1
|
Kusy R, Grela K. Renaissance in Alkyne Semihydrogenation: Mechanism, Selectivity, Functional Group Tolerance, and Applications in Organic Synthesis. Chem Rev 2025. [PMID: 40279298 DOI: 10.1021/acs.chemrev.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Alkenes constitute a significant class of chemical compounds with applications in the bulk, pharmaceutical, or perfume industry. Among the known methods of olefin production, semihydrogenation of the C-C triple bond seems to be the most straightforward one. Nonetheless, the success of this reaction requires full control over diastereoselectivity, eradication of a parasitic process of over-reduction or migration of the C-C double bond formed, and achieving satisfactory functional-group compatibility. The review demonstrates developments in the field of alkyne semihydrogenation over the period 2010-2022, with selected papers published in 2023 and 2024, emphasizing solutions to the above-mentioned limitations. We discuss mechanistic aspects of this transformation, including those related to unconventional systems. The review includes examples of applications of alkyne semihydrogenation in organic synthesis, confirming the considerable utility of this process. Finally, strategies to enhance catalyst selectivity are summarized. For the reader's convenience, we provided a graphical guidebook to catalytic systems, illustrating the efficiency of the particular method.
Collapse
Affiliation(s)
- Rafał Kusy
- Leibniz-Institute for Catalysis, Albert-Einstein-Street 29a, 18059 Rostock, Germany
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karol Grela
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Biological and Chemical Research Centre, Faculty of Chemistry University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
2
|
Hruzd M, Kleynemeyer SL, Michon C, Bastin S, Pollet E, Ritleng V, Sortais JB. Thioether-NHC bidentate manganese complexes as efficient phosphine-free catalysts for hydrogenation at room temperature. Chem Commun (Camb) 2025; 61:2969-2972. [PMID: 39841160 DOI: 10.1039/d4cc06627h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A series of four original phosphine-free thioether-NHC manganese complexes have been synthesised and fully characterized. These complexes have been applied as efficient catalysts for the hydrogenation of alkenes and ketones at room temperature, with low catalyst loadings (TON up to 900).
Collapse
Affiliation(s)
- Mariia Hruzd
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, Strasbourg, France.
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| | | | - Christophe Michon
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, Strasbourg, France.
| | | | - Eric Pollet
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, ICPEES, UMR 7515, 25 rue Becquerel, Strasbourg, France
| | - Vincent Ritleng
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, Strasbourg, France.
| | - Jean-Baptiste Sortais
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
3
|
Mahato A, Mahato A, Ghoshal S, Pramanik A, Sarkar P. Understanding asymmetric hydrogenation of alkenes catalyzed by the first-row transition metal Fe: a first-principles exploration. Phys Chem Chem Phys 2025; 27:1100-1111. [PMID: 39688024 DOI: 10.1039/d4cp03583f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
First-principles analyses were performed for understanding the mechanistic details of Fe-catalysed asymmetric hydrogenation of alkenes in the presence of silane that has recently been experimentally realized. The catalytic hydrogenation is expected to proceed through initial hydride transfer from Fe-H to the CC bond of alkene, followed by σ-bond metathesis of hydrosilane to afford a chiral alkane product and an iron silyl species, which then reacts with H2 to regenerate the iron hydride species via another σ-bond metathesis. The mechanistic details and the origin of the regioselectivity and stereoselectivity of these reactions are understood on the basis of detailed potential energy surface analysis, charge transfer and noncovalent interactions involved therein, strain energy and isodesmic studies in the solvated stage. Finally, general aspects are highlighted for guiding further experimental studies to precisely control the reaction scheme.
Collapse
Affiliation(s)
- Akhilesh Mahato
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, West Bengal-723104, India.
| | - Anupama Mahato
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, West Bengal-723104, India.
| | - Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal-731235, India.
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, West Bengal-723104, India.
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal-731235, India.
| |
Collapse
|
4
|
Kovalenko SA, Gulyaeva ES, Osipova ES, Filippov OA, Danshina AA, Vendier L, Kireev NV, Godovikov IA, Canac Y, Valyaev DA, Belkova NV, Shubina ES. Influence of triphosphine ligand coordination geometry in Mn(I) hydride complexes [(P ∩P ∩P)(CO) 2MnH] on their kinetic hydricity. Dalton Trans 2024; 54:122-132. [PMID: 39543971 DOI: 10.1039/d4dt02496f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Octahedral Mn(I) complexes bearing tridentate donor ligands [(L∩L'∩L'')(CO)2MnX] have recently emerged as major players in catalytic (de)hydrogenation processes. While most of these systems are still based on structurally rigid pincer scaffolds imposing a meridional coordination mode, for some more flexible tridentate ligands a facial arrangement of donor moieties becomes possible. Accordingly, the geometry of the corresponding Mn(I) hydrides [(L∩L'∩L'')(CO)2MnH] directly involved in the catalytic processes, namely the nature of the donor extremity located in the trans-position of the hydride (CO and L for mer- and fac-configurations, respectively) may influence their hydride transfer ability. Herein, low-temperature IR and NMR spectroscopy studies of two model Mn(I) complexes, mer-[(L1)(CO)2MnH] and fac-[(L2)(CO)2MnH], bearing similar triphosphine ligands (L1 = PhP(CH2CH2PPh2)2; L2 = MeC(CH2PPh2)3) in the presence of B(C6F5)3 as the H- abstractor revealed for the first time a higher kinetic hydricity of the tripodal system. Even for the pincer complex, hydride transfer proceeds from the non-covalent adduct fac-[(L1)(CO)2MnH]⋯B(C6F5)3 with the facial geometry arising from the mer-to-fac isomerization of the initial mer-[(L1)(CO)2MnH]. The higher reactivity of the fac-hydride derivatives was found to be consistent with the catalytic performance of the corresponding Mn(I) bromide complexes in the benchmark ester hydrosilylation.
Collapse
Affiliation(s)
- Sergey A Kovalenko
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Ekaterina S Gulyaeva
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
| | - Elena S Osipova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Anastasia A Danshina
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
| | - Nikolay V Kireev
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Ivan A Godovikov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
| | - Natalia V Belkova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia.
| |
Collapse
|
5
|
Li H, Fan M, Liu Q. Unveiling the Unique Reactivity of Anionic Mn(I) Complexes via Metal-Ligand Cooperation: Nucleophilic Attack on C(sp 3)-X Bonds. J Am Chem Soc 2024; 146:26649-26656. [PMID: 39295280 DOI: 10.1021/jacs.4c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Metal-ligand cooperation (MLC) has emerged as a pivotal strategy for the catalytic activation of small molecules within both synthetic and biological arenas. Leveraging this approach, a suite of potent catalytic reactions─encompassing hydrogenation, hydroelementation, and dehydrogenative processes─have been realized, with notable advances in manganese catalysis in recent years. However, the activation of alkyl halides by Mn complexes, which typically requires strong reductants to form Mn(-I) complexes that are incompatible with standard cross-coupling conditions, remains a significant challenge. This limitation underscores the urgent need to investigate alternative methods for activating C(sp3)-X bonds using higher valence state Mn complexes. In response to this challenge, we present the synthesis, characterization, and reactivity of a new anionic Mn(I) complex featuring a redox-active dianionic ligand that induces multiple MLC functionalities. We have discovered an innovative mechanism of MLC, characterized by a single ligand transferring two electrons to the metal center. This novel process facilitates an orbital-symmetry-allowed nucleophilic attack on C(sp3)-X bonds, preserving manganese's oxidative state at +1. To the best of our knowledge, this is the first instance where the MLC strategy via a two-electron transfer process has been utilized to execute an SN2 nucleophilic attack at a C(sp3)-X bond by a relatively electron-deficient metal center like Mn(I). Additionally, the dianionic ligand of the anionic Mn(I) complex exhibits ambident nucleophilicity by reacting with different electrophiles, further highlighting its versatile reactivity.
Collapse
Affiliation(s)
- Hengxu Li
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mingjie Fan
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Liu
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Blaha I, Weber S, Dülger R, Veiros LF, Kirchner K. Alkene Isomerization Catalyzed by a Mn(I) Bisphosphine Borohydride Complex. ACS Catal 2024; 14:13174-13180. [PMID: 39263541 PMCID: PMC11385370 DOI: 10.1021/acscatal.4c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
An additive-free manganese-catalyzed isomerization of terminal alkenes to internal alkenes is described. This reaction is implementing an inexpensive nonprecious metal catalyst. The most efficient catalyst is the borohydride complex cis-[Mn(dippe)(CO)2(κ2-BH4)]. This catalyst operates at room temperature, with a catalyst loading of 2.5 mol %. A variety of terminal alkenes is effectively and selectively transformed into the respective internal E-alkenes. Preliminary results show chain-walking isomerization at an elevated temperature. Mechanistic studies were carried out, including stoichiometric reactions and in situ NMR analysis. These experiments are flanked by computational studies. Based on these, the catalytic process is initiated by the liberation of "BH3" as a THF adduct. The catalytic process is initiated by double bond insertion into an M-H species, leading to an alkyl metal intermediate, followed by β-hydride elimination at the opposite position to afford the isomerization product.
Collapse
Affiliation(s)
- Ines Blaha
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Stefan Weber
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Robin Dülger
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| |
Collapse
|
7
|
Weber S, Blaha I, Kirchner K. Manganese catalysed reduction of nitriles with amine boranes. Catal Sci Technol 2024; 14:4843-4847. [PMID: 39206321 PMCID: PMC11347915 DOI: 10.1039/d4cy00813h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
The room temperature reduction of various nitriles using amine boranes (ABs) catalysed by a manganese(i) alkyl complex is described. Based on experimental findings, a plausible mechanistic scenario is presented. This includes the presence of two catalytic cycles, one for productive reduction of nitriles and one for hydrogen evolution.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/163-AC A-1060 Wien Austria
| | - Ines Blaha
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/163-AC A-1060 Wien Austria
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/163-AC A-1060 Wien Austria
| |
Collapse
|
8
|
Zobernig D, Stöger B, Veiros LF, Kirchner K. Hydroboration of Terminal Alkynes Catalyzed by a Mn(I) Alkyl PCP Pincer Complex Following Two Diverging Pathways. ACS Catal 2024; 14:12385-12391. [PMID: 39169905 PMCID: PMC11334104 DOI: 10.1021/acscatal.4c03805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
A stereo- and regioselective Mn(I)-catalyzed hydroboration of terminal alkynes with pinacolborane (HBPin) is described. The hydroboration reaction is highly Z-selective in the case of aryl alkynes and E-selective in the case of aliphatic alkynes. The reaction requires no additives or solvents and proceeds with a catalyst loading of 1 mol % at 50-70 °C. The most active precatalyst is the bench-stable alkyl Mn(I) complex cis-[Mn(PCP-iPr)(CO)2(CH2CH2CH3)]. The catalytic process is initiated by the migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate. This species undergoes C-H and B-H bond cleavage of the alkyne (aromatic alkynes) and HBPin (in the case of aliphatic alkynes) forming the active Mn(I) alkynyl and boryl catalysts [Mn(PCP-iPr)(CO)(C≡CR)] and [Mn(PCP-iPr)(CO)(BPin)], respectively. A broad variety of aromatic and aliphatic alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations. The functionalized alkenes can be used for further applications in cross-coupling reactions.
Collapse
Affiliation(s)
- Daniel
P. Zobernig
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, Wien A-1060, Austria
| | - Berthold Stöger
- X-Ray
Center, TU Wien, Getreidemarkt 9/163, Wien A-1060, Austria
| | - Luis F. Veiros
- Centro
de
Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto
Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049 001, Portugal
| | - Karl Kirchner
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, Wien A-1060, Austria
| |
Collapse
|
9
|
Dey K, de Ruiter G. Chemoselective Hydrogenation of α,β-Unsaturated Ketones Catalyzed by a Manganese(I) Hydride Complex. Org Lett 2024; 26:4173-4177. [PMID: 38738936 PMCID: PMC11129310 DOI: 10.1021/acs.orglett.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Here, we report the chemoselective hydrogenation of α,β-unsaturated ketones catalyzed by a well-defined Mn(I) PCNHCP pincer complex [(PCNHCP)Mn(CO)2H] (1). The reaction is compatible with a wide variety of functional groups that include halides, esters, amides, nitriles, nitro, alkynes, and alkenes, and for most substrates occurs readily at ambient hydrogen pressure (1-2 bar). Mechanistic studies and deuterium labeling experiments reveal a non-cooperative mechanism, which is further discussed in this report.
Collapse
Affiliation(s)
- Kartick Dey
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Graham de Ruiter
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
10
|
Pecak J, Talmazan RA, Svatunek D, Kirchner K, Podewitz M. Is Mn(I) More Promising Than Fe(II)-A Comparison of Mn vs Fe Complexes for Olefin Metathesis. Organometallics 2024; 43:457-466. [PMID: 38425381 PMCID: PMC10900517 DOI: 10.1021/acs.organomet.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
Olefin metathesis is one of the most significant transformations in organic chemistry and is an excellent example for efficient homogeneous catalysis. Although most currently used catalysts are primarily based on 4d and 5d metals, cycloaddition and cycloreversion reactions can also be attributed to first-row transition metals, such as Fe. Surprisingly, the potential of Mn(I)-based catalysts for olefin metathesis has been unexplored despite their prominence in homogeneous catalysis and their diagonal relationship to Ru(II). In the present study, we have investigated the prospective capabilities of Mn complexes for cycloaddition and reversion reactions using density functional theory. Therefore, we have initially compared the literature known iron model systems and their isoelectronic Mn counterparts regarding their reactivity and electronic structure. Next, we constructed potential Mn complexes derived from synthetically accessible species, including carbonyl ligands and obeying octahedral geometry. Based on thermodynamic parameters and the calculation of electronic descriptors, we were able to validate the isodiagonal relationship. Our study serves as guidance for the experimental chemist.
Collapse
Affiliation(s)
- Jan Pecak
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Radu A. Talmazan
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Dennis Svatunek
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Karl Kirchner
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Maren Podewitz
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| |
Collapse
|
11
|
Zobernig DP, Luxner M, Stöger B, Veiros LF, Kirchner K. Hydrogenation of Terminal Alkenes Catalyzed by Air-Stable Mn(I) Complexes Bearing an N-Heterocyclic Carbene-Based PCP Pincer Ligand. Chemistry 2024; 30:e202302455. [PMID: 37814821 PMCID: PMC10952557 DOI: 10.1002/chem.202302455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Efficient hydrogenations of terminal alkenes with molecular hydrogen catalyzed by well-defined bench stable Mn(I) complexes containing an N-heterocyclic carbene-based PCP pincer ligand are described. These reactions are environmentally benign and atom economic, implementing an inexpensive, earth abundant non-precious metal catalyst. A range of aromatic and aliphatic alkenes were efficiently converted into alkanes in good to excellent yields. The hydrogenation proceeds at 100 °C with catalyst loadings of 0.25-0.5 mol %, 2.5-5 mol % base (KOt Bu) and a hydrogen pressure of 20 bar. Mechanistic insight into the catalytic reaction is provided by means of DFT calculations.
Collapse
Affiliation(s)
- Daniel P. Zobernig
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-AC1060WienAustria
| | - Michael Luxner
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-AC1060WienAustria
| | | | - Luis F. Veiros
- Centro de Química Estrutural, Institute of Molecular SciencesDepartamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de LisboaAv. Rovisco Pais1049 001LisboaPortugal
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-AC1060WienAustria
| |
Collapse
|
12
|
Schratzberger H, Stöger B, Veiros LF, Kirchner K. Selective Transfer Semihydrogenation of Alkynes Catalyzed by an Iron PCP Pincer Alkyl Complex. ACS Catal 2023; 13:14012-14022. [PMID: 37942266 PMCID: PMC10629171 DOI: 10.1021/acscatal.3c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Indexed: 11/10/2023]
Abstract
Two bench-stable Fe(II) alkyl complexes [Fe(κ3PCP-PCP-iPr)(CO)2(R)] (R = CH2CH2CH3, CH3) were obtained by the treatment of [Fe(κ3PCP-PCP-iPr)(CO)2(H)] with NaNH2 and subsequent addition of CH3CH2CH2Br and CH3I, respectively. The reaction proceeds via the anionic Fe(0) intermediate Na[Fe(κ3PCP-PCP-iPr)(CO)2]. The catalytic performance of both alkyl complexes was investigated for the transfer hydrogenation of terminal and internal alkynes utilizing PhSiH3 and iPrOH as a hydrogen source. Precatalyst activation is initiated by migration of the alkyl ligand to the carbonyl C atom of an adjacent CO ligand. In agreement with previous findings, the rate of alkyl migration follows the order nPr > Me. Accordingly, [Fe(κ3PCP-PCP-iPr)(CO)2(CH2CH2CH3)] is the more active catalyst. The reaction takes place at 25 °C with a catalyst loading of 0.5 mol%. There was no overhydrogenation, and in the case of internal alkynes, exclusively, Z-alkenes are formed. The implemented protocol tolerates a variety of electron-donating and electron-withdrawing functional groups including halides, nitriles, unprotected amines, and heterocycles. Mechanistic investigations including deuterium labeling studies and DFT calculations were undertaken to provide a reasonable reaction mechanism.
Collapse
Affiliation(s)
- Heiko Schratzberger
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Berthold Stöger
- X-Ray
Center, TU Wien, Getreidemarkt 9/163, A-1060 Wien, Austria
| | - Luis F. Veiros
- Centro
de
Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Karl Kirchner
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| |
Collapse
|
13
|
Both NF, Spannenberg A, Jiao H, Junge K, Beller M. Bis(N-Heterocyclic Carbene) Manganese(I) Complexes: Efficient and Simple Hydrogenation Catalysts. Angew Chem Int Ed Engl 2023; 62:e202307987. [PMID: 37395302 DOI: 10.1002/anie.202307987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
The use of bis(NHC) manganese(I) complexes 3 as catalysts for the hydrogenation of esters was investigated. For that purpose, a series of complexes has been synthesized via an improved two step procedure utilizing bis(NHC)-BEt3 adducts. By applying complexes 3 with KHBEt3 as additive, various aromatic and aliphatic esters were hydrogenated successfully at mild temperatures and low catalyst loadings, highlighting the efficiency of the novel catalytic system. The versatility of the developed catalytic system was further demonstrated by the hydrogenation of other substrate classes like ketones, nitriles, N-heteroarenes and alkenes. Mechanistic experiments and DFT calculations indicate an inner sphere mechanism with the loss of one CO ligand and reveal the role of BEt3 as cocatalyst.
Collapse
Affiliation(s)
- Niklas F Both
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
14
|
Brodie CN, Owen AE, Kolb JS, Bühl M, Kumar A. Synthesis of Polyethyleneimines from the Manganese-Catalysed Coupling of Ethylene Glycol and Ethylenediamine. Angew Chem Int Ed Engl 2023; 62:e202306655. [PMID: 37195140 PMCID: PMC11497229 DOI: 10.1002/anie.202306655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/18/2023]
Abstract
Polyethyleneimines find many applications in products such as detergents, adhesives, cosmetics, and for processes such as tissue culture, gene therapy, and CO2 capture. The current state-of-the-art technology for the production of the branched polyethyleneimines involves aziridine feedstock which is a highly toxic, volatile and mutagenic chemical and raises significant concern to human health and environment. We report here a novel method for the synthesis of branched polyethyleneimine derivative from ethylene glycol and ethylenediamine which are much safer, environmentally benign, commercially available and potentially renewable feedstock. The polymerisation reaction is catalysed by a complex of an earth-abundant metal, manganese and liberates H2 O as the only by-product. Our mechanistic studies using a combination of DFT computation and experiment suggest that the reaction proceeds by the formation and subsequent hydrogenation of imine intermediates.
Collapse
Affiliation(s)
- Claire N. Brodie
- Department of ChemistryUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUK
| | - Aniekan E. Owen
- Department of ChemistryUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUK
| | - Julian S. Kolb
- Department of ChemistryUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUK
| | - Michael Bühl
- Department of ChemistryUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUK
| | - Amit Kumar
- Department of ChemistryUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUK
| |
Collapse
|
15
|
Kostera S, Weber S, Blaha I, Peruzzini M, Kirchner K, Gonsalvi L. Base- and Additive-Free Carbon Dioxide Hydroboration to Methoxyboranes Catalyzed by Non-Pincer-Type Mn(I) Complexes. ACS Catal 2023; 13:5236-5244. [PMID: 37123593 PMCID: PMC10127281 DOI: 10.1021/acscatal.3c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Indexed: 04/03/2023]
Abstract
Well-defined, bench stable Mn(I) non-pincer-type complexes were tested as earth-abundant transition metal catalysts for the selective reduction of CO2 to boryl-protected MeOH in the presence of pinacolborane (HBpin). Essentially, quantitative yields were obtained under mild reaction conditions (1 bar CO2, 60 °C), without the need of any base or additives, in the presence of the alkylcarbonyl Mn(I) bis(phosphine) complexes fac-[Mn(CH2CH2CH3)(dippe)(CO)3] [Mn1, dippe = 1,2-bis(diisopropylphosphino)ethane] and [Mn(dippe)(CO)2{(μ-H)2(Bpin)}] (Mn4), that is obtained by reaction of the bench-stable precatalyst Mn1 with HBpin via elimination of butanal. Preliminary mechanistic details were obtained by a combination of NMR experiments and monitoring of the catalytic reactions.
Collapse
|
16
|
Almutairi N, Vijjamarri S, Du G. Manganese Salan Complexes as Catalysts for Hydrosilylation of Aldehydes and Ketones. Catalysts 2023. [DOI: 10.3390/catal13040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Manganese has attracted significant recent attention due to its abundance, low toxicity, and versatility in catalysis. In the present study, a series of manganese (III) complexes supported by salan ligands have been synthesized and characterized, and their activity as catalysts in the hydrosilylation of carbonyl compounds was examined. While manganese (III) chloride complexes exhibited minimal catalytic efficacy without activation of silver perchlorate, manganese (III) azide complexes showed good activity in the hydrosilylation of carbonyl compounds. Under optimized reaction conditions, several types of aldehydes and ketones could be reduced with good yields and tolerance to a variety of functional groups. The possible mechanisms of silane activation and hydrosilylation were discussed in light of relevant experimental observations.
Collapse
|
17
|
Yang W, Filonenko GA, Pidko EA. Performance of homogeneous catalysts viewed in dynamics. Chem Commun (Camb) 2023; 59:1757-1768. [PMID: 36683401 PMCID: PMC9910057 DOI: 10.1039/d2cc05625a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Effective assessment of catalytic performance is the foundation for the rational design and development of new catalysts with superior performance. The ubiquitous screening/optimization studies use reaction yields as the sole performance metric in an approach that often neglects the complexity of the catalytic system and intrinsic reactivities of the catalysts. Using an example of hydrogenation catalysis, we examine the transient behavior of catalysts that are often encountered in activation, deactivation and catalytic turnover processes. Each of these processes and the reaction environment in which they take place are gradually shown to determine the real-time catalyst speciation and the resulting kinetics of the overall catalytic reaction. As a result, the catalyst performance becomes a complex and time-dependent metric defined by multiple descriptors apart from the reaction yield. This behaviour is not limited to hydrogenation catalysis and affects various catalytic transformations. In this feature article, we discuss these catalytically relevant descriptors in an attempt to arrive at a comprehensive depiction of catalytic performance.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Georgy A. Filonenko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 92629 HZDelftThe Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
18
|
Wang Z, Chen S, Chen C, Yang Y, Wang C. Manganese-Catalyzed Hydrogenative Desulfurization of Thioamides. Angew Chem Int Ed Engl 2023; 62:e202215963. [PMID: 36428247 DOI: 10.1002/anie.202215963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Earth-abundant transition metal catalysis has emerged as an important alternative to noble transition metal catalysis in hydrogenation reactions. However, there has been no Earth-abundant transition metal catalyzed hydrogenation of thioamides reported so far, presumably due to the poisoning of catalysts by sulfur-containing molecules. Herein, we described the first manganese-catalyzed hydrogenative desulfurization of thioamides to amines or imines. The key to success is the use of MnBr(CO)5 instead of commonly-employed pincer-manganese catalysts, together with simple NEt3 and CuBr. This protocol features excellent selectivity on sole cleavage of the C=S bond of thioamides, in contrast to the only known Ru-catalyzed hydrogenation of thioamides, and unprecedented chemo-selectivity tolerating vulnerable functional groups such as nitrile, ketone, aldehyde, ester, sulfone, nitro, olefin, alkyne and heterocycle, which are usually susceptible to common hydride-type reductive protocols.
Collapse
Affiliation(s)
- Zelong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Silin Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Wuyi University, School of Biotechnology and Health Sciences, Jiangmen, 529020, China
| | - Chao Chen
- Wuyi University, School of Biotechnology and Health Sciences, Jiangmen, 529020, China.,Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Wiedemaier F, Belaj F, Mösch-Zanetti NC. Elucidating the role of amine donors in manganese catalyzed transfer hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Shabade AB, Sharma DM, Bajpai P, Gonnade RG, Vanka K, Punji B. Room temperature chemoselective hydrogenation of C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds by using a well-defined mixed donor Mn(i) pincer catalyst. Chem Sci 2022; 13:13764-13773. [PMID: 36544725 PMCID: PMC9710210 DOI: 10.1039/d2sc05274a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Chemoselective hydrogenation of C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds in α,β-unsaturated ketones, aldehydes and imines is accomplished at room temperature (27 °C) using a well-defined Mn(i) catalyst and 5.0 bar H2. Amongst the three mixed-donor Mn(i) complexes developed, κ3-(R2PN3NPyz)Mn(CO)2Br (R = Ph, iPr, t Bu); the t Bu-substituted complex ( tBu2PN3NPyz)Mn(CO)2Br shows exceptional chemoselective catalytic reduction of unsaturated bonds. This hydrogenation protocol tolerates a range of highly susceptible functionalities, such as halides (-F, -Cl, -Br, and -I), alkoxy and hydroxy, including hydrogen-sensitive moieties like acetyl, nitrile, nitro, epoxide, and unconjugated alkenyl and alkynyl groups. Additionally, the disclosed method applies to indole, pyrrole, furan, thiophene, and pyridine-containing unsaturated ketones leading to the corresponding saturated ketones. The C[double bond, length as m-dash]C bond is chemoselectively hydrogenated in α,β-unsaturated ketones, while the aldehyde's C[double bond, length as m-dash]O bond and imine's C[double bond, length as m-dash]N bond are preferentially reduced over the C[double bond, length as m-dash]C bond. A detailed mechanistic study highlighted the non-innocent behavior of the ligand in the ( tBu2PN3NPyz)Mn(i) complex and indicated a metal-ligand cooperative catalytic pathway. The molecular hydrogen (H2) acts as a hydride source, whereas MeOH provides a proton for hydrogenation. DFT energy calculations supported the facile progress of most catalytic steps, involving a crucial turnover-limiting H2 activation.
Collapse
Affiliation(s)
- Anand B. Shabade
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | - Dipesh M. Sharma
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | - Priyam Bajpai
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Physical and Material Chemistry Division, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Centre for Material Characterization, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Physical and Material Chemistry Division, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Benudhar Punji
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| |
Collapse
|
21
|
Vielhaber T, Faust K, Bögl T, Schöfberger W, Topf C. A Triphos-Modified Tungsten Piano-Stool Complex for the Homogeneous (Conjugate) Hydrogenation of Ketones and Esters. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Torres-Calis A, García JJ. Homogeneous Manganese-Catalyzed Hydrofunctionalizations of Alkenes and Alkynes: Catalytic and Mechanistic Tendencies. ACS OMEGA 2022; 7:37008-37038. [PMID: 36312376 PMCID: PMC9608411 DOI: 10.1021/acsomega.2c05109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many manganese-based homogeneous catalytic precursors have been developed as powerful alternatives in organic synthesis. Among these, the hydrofunctionalizations of unsaturated C-C bonds correspond to outstanding ways to afford compounds with more versatile functional groups, which are commonly used as building blocks in the production of fine chemicals and feedstock for the industrial field. Herein, we present an account of the Mn-catalyzed homogeneous hydrofunctionalizations of alkenes and alkynes with the main objective of finding catalytic and mechanistic tendencies that could serve as a platform for the works to come.
Collapse
|
23
|
Ribeiro Gouveia L, Ison EA. Well-Defined ENENES Re and Mn Complexes and Their Application in Catalysis: The Role of Potassium tert-Butoxide. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liana Ribeiro Gouveia
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Elon A. Ison
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
24
|
Weber S, Kirchner K. Manganese Alkyl Carbonyl Complexes: From Iconic Stoichiometric Textbook Reactions to Catalytic Applications. Acc Chem Res 2022; 55:2740-2751. [PMID: 36074912 PMCID: PMC9494751 DOI: 10.1021/acs.accounts.2c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The activation of weakly polarized bonds represents a challenging, yet highly valuable process. In this context, precious metal catalysts have been used as reliable compounds for the activation of rather inert bonds for the last several decades. Nevertheless, base-metal complexes including cobalt, iron, or nickel are currently promising candidates for the substitution of noble metals in order to develop more sustainable processes. In the past few years, manganese(I)-based complexes were heavily employed as efficient catalysts for (de)hydrogenation reactions. However, the vast majority of these complexes operate via a metal-ligand bifunctionality as already well implemented for precious metals decades ago. Although high reactivity can be achieved in various reactions, this concept is often not applicable to certain transformations due to outer-sphere mechanisms. In this Account, we outline the potential of alkylated Mn(I)-carbonyl complexes for the activation of nonpolar and moderately polar E-H (E = H, B, C, Si) bonds and disclose our successful approach for the utilization of complexes in the field of homogeneous catalysis. This involves the rational design of manganese complexes for hydrogenation reactions involving ketones, nitriles, carbon dioxide, and alkynes. In addition to that, the reduction of alkenes by dihydrogen could be achieved by a series of well-defined manganese complexes which was not possible before. Furthermore, we elucidate the potential of our Mn-based catalysts in the field of hydrofunctionalization reactions for carbon-carbon multiple bonds. Our investigations unveiled novel insights into reaction pathways of dehydrogenative silylation of alkenes and trans-1,2-diboration of terminal alkynes, which was not yet reported for transition metals. Due to rational catalyst design, these transformations can be achieved under mild reaction conditions. Delightfully, all of the employed complexes are bench-stable compounds. We took advantage of the fact that Mn(I) alkyl complexes are known to undergo migratory insertion of the alkyl group into the CO ligand, yielding an unsaturated acyl intermediate. Hydrogen atom abstraction by the acyl ligand then paves the way to an active species for a variety of catalytic transformations which all proceed via an inner-sphere process. Although these textbook reactions have been well-known for decades, the application in catalytic transformations is still in its infancy. A brief historical overview of alkylated manganese(I)-carbonyl complexes is provided, covering the synthesis and especially iconic stoichiometric transformations, e.g., carbonylation, as intensively examined by Calderazzo, Moss, and others. An outline of potential future applications of defined alkyl manganese complexes will be given, which may inspire researchers for the development of novel (base-)metal catalysts.
Collapse
|
25
|
Yang W, Chernyshov IY, Weber M, Pidko EA, Filonenko GA. Switching between Hydrogenation and Olefin Transposition Catalysis via Silencing NH Cooperativity in Mn(I) Pincer Complexes. ACS Catal 2022; 12:10818-10825. [PMID: 36082051 PMCID: PMC9442580 DOI: 10.1021/acscatal.2c02963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Indexed: 11/30/2022]
Abstract
![]()
While Mn-catalyzed (de)hydrogenation of carbonyl derivatives
has
been well established, the reactivity of Mn hydrides with olefins
remains very rare. Herein, we report a Mn(I) pincer complex that effectively
promotes site-controlled transposition of olefins. This reactivity
is shown to emerge once the N–H functionality within the Mn/NH
bifunctional complex is suppressed by alkylation. While detrimental
for carbonyl (de)hydrogenation, such masking of the cooperative N–H
functionality allows for the highly efficient conversion of a wide
range of allylarenes to higher-value 1-propenybenzenes in near-quantitative
yield with excellent stereoselectivities. The reactivity toward a
single positional isomerization was also retained for long-chain alkenes,
resulting in the highly regioselective formation of 2-alkenes, which
are less thermodynamically stable compared to other possible isomerization
products. The detailed mechanistic analysis of the reaction between
the activated Mn catalyst and olefins points to catalysis operating
via a metal–alkyl mechanism—one of the three conventional
transposition mechanisms previously unknown in Mn complexes.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ivan Yu. Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Evgeny A. Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A. Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
26
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
27
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese-Catalyzed Asymmetric Hydrogenation of 3H-Indoles. Angew Chem Int Ed Engl 2022; 61:e202202814. [PMID: 35238455 DOI: 10.1002/anie.202202814] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/21/2022]
Abstract
The asymmetric hydrogenation (AH) of 3H-indoles represents an ideal approach to the synthesis of useful chiral indoline scaffolds. However, very few catalytic systems based on precious metals have been developed to realize this challenging reaction. Herein, we report a Mn-catalyzed AH of 3H-indoles with excellent yields and enantioselectivities. The kinetic resolution of racemic 3H-indoles by AH was also achieved with high s-factors to construct quaternary stereocenters. Many acid-sensitive functional groups, which cannot be tolerated when using a state-of-the-art ruthenium catalyst, were compatible with manganese catalysis. This new process expands the scope of this transformation and highlights the uniqueness of earth-abundant metal catalysis. The reaction could proceed with catalyst loadings at the parts per million (ppm) level with an exceptional turnover number of 72 350. This is the highest value yet reported for an earth-abundant metal-catalyzed AH reaction.
Collapse
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yihan Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yibiao Li
- School of Biotechnology and Health, Wuyi University, Jiangmen, Guangdong, 529090, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
28
|
Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Yang W, Kalavalapalli TY, Krieger AM, Khvorost TA, Chernyshov IY, Weber M, Uslamin EA, Pidko EA, Filonenko GA. Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation. J Am Chem Soc 2022; 144:8129-8137. [PMID: 35476423 PMCID: PMC9100671 DOI: 10.1021/jacs.2c00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Homogeneously catalyzed
reactions often make use of additives and
promotors that affect reactivity patterns and improve catalytic performance.
While the role of reaction promotors is often discussed in view of
their chemical reactivity, we demonstrate that they can be involved
in catalysis indirectly. In particular, we demonstrate that promotors
can adjust the thermodynamics of key transformations in homogeneous
hydrogenation catalysis and enable reactions that would be unfavorable
otherwise. We identified this phenomenon in a set of well-established
and new Mn pincer catalysts that suffer from persistent product inhibition
in ester hydrogenation. Although alkoxide base additives do not directly
participate in inhibitory transformations, they can affect the equilibrium
constants of these processes. Experimentally, we confirm that by varying
the base promotor concentration one can control catalyst speciation
and inflict substantial changes to the standard free energies of the
key steps in the catalytic cycle. Despite the fact that the latter
are universally assumed to be constant, we demonstrate that reaction
thermodynamics and catalyst state are subject to external control.
These results suggest that reaction promotors can be viewed as an
integral component of the reaction medium, on its own capable of improving
the catalytic performance and reshaping the seemingly rigid thermodynamic
landscape of the catalytic transformation.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tejas Y Kalavalapalli
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Annika M Krieger
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Taras A Khvorost
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Ivan Yu Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, Berlin D-14195, Germany
| | - Evgeny A Uslamin
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
30
|
Osipova ES, Gulyaeva ES, Kireev NV, Kovalenko SA, Bijani C, Canac Y, Valyaev DA, Filippov OA, Belkova NV, Shubina ES. Fac-to- mer isomerization triggers hydride transfer from Mn(I) complex fac-[(dppm)Mn(CO) 3H]. Chem Commun (Camb) 2022; 58:5017-5020. [PMID: 35373227 DOI: 10.1039/d2cc00999d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-temperature IR and NMR studies combined with DFT calculations revealed the mechanistic complexity of apparently simple reactions between Mn(I) complex fac-[(dppm)Mn(CO)3H] and Lewis acids (LA = Ph3C+, B(C6F5)3) involving the formation of so-far elusive meridional hydride species mer-[(dppm)Mn(CO)3H⋯LA] and unusual dearomatization of the Ph3C+ cation upon hydride transfer.
Collapse
Affiliation(s)
- Elena S Osipova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28 Vavilov str., GSP-1, B-334, Moscow, 119991, Russia.
| | - Ekaterina S Gulyaeva
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28 Vavilov str., GSP-1, B-334, Moscow, 119991, Russia. .,LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse, Cedex 4, France.
| | - Nikolay V Kireev
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28 Vavilov str., GSP-1, B-334, Moscow, 119991, Russia.
| | - Sergey A Kovalenko
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28 Vavilov str., GSP-1, B-334, Moscow, 119991, Russia.
| | - Christian Bijani
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse, Cedex 4, France.
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse, Cedex 4, France.
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse, Cedex 4, France.
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28 Vavilov str., GSP-1, B-334, Moscow, 119991, Russia.
| | - Natalia V Belkova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28 Vavilov str., GSP-1, B-334, Moscow, 119991, Russia.
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28 Vavilov str., GSP-1, B-334, Moscow, 119991, Russia.
| |
Collapse
|
31
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of 3H‐Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Yihan Xu
- Tsinghua University Department of Chemistry CHINA
| | - Yibiao Li
- Wuyi University Department of Chemistry CHILE
| | - Qiang Liu
- Tsinghua University Department of Chemistry Tsinghuayuan 1 100084 Beijing CHINA
| |
Collapse
|
32
|
Farrar-Tobar RA, Weber S, Csendes Z, Ammaturo A, Fleissner S, Hoffmann H, Veiros LF, Kirchner K. E-Selective Manganese-Catalyzed Semihydrogenation of Alkynes with H 2 Directly Employed or In Situ-Generated. ACS Catal 2022; 12:2253-2260. [PMID: 35211351 PMCID: PMC8859827 DOI: 10.1021/acscatal.1c06022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Selective semihydrogenation of alkynes with the Mn(I) alkyl catalyst fac-[Mn(dippe)(CO)3(CH2CH2CH3)] (dippe = 1,2-bis(di-iso-propylphosphino)ethane) as a precatalyst is described. The required hydrogen gas is either directly employed or in situ-generated upon alcoholysis of KBH4 with methanol. A series of aryl-aryl, aryl-alkyl, alkyl-alkyl, and terminal alkynes was readily hydrogenated to yield E-alkenes in good to excellent isolated yields. The reaction proceeds at 60 °C for directly employed hydrogen or at 60-90 °C with in situ-generated hydrogen and catalyst loadings of 0.5-2 mol %. The implemented protocol tolerates a variety of electron-donating and electron-withdrawing functional groups, including halides, phenols, nitriles, unprotected amines, and heterocycles. The reaction can be upscaled to the gram scale. Mechanistic investigations, including deuterium-labeling studies and density functional theory (DFT) calculations, were undertaken to provide a reasonable reaction mechanism, showing that initially formed Z-isomer undergoes fast isomerization to afford the thermodynamically more stable E-isomer.
Collapse
Affiliation(s)
- Ronald A. Farrar-Tobar
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Zita Csendes
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Antonio Ammaturo
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Sarah Fleissner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Helmuth Hoffmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, Lisboa 1049-001, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| |
Collapse
|
33
|
Abstract
AbstractRecent developments in manganese-catalyzed reducing transformations—hydrosilylation, hydroboration, hydrogenation, and transfer hydrogenation—are reviewed herein. Over the past half a decade (i.e., 2016 to the present), more than 115 research publications have been reported in these fields. Novel organometallic compounds and new reduction transformations have been discovered and further developed. Significant challenges that had historically acted as barriers for the use of manganese catalysts in reduction reactions are slowly being broken down. This review will hopefully assist in developing this research area, by presenting a clear and concise overview of the catalyst structures and substrate transformations published so far.1 Introduction2 Hydrosilylation3 Hydroboration4 Hydrogenation5 Transfer Hydrogenation6 Conclusion and Perspective
Collapse
Affiliation(s)
- Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion
- Ruhr University Bochum
| | - Peter Schlichter
- Max Planck Institute for Chemical Energy Conversion
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University
| |
Collapse
|
34
|
Torres-Calis A, García JJ. Manganese-catalyzed transfer semihydrogenation of internal alkynes to E-alkenes with iPrOH as hydrogen source. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00246a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Mn-catalyzed transfer semihydrogenation of internal alkynes to E-alkenes is reported herein, along with Mn-catalyzed hydration of α-keto alkynes. Mechanistic studies displayed an asymmetrical Mn-hydride species performing the catalytic turnover.
Collapse
Affiliation(s)
- Antonio Torres-Calis
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Juventino J. García
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
35
|
Cauwenbergh R, Goyal V, Maiti R, Natte K, Das S. Challenges and recent advancements in the transformation of CO 2 into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chem Soc Rev 2022; 51:9371-9423. [DOI: 10.1039/d1cs00921d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of carbon dioxide (CO2) into valuable organic carboxylic acids is essential for maintaining sustainability. In this review, such CO2 thermo-, photo- and electrochemical transformations under 3d-transition metal catalysis are described from 2017 until 2022.
Collapse
Affiliation(s)
- Robin Cauwenbergh
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Vishakha Goyal
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun-248005, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rakesh Maiti
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, 502 285, Telangana, India
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
36
|
Vigneswaran V, Abhyankar PC, MacMillan SN, Lacy DC. H2 Activation across Manganese(I)–C Bonds: Atypical Metal–Ligand Cooperativity in the Aromatization/Dearomatization Paradigm. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vipulan Vigneswaran
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Preshit C. Abhyankar
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Samantha N. MacMillan
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David C. Lacy
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
37
|
van Schendel RKA, Yang W, Uslamin EA, Pidko EA. Utilizing Design of Experiments Approach to Assess Kinetic Parameters for a Mn Homogeneous Hydrogenation Catalyst. ChemCatChem 2021; 13:4886-4896. [PMID: 35874043 PMCID: PMC9291086 DOI: 10.1002/cctc.202101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Indexed: 12/15/2022]
Abstract
Homogeneous hydrogenation catalysts based on metal complexes provide a diverse and highly tunable tool for the fine chemical industry. To fully unleash their potential, fast and effective methods for the evaluation of catalytic properties are needed. In turn, this requires changes in the experimental approaches to test and evaluate the performance of the catalytic processes. Design of experiment combined with statistical analysis can enable time- and resource-efficient experimentation. In this work, we employ a set of different statistical models to obtain the detailed kinetic description of a highly active homogeneous Mn (I) ketone hydrogenation catalyst as a representative model system. The reaction kinetics were analyzed using a full second order polynomial regression model, two models with eliminated parameters and finally a model which implements "chemical logic". The coefficients obtained are compared with the corresponding high-quality kinetic parameters acquired using conventional kinetic experiments. We demonstrate that various kinetic effects can be well captured using different statistical models, providing important insights into the reaction kinetics and mechanism of a complex catalytic reaction.
Collapse
Affiliation(s)
- Robin K. A. van Schendel
- Inorganic Systems EngineeringDepartment of Chemical EngineeringDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Wenjun Yang
- Inorganic Systems EngineeringDepartment of Chemical EngineeringDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Evgeny A. Uslamin
- Inorganic Systems EngineeringDepartment of Chemical EngineeringDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Evgeny A. Pidko
- Inorganic Systems EngineeringDepartment of Chemical EngineeringDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| |
Collapse
|
38
|
Weber S, Zobernig D, Stöger B, Veiros LF, Kirchner K. Hydroboration of Terminal Alkenes and trans-1,2-Diboration of Terminal Alkynes Catalyzed by a Manganese(I) Alkyl Complex. Angew Chem Int Ed Engl 2021; 60:24488-24492. [PMID: 34435424 PMCID: PMC8596825 DOI: 10.1002/anie.202110736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/21/2022]
Abstract
A MnI‐catalyzed hydroboration of terminal alkenes and a 1,2‐diboration of terminal alkynes with pinacolborane (HBPin) is described. For alkenes, anti‐Markovnikov hydroboration takes place; for alkynes the reaction proceeds with excellent trans‐1,2‐selectivity. The most active pre‐catalyst is bench‐stable alkyl bisphosphine MnI complex fac‐[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn–alkyl bond to yield an acyl intermediate, which undergoes B−H bond cleavage of HBPin (for alkenes) and rapid C−H bond cleavage (for alkynes), forming the active MnI boryl and acetylide catalysts [Mn(dippe)(CO)2(BPin)] and [Mn(dippe)(CO)2(C≡CR)], respectively. A broad variety of aromatic and aliphatic alkenes and alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations revealing that an acceptorless reaction is operating involving dihydrogen release.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| | - Daniel Zobernig
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| | - Berthold Stöger
- X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060, Wien, Austria
| | - Luis F Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| |
Collapse
|
39
|
Weber S, Zobernig D, Stöger B, Veiros LF, Kirchner K. Hydroboration of Terminal Alkenes and trans-1,2-Diboration of Terminal Alkynes Catalyzed by a Manganese(I) Alkyl Complex. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:24693-24697. [PMID: 38505543 PMCID: PMC10947181 DOI: 10.1002/ange.202110736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/21/2022]
Abstract
A MnI-catalyzed hydroboration of terminal alkenes and a 1,2-diboration of terminal alkynes with pinacolborane (HBPin) is described. For alkenes, anti-Markovnikov hydroboration takes place; for alkynes the reaction proceeds with excellent trans-1,2-selectivity. The most active pre-catalyst is bench-stable alkyl bisphosphine MnI complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate, which undergoes B-H bond cleavage of HBPin (for alkenes) and rapid C-H bond cleavage (for alkynes), forming the active MnI boryl and acetylide catalysts [Mn(dippe)(CO)2(BPin)] and [Mn(dippe)(CO)2(C≡CR)], respectively. A broad variety of aromatic and aliphatic alkenes and alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations revealing that an acceptorless reaction is operating involving dihydrogen release.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| | - Daniel Zobernig
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| | - Berthold Stöger
- X-Ray CenterVienna University of TechnologyGetreidemarkt 9A-1060WienAustria
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de LisboaAv Rovisco Pais1049-001LisboaPortugal
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| |
Collapse
|
40
|
Weber S, Glavic M, Stöger B, Pittenauer E, Podewitz M, Veiros LF, Kirchner K. Manganese-Catalyzed Dehydrogenative Silylation of Alkenes Following Two Parallel Inner-Sphere Pathways. J Am Chem Soc 2021; 143:17825-17832. [PMID: 34644064 PMCID: PMC8554758 DOI: 10.1021/jacs.1c09175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
We report on an additive-free
Mn(I)-catalyzed dehydrogenative silylation
of terminal alkenes. The most active precatalyst is the bench-stable
alkyl bisphosphine Mn(I) complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic
process is initiated by migratory insertion of a CO ligand into the
Mn–alkyl bond to yield an acyl intermediate which undergoes
rapid Si–H bond cleavage of the silane HSiR3 forming
the active 16e– Mn(I) silyl catalyst [Mn(dippe)(CO)2(SiR3)] together with liberated butanal. A broad
variety of aromatic and aliphatic alkenes was efficiently and selectively
converted into E-vinylsilanes and allylsilanes, respectively,
at room temperature. Mechanistic insights are provided based on experimental
data and DFT calculations revealing that two parallel reaction pathways
are operative: an acceptorless reaction pathway involving dihydrogen
release and a pathway requiring an alkene as sacrificial hydrogen
acceptor.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Manuel Glavic
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Berthold Stöger
- X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Ernst Pittenauer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Maren Podewitz
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais No. 1, 1049-001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| |
Collapse
|
41
|
Lapointe S, Pandey DK, Gallagher JM, Osborne J, Fayzullin RR, Khaskin E, Khusnutdinova JR. Cobalt Complexes of Bulky PNP Ligand: H2 Activation and Catalytic Two-Electron Reactivity in Hydrogenation of Alkenes and Alkynes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sébastien Lapointe
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Dilip K. Pandey
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - James M. Gallagher
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - James Osborne
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Julia R. Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
42
|
Weber S, Iebed D, Glatz M, Kirchner K. Reduction of carbonyl compounds via hydrosilylation catalyzed by well-defined PNP-Mn(I) hydride complexes. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02774-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractReduction reactions of unsaturated compounds are fundamental transformations in synthetic chemistry. In this context, the reduction of polarized double bonds such as carbonyl or C=C motifs can be achieved by hydrogenation reactions. We describe here a highly chemoselective Mn(I)-based PNP pincer catalyst for the hydrosilylation of aldehydes and ketones employing polymethylhydrosiloxane (PMHS) as inexpensive hydrogen donor.
Graphic abstract
Collapse
|
43
|
Weber S, Veiros LF, Kirchner K. Selective Manganese-Catalyzed Dimerization and Cross-Coupling of Terminal Alkynes. ACS Catal 2021; 11:6474-6483. [PMID: 34123484 PMCID: PMC8185884 DOI: 10.1021/acscatal.1c01137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Indexed: 11/28/2022]
Abstract
![]()
Herein, efficient
manganese-catalyzed dimerization of terminal
alkynes to afford 1,3-enynes is described. This reaction is atom economic,
implementing an inexpensive, earth-abundant nonprecious metal catalyst.
The precatalyst is the bench-stable alkyl bisphosphine Mn(I) complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory
insertion of a CO ligand into the Mn–alkyl bond to yield an
acyl intermediate that undergoes rapid C–H bond cleavage of
alkyne, forming an active Mn(I) acetylide catalyst [Mn(dippe)(CO)2(C≡CPh)(η2-HC≡CPh)] together
with liberated butanal. A range of aromatic and aliphatic terminal
alkynes were efficiently and selectively converted into head-to-head Z-1,3-enynes and head-to-tail gem-1,3-enynes,
respectively, in good to excellent yields. Moreover, cross-coupling
of aromatic and aliphatic alkynes selectively yields head-to-tail gem-1,3-enynes. In all cases, the reactions were performed
at 70 °C with a catalyst loading of 1–2 mol %. A mechanism
based on density functional theory (DFT) calculations is presented.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| |
Collapse
|
44
|
Kostera S, Weber S, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L. Carbon Dioxide Hydrogenation to Formate Catalyzed by a Bench-Stable, Non-Pincer-Type Mn(I) Alkylcarbonyl Complex. Organometallics 2021; 40:1213-1220. [PMID: 34054185 PMCID: PMC8155569 DOI: 10.1021/acs.organomet.0c00710] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 01/06/2023]
Abstract
![]()
The catalytic reduction
of carbon dioxide is a process of growing
interest for the use of this simple and abundant molecule as a renewable
building block in C1-chemical synthesis and for hydrogen storage.
The well-defined, bench-stable alkylcarbonyl Mn(I) bis(phosphine)
complex fac-[Mn(CH2CH2CH3)(dippe)(CO)3] [dippe = 1,2-bis(diisopropylphosphino)ethane]
was tested as an efficient and selective non-precious-metal precatalyst
for the hydrogenation of CO2 to formate under mild conditions
(75 bar total pressure, 80 °C), in the presence of a Lewis acid
co-catalyst (LiOTf) and a base (DBU). Mechanistic insight into the
catalytic reaction is provided by means of density functional theory
(DFT) calculations.
Collapse
Affiliation(s)
- Sylwia Kostera
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Composti Organometallici (ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
| | - Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Vienna, Austria
| | - Maurizio Peruzzini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Composti Organometallici (ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
| | - Luis F Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Vienna, Austria
| | - Luca Gonsalvi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Composti Organometallici (ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
45
|
Weber S, Brünig J, Veiros LF, Kirchner K. Manganese-Catalyzed Hydrogenation of Ketones under Mild and Base-free Conditions. Organometallics 2021; 40:1388-1394. [PMID: 34054186 PMCID: PMC8155567 DOI: 10.1021/acs.organomet.1c00161] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/19/2022]
Abstract
![]()
In this paper, several
Mn(I) complexes were applied as catalysts
for the homogeneous hydrogenation of ketones. The most active precatalyst
is the bench-stable alkyl bisphosphine Mn(I) complex fac-[Mn(dippe) (CO)3(CH2CH2CH3)]. The reaction proceeds at room temperature under base-free conditions
with a catalyst loading of 3 mol % and a hydrogen pressure of 10 bar.
A temperature-dependent selectivity for the reduction of α,β-unsaturated
carbonyls was observed. At room temperature, the carbonyl group was
selectively hydrogenated, while the C=C bond stayed intact.
At 60 °C, fully saturated systems were obtained. A plausible
mechanism based on DFT calculations which involves an inner-sphere
hydride transfer is proposed.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Julian Brünig
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Luis F Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, Lisboa 1049-001, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| |
Collapse
|
46
|
|
47
|
Yang W, Chernyshov IY, van Schendel RKA, Weber M, Müller C, Filonenko GA, Pidko EA. Robust and efficient hydrogenation of carbonyl compounds catalysed by mixed donor Mn(I) pincer complexes. Nat Commun 2021; 12:12. [PMID: 33397888 PMCID: PMC7782525 DOI: 10.1038/s41467-020-20168-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h-1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5-200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.
Collapse
Affiliation(s)
- Wenjun Yang
- grid.5292.c0000 0001 2097 4740Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ivan Yu. Chernyshov
- grid.35915.3b0000 0001 0413 4629TheoMAT Group, ChemBio cluster, ITMO University, Lomonosova 9, St, Petersburg, 191002 Russia
| | - Robin K. A. van Schendel
- grid.5292.c0000 0001 2097 4740Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Manuela Weber
- grid.14095.390000 0000 9116 4836Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Christian Müller
- grid.14095.390000 0000 9116 4836Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Georgy A. Filonenko
- grid.5292.c0000 0001 2097 4740Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A. Pidko
- grid.5292.c0000 0001 2097 4740Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
48
|
Garhwal S, Kroeger AA, Thenarukandiyil R, Fridman N, Karton A, de Ruiter G. Manganese-Catalyzed Hydroboration of Terminal Olefins and Metal-Dependent Selectivity in Internal Olefin Isomerization-Hydroboration. Inorg Chem 2021; 60:494-504. [PMID: 33325695 DOI: 10.1021/acs.inorgchem.0c03451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the past decade, the use of earth-abundant metals in homogeneous catalysis has flourished. In particular, metals such as cobalt and iron have been used extensively in reductive transformations including hydrogenation, hydroboration, and hydrosilylation. Manganese, on the other hand, has been considerably less explored in these reductive transformations. Here, we report a well-defined manganese complex, [Mn(iPrBDI)(OTf)2] (2a; BDI = bipyridinediimine), that is an active precatalyst in the hydroboration of a variety of electronically differentiated alkenes (>20 examples). The hydroboration is specifically selective for terminal alkenes and occurs with exclusive anti-Markovnikov selectivity. In contrast, when using the analogous cobalt complex [Co(iPrBDI)(OTf)2] (3a), internal alkenes are hydroborated efficiently, where a sequence of isomerization steps ultimately leads to their hydroboration. The contrasting terminal versus internal alkene selectivity for manganese and cobalt was investigated computationally and is further discussed in the herein-reported study.
Collapse
Affiliation(s)
- Subhash Garhwal
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Asja A Kroeger
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, 6009 Perth, WA Australia
| | - Ranjeesh Thenarukandiyil
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, 6009 Perth, WA Australia
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
49
|
Besora M, Maseras F. Computational insights into metal-catalyzed asymmetric hydrogenation. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Jing Y, Liu J, Ye Z, Su J, Liu Y, Ke Z. The cooperative role of innocent ligand in N-heterocyclic carbene manganese catalyzed carbon dioxide hydrogenation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01211h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The concept of Lewis acidic π* cooperation was proposed for innocent CO ligand in NHC–Mn catalyzed CO2 hydrogenation by systematic DFT studies.
Collapse
Affiliation(s)
- Yaru Jing
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiahao Liu
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zongren Ye
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jiaqi Su
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|