalytic resonance of ammonia synthesis by simulated dynamic ruthenium crystal strain. SCIENCE ADVANCES 2022; 8:eabl6576. [PMID: 35080982 PMCID: PMC8791612 DOI: 10.1126/sciadv.abl6576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/30/2021] [Indexed: 05/30/2023]
Abstract
Ammonia affords dense storage for renewable energy as a fungible liquid fuel, provided it can be efficiently synthesized from hydrogen and nitrogen. In this work, the catalysis of ammonia synthesis was computationally explored beyond the Sabatier limit by dynamically straining a ruthenium crystal (±4%) at the resonant frequencies (102 to 105+ Hz) of N2 surface dissociation and hydrogenation. Density functional theory calculations at different strain conditions indicated that the energies of NHx surface intermediates and transition states scale linearly, allowing the description of ammonia synthesis at a continuum of strain conditions. A microkinetic model including multiple sites and surface diffusion between step and Ru(0001) terrace sites of varying ratios for nanoparticles of differing size revealed that dynamic strain yields catalytic ammonia synthesis conversion and turnover frequency comparable to industrial reactors (400°C, 200 atm) but at lower temperature (320°C) and an order of magnitude lower pressure (20 atm).
Collapse
Affiliation(s)
- Gerhard R. Wittreich
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
- RAPID Manufacturing Institute and Delaware Energy Institute (DEI), University of Delaware, 221 Academy Street, Newark, DE 19711, USA
| | - Shizhong Liu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
| | - Paul J. Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, DE 19711, USA
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
- RAPID Manufacturing Institute and Delaware Energy Institute (DEI), University of Delaware, 221 Academy Street, Newark, DE 19711, USA
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, DE 19711, USA
| |
Collapse
|
37
|
Wang J, Zhou W, Li J, Ding Y, Gao J. Recent Advances and Performance Enhancement Mechanisms of Pulsed Electrocatalysis. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Abstract
Strain can be a useful handle to alter the catalytic properties of strain-sensitive metals (orange).
Collapse
Affiliation(s)
- Yucheng He
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People's Republic of China
| | - Pengqi Hai
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People's Republic of China
| | - Chao Wu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People's Republic of China
| |
Collapse
|
39
|
Wong SS, Hülsey MJ, An H, Yan N. Quantum yield enhancement in the photocatalytic HCOOH decomposition to H 2 under periodic illumination. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00935h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite numerous studies on controlled periodic illumination to improve the quantum yield of photocatalytic reactions, debates still exist on the nature of such effect. In our system, we proposed that enhanced electron transfer is the promotion mechanism.
Collapse
Affiliation(s)
- Sie Shing Wong
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Max Joshua Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Hua An
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| |
Collapse
|
40
|
Yang M, Xiong Q, Kodaimati MS, Jiang X, Schweitzer NM, Schatz GC, Weiss EA. Dynamic Control of Photocatalytic Proton Reduction through the Mechanical Actuation of a Hydrogel Host Matrix. J Phys Chem Lett 2021; 12:12135-12141. [PMID: 34913699 DOI: 10.1021/acs.jpclett.1c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper describes a photocatalytic hydrogen evolution system that is dynamically and reversibly responsive to the pH of the surrounding solution through the actuation of a microhydrogel (microgel) matrix that hosts the photocatalysts (CdSe/CdS nanorods). The reversible actuation occurs within 0.58 (swelling) and 1.7 s (contraction). ΔpH = 0.01 relative to the pKa of the tertiary amine on the microgel polymer (7.27) results in a reversible change in the average diameter of the microgel hosts by a factor of 2.4 and a change in the photocatalytic turnover frequency (TOF) by a factor of 5. Kinetic isotope effect and photoluminescence quenching experiments reveal that the scavenging of the photoexcited hole by sulfite ions is the rate-limiting step and leads to the observed response of the TOF to pH through the actuation of the microgel. Molecular dynamics simulations quantify a greater local concentration of sulfite hole scavengers for pH < pKa.
Collapse
Affiliation(s)
- Muwen Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Qinsi Xiong
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Mohamad S Kodaimati
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Xinyi Jiang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Neil M Schweitzer
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
41
|
Govindarajan N, Kastlunger G, Heenen HH, Chan K. Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go? Chem Sci 2021; 13:14-26. [PMID: 35059146 PMCID: PMC8694373 DOI: 10.1039/d1sc04775b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/14/2021] [Indexed: 12/19/2022] Open
Abstract
As we are in the midst of a climate crisis, there is an urgent need to transition to the sustainable production of fuels and chemicals. A promising strategy towards this transition is to use renewable energy for the electrochemical conversion of abundant molecules present in the earth's atmosphere such as H2O, O2, N2 and CO2, to synthetic fuels and chemicals. A cornerstone to this strategy is the development of earth abundant electrocatalysts with high intrinsic activity towards the desired products. In this perspective, we discuss the importance and challenges involved in the estimation of intrinsic activity both from the experimental and theoretical front. Through a thorough analysis of published data, we find that only modest improvements in intrinsic activity of electrocatalysts have been achieved in the past two decades which necessitates the need for a paradigm shift in electrocatalyst design. To this end, we highlight opportunities offered by tuning three components of the electrochemical environment: cations, buffering anions and the electrolyte pH. These components can significantly alter catalytic activity as demonstrated using several examples, and bring us a step closer towards complete system level optimization of electrochemical routes to sustainable energy conversion.
Collapse
Affiliation(s)
- Nitish Govindarajan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| | - Georg Kastlunger
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| | - Hendrik H Heenen
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark .,Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 D-14195 Berlin Germany
| | - Karen Chan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| |
Collapse
|
42
|
Zakem G, Ro I, Finzel J, Christopher P. Support functionalization as an approach for modifying activation entropies of catalytic reactions on atomically dispersed metal sites. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
|
44
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical Engineering Hanyang University 222 Wangsimni ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - Suguru Noda
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
45
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021; 60:23051-23067. [PMID: 34523770 PMCID: PMC8596788 DOI: 10.1002/anie.202110352] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 11/08/2022]
Abstract
For decades, turnover frequency (TOF) has served as an accurate descriptor of the intrinsic activity of a catalyst, including those in electrocatalytic reactions involving both fuel generation and fuel consumption. Unfortunately, in most of the recent reports in this area, TOF is often not properly reported or not reported at all, in contrast to the overpotentials at a benchmarking current density. The current density is significant in determining the apparent activity, but it is affected by catalyst-centric parasitic reactions, electrolyte-centric competing reactions, and capacitance. Luckily, a properly calculated TOF can precisely give the intrinsic activity free from these phenomena in electrocatalysis. In this Viewpoint we ask: 1) What makes the commonly used activity markers unsuitable for intrinsic activity determination? 2) How can TOF reflect the intrinsic activity? 3) Why is TOF still underused in electrocatalysis? 4) What methods are used in TOF determination? and 5) What is essential in the more accurate calculation of TOF? Finally, the significance of normalizing TOF by Faradaic efficiency (FE) is stressed and we give our views on the development of universal analytical tools to determine the exact number of active sites and real surface area for all kinds of materials.
Collapse
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical EngineeringHanyang University222 Wangsimni ro, Seongdong-guSeoul04763Republic of Korea
| | - Suguru Noda
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| |
Collapse
|
46
|
Macedo LJ, Santo AA, Sedenho GC, Hassan A, Iost RM, Feliciano GT, Crespilho FN. Three-dimensional catalysis and the efficient bioelectrocatalysis beyond surface chemistry. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
47
|
Sordello F, Pellegrino F, Prozzi M, Minero C, Maurino V. Controlled Periodic Illumination Enhances Hydrogen Production by over 50% on Pt/TiO 2. ACS Catal 2021; 11:6484-6488. [PMID: 34306809 PMCID: PMC8294008 DOI: 10.1021/acscatal.1c01734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/13/2021] [Indexed: 12/28/2022]
Abstract
Efficient solar water photosplitting is plagued by large overpotentials of the HER and OER. Even with a noble metal catalyst, the hydrogen evolution reaction can be limited by the strong M-H bonding over some metals, such as Pt, Pd, and Rh, inhibiting hydrogen desorption. H absorption is regulated by the potential at the metal nanoparticles. Through controlled periodic illumination of a Pt/TiO2 suspension, we hypothesized a fast variation of the photopotential that induced catalytic surface resonance on the metal, resulting in more than a 50% increase of the efficiency at frequencies higher than 80 Hz.
Collapse
Affiliation(s)
- F. Sordello
- Dipartimento
di Chimica and NIS Center, University of
Torino, Via P. Giuria
7, 10125 Torino, Italy
| | - F. Pellegrino
- Dipartimento
di Chimica and NIS Center, University of
Torino, Via P. Giuria
7, 10125 Torino, Italy
- JointLAB
UniTo-ITT Automotive, Via Quarello 15/A, 10135 Torino, Italy
| | - M. Prozzi
- Dipartimento
di Chimica and NIS Center, University of
Torino, Via P. Giuria
7, 10125 Torino, Italy
| | - C. Minero
- Dipartimento
di Chimica and NIS Center, University of
Torino, Via P. Giuria
7, 10125 Torino, Italy
| | - V. Maurino
- Dipartimento
di Chimica and NIS Center, University of
Torino, Via P. Giuria
7, 10125 Torino, Italy
- JointLAB
UniTo-ITT Automotive, Via Quarello 15/A, 10135 Torino, Italy
| |
Collapse
|
48
|
Lim CW, Hülsey MJ, Yan N. Non-Faradaic Promotion of Ethylene Hydrogenation under Oscillating Potentials. JACS AU 2021; 1:536-542. [PMID: 34467316 PMCID: PMC8395646 DOI: 10.1021/jacsau.1c00044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The acceleration of Faradaic reactions by oscillating electric potentials has emerged as a viable tool to enhance electrocatalysis, but the non-Faradaic dynamic promotion of thermal catalytic processes remains to be proven. Here, we present experimental evidence showing that oscillating potentials are capable of enhancing the rate of ethylene hydrogenation despite no promotion effect being observed under static potentials. The non-Faradaic dynamic enhancement reaches up to 553% on a Pd/C electrode when cycling between -0.25 and 0.55 VNHE under optimized conditions with a frequency of around 0.1 Hz and a duty cycle of 99%. Under those conditions, the catalytic reaction rates were promoted beyond the rate of charge transfer to the electrode surface, confirming the non-Faradaic nature of the process. Experiments in different electrolytes reveal a good correlation between the catalytic enhancement and the double-layer capacitance, a measure for the interfacial electric field strength. Preliminary kinetic data is consistent with cyclic removal of adsorbates from the surface at negative potential and the subsequent adsorption of H2 and C2H4 and hydrogenation reaction at the positively polarized surface.
Collapse
|
49
|
Coverage-dependent formic acid oxidation reaction kinetics determined by oscillating potentials. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Liu L, Corma A. Structural transformations of solid electrocatalysts and photocatalysts. Nat Rev Chem 2021; 5:256-276. [PMID: 37117283 DOI: 10.1038/s41570-021-00255-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/13/2023]
Abstract
Heterogeneous catalysts often undergo structural transformations when they operate under thermal reaction conditions. These transformations are reflected in their evolving catalytic activity, and a fundamental understanding of the changing nature of active sites is vital for the rational design of solid materials for applications. Beyond thermal catalysis, both photocatalysis and electrocatalysis are topical because they can harness renewable energy to drive uphill reactions that afford commodity chemicals and fuels. Although structural transformations of photocatalysts and electrocatalysts have been observed in operando, the resulting implications for catalytic behaviour are not fully understood. In this Review, we summarize and compare the structural evolution of solid thermal catalysts, electrocatalysts and photocatalysts. We suggest that well-established knowledge of thermal catalysis offers a good basis to understand emerging photocatalysis and electrocatalysis research.
Collapse
|