1
|
Fanari O, Tavakoli S, Qiu Y, Makhamreh A, Nian K, Akeson S, Meseonznik M, McCormick CA, Bloch D, Gamper H, Jain M, Hou YM, Wanunu M, Rouhanifard SH. Probing enzyme-dependent pseudouridylation using direct RNA sequencing to assess epitranscriptome plasticity in a neuronal cell line. Cell Syst 2025; 16:101238. [PMID: 40118059 PMCID: PMC12006983 DOI: 10.1016/j.cels.2025.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/03/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
Chemical modifications in mRNAs, such as pseudouridine (psi), can control gene expression. Yet, we know little about how they are regulated, especially in neurons. We applied nanopore direct RNA sequencing to investigate psi dynamics in SH-SY5Y cells in response to two perturbations that model a natural and unnatural cellular state: retinoic-acid-mediated differentiation (healthy) and exposure to the neurotoxicant lead (unhealthy). We discovered that the expression of some psi writers changes significantly in response to physiological conditions. We also found that globally, lead-treated cells have more psi sites but lower relative occupancy than untreated cells and differentiated cells. Examples of highly plastic sites were accompanied by constant expression for psi writers, suggesting trans-regulation. Many positions were static throughout all three cellular states, suggestive of a "housekeeping" function. This study enables investigations into mechanisms that control psi modifications in neurons and their possible protective effects in response to cellular stress.
Collapse
Affiliation(s)
- Oleksandra Fanari
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sepideh Tavakoli
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yuchen Qiu
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Amr Makhamreh
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Keqing Nian
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Stuart Akeson
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | | | - Dylan Bloch
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Meni Wanunu
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
2
|
Gallo A, Sammartino JC, Vazzana R, Giambruno R, Carcione C, Cuscino N, Castelbuono S, Miceli V, Bulati M, Lilleri D, Cassaniti I, Conaldi PG, Baldanti F. Transcriptomic profiles of monocyte-derived macrophages exposed to SARS-CoV-2 VOCs reveal immune-evasion escape driven by delta. J Transl Med 2025; 23:151. [PMID: 39905461 PMCID: PMC11796281 DOI: 10.1186/s12967-025-06158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Since the breakout of COVID-19, the mutated forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown enhanced rates of transmission and adaptation to humans. The variants of concern (VOC), designated Alpha, Beta, Gamma, Delta, and Omicron emerged independent of one another, and in turn rapidly became dominant. The success of each VOC, as well as the virus fitness, were enabled by altered intrinsic functional properties and, reasonably, to virus antigenicity changes, conferring the ability to evade a primed immune response. METHODS We analysed the gene expression profiles of monocyte-derived macrophages (MDM) isolated from whole blood of healthy participants exposed to the 5 different SARS-CoV-2 VOC: D614G, Alpha (B.1.1.7), Gamma (P1), Delta (B.1.617.2), and Omicron BA.1 (B.1.1.529), and to the HCoV-OC43 strain, a coronavirus already present in the population before the SARS-CoV-2 pandemic. Whole transcriptome RNA-Seq, for both coding and non-coding RNAs, was then made. RESULTS After exposure to the 5 VOC of MDM, we initially assessed the presence of the viral SARS-CoV-2 transcripts to confirm viral entry. We then analysed the RNA-Seq data and observed a significant deregulation of both coding and non-coding RNAs. In particular, our RNA-Seq analysis showed a significant up-regulation of several genes involved in different immunological processes, such as PARP9/PARP14 axes, in macrophages exposed to D614G, Alpha, and Gamma variants. Surprisingly, our data showed that macrophages exposed to the Delta variant exhibited a transcriptional profile more similar to the naïve control group, while macrophages exposed to the Omicron variant showed intermediate differentially expressed genes (DEGs) between the two groups. By checking the canonical markers for M1/M2 differentiation states, we did not observe any expression in macrophages exposed to the Delta variant, suggesting an M0 status, comparable to the naïve control group. Finally, we observed a significant deregulation of 3 main types of non-coding RNAs (ncRNAs): long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small nucleolar RNAs (snoRNAs), some of which are common to coronaviruses, and some specific to SARS-CoV-2. CONCLUSION The SARS-CoV-2-dependent alteration of the transcriptome of monocyte-derived macrophage (MDM)-infected cells can be linked to the chronological order of the variants' appearance in the human population. Our data suggest an evolution of VOC in modulating the host immune response, with a strong change in pace beginning with the advent of the Delta variant. MDMs exposed to Delta showed a failure in the activation of the adaptive immune response, and this correlates with the more severe symptoms developed by people affected with this SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Alessia Gallo
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy.
| | - Josè Camilla Sammartino
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Roberta Vazzana
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Roberto Giambruno
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Nicola Cuscino
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Salvatore Castelbuono
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Vitale Miceli
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Matteo Bulati
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Daniele Lilleri
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Irene Cassaniti
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Università degli Studi di Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Fausto Baldanti
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Università degli Studi di Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
3
|
Diensthuber G, Novoa EM. Charting the epitranscriptomic landscape across RNA biotypes using native RNA nanopore sequencing. Mol Cell 2025; 85:276-289. [PMID: 39824168 DOI: 10.1016/j.molcel.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
RNA modifications are conserved chemical features found in all domains of life and across diverse RNA biotypes, shaping gene expression profiles and enabling rapid responses to environmental changes. Their broad chemical diversity and dynamic nature pose significant challenges for studying them comprehensively. These limitations can now be addressed through direct RNA nanopore sequencing (DRS), which allows simultaneous identification of diverse RNA modification types at single-molecule and single-nucleotide resolution. Here, we review recent efforts pioneering the use of DRS to better understand the epitranscriptomic landscape. We highlight how DRS can be applied to investigate different RNA biotypes, emphasizing the use of specialized library preparation protocols and downstream bioinformatic workflows to detect both natural and synthetic RNA modifications. Finally, we provide a perspective on the future role of DRS in epitranscriptomic research, highlighting remaining challenges and emerging opportunities from improved sequencing yields and accuracy enabled by the latest DRS chemistry.
Collapse
Affiliation(s)
- Gregor Diensthuber
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
4
|
Huang S, Wylder AC, Pan T. Simultaneous nanopore profiling of mRNA m 6A and pseudouridine reveals translation coordination. Nat Biotechnol 2024; 42:1831-1835. [PMID: 38321115 PMCID: PMC11300707 DOI: 10.1038/s41587-024-02135-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
N6-methyladenosine (m6A) and pseudouridine (Ψ) are the two most abundant modifications in mammalian messenger RNA, but the coordination of their biological functions remains poorly understood. We develop a machine learning-based nanopore direct RNA sequencing method (NanoSPA) that simultaneously analyzes m6A and Ψ in the human transcriptome. Applying NanoSPA to polysome profiling, we reveal opposing transcriptomic co-occurrence of m6A and Ψ and synergistic, hierarchical effects of m6A and Ψ on the polysome.
Collapse
Affiliation(s)
- Sihao Huang
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Adam C Wylder
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Tao Pan
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Fanari O, Tavakoli S, Qiu Y, Makhamreh A, Nian K, Akeson S, Meseonznik M, McCormick CA, Bloch D, Gamper H, Jain M, Hou YM, Wanunu M, Rouhanifard SH. Probing enzyme-dependent pseudouridylation using direct RNA sequencing to assess neuronal epitranscriptome plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586895. [PMID: 38585714 PMCID: PMC10996719 DOI: 10.1101/2024.03.26.586895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Chemical modifications in mRNAs, such as pseudouridine (psi), can control gene expression. Yet, we know little about how they are regulated, especially in neurons. We applied nanopore direct RNA sequencing to investigate psi dynamics in SH-SY5Y cells in response to two perturbations that model a natural and unnatural cellular state: retinoic-acid-mediated differentiation (healthy) and exposure to the neurotoxicant, lead (unhealthy). We discovered that the expression of some psi writers change significantly in response to physiological conditions. We also found that globally, lead-treated cells have more psi sites but lower relative occupancy than untreated cells and differentiated cells. Interestingly, examples of highly plastic sites were accompanied by constant expression for psi writers, suggesting trans-regulation. Many positions were static throughout all three cellular states, suggestive of a "housekeeping" function. This study enables investigations into mechanisms that control psi modifications in neurons and its possible protective effects in response to cellular stress.
Collapse
Affiliation(s)
| | | | - Yuchen Qiu
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Amr Makhamreh
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Keqing Nian
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Stuart Akeson
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | | | | | - Dylan Bloch
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | - Miten Jain
- Dept. of Bioengineering, Northeastern University, Boston, MA
- Dept. of Physics, Northeastern University, Boston, MA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | - Meni Wanunu
- Dept. of Bioengineering, Northeastern University, Boston, MA
- Dept. of Physics, Northeastern University, Boston, MA
| | | |
Collapse
|
6
|
White LK, Radakovic A, Sajek MP, Dobson K, Riemondy KA, Del Pozo S, Szostak JW, Hesselberth JR. Nanopore sequencing of intact aminoacylated tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623114. [PMID: 39605391 PMCID: PMC11601438 DOI: 10.1101/2024.11.18.623114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transfer RNAs (tRNA) are decorated during biogenesis with a variety of modifications that modulate their stability, aminoacylation, and decoding potential during translation. The complex landscape of tRNA modification presents significant analysis challenges and to date no single approach enables the simultaneous measurement of important but disparate chemical properties of individual, mature tRNA molecules. We developed a new, integrated approach to analyze the sequence, modification, and aminoacylation state of tRNA molecules in a high throughput nanopore sequencing experiment, leveraging a chemical ligation that embeds the charged amino acid in an adapted tRNA molecule. During nanopore sequencing, the embedded amino acid generates unique distortions in ionic current and translocation speed, enabling application of machine learning approaches to classify charging status and amino acid identity. Specific applications of the method indicate it will be broadly useful for examining relationships and dependencies between tRNA sequence, modification, and aminoacylation.
Collapse
Affiliation(s)
- Laura K White
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Aleksandar Radakovic
- Harvard Medical School, Department of Genetics, Boston, Massachusetts
- Howard Hughes Medical Institute, The University of Chicago, Department of Chemistry, Chicago, Illinois
| | - Marcin P Sajek
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Kezia Dobson
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Kent A Riemondy
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Samantha Del Pozo
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Jack W Szostak
- Howard Hughes Medical Institute, The University of Chicago, Department of Chemistry, Chicago, Illinois
| | - Jay R Hesselberth
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| |
Collapse
|
7
|
Hermon SJ, Sennikova A, Becker S. Quantitative detection of pseudouridine in RNA by mass spectrometry. Sci Rep 2024; 14:27564. [PMID: 39528638 PMCID: PMC11555313 DOI: 10.1038/s41598-024-78734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudouridine (Ψ) is one of the most prevalent and dynamic modification in RNA, and was shown to evade the host immune response in mRNA vaccines. Despite its significance, the biological role of Ψ remains poorly understood as certain key limitations and challenges in the detection of Ψ are yet to be overcome. In account of this, we report the usage of a chemical labelling strategy for the first quantitative detection of Ψ by mass spectrometry. We demonstrate a labelling efficiency exceeding 99% in isolated yeast tRNAs hosting multiple Ψs. LC-MS/MS analysis enables precise mapping of Ψ at single-base resolution, while simultaneously capturing a wide array of additional post-transcriptional modifications, which is not achieved with current sequencing technologies. This advancement may help unravel the dynamics and biological implications of Ψ, shedding light on its interplay with other modifications and deepening our understanding of its functional role.
Collapse
Affiliation(s)
- Shanice Jessica Hermon
- Max-Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, Technical University Dortmund, 44227, Dortmund, Germany
| | - Anastasia Sennikova
- Max-Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, Technical University Dortmund, 44227, Dortmund, Germany
| | - Sidney Becker
- Max-Planck Institute of Molecular Physiology, 44227, Dortmund, Germany.
- Department of Chemistry and Chemical Biology, Technical University Dortmund, 44227, Dortmund, Germany.
| |
Collapse
|
8
|
Xu H, Kong L, Cheng J, Al Moussawi K, Chen X, Iqbal A, Wing PAC, Harris JM, Tsukuda S, Embarc-Buh A, Wei G, Castello A, Kriaucionis S, McKeating JA, Lu X, Song CX. Absolute quantitative and base-resolution sequencing reveals comprehensive landscape of pseudouridine across the human transcriptome. Nat Methods 2024; 21:2024-2033. [PMID: 39349603 PMCID: PMC11541003 DOI: 10.1038/s41592-024-02439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/04/2024] [Indexed: 11/08/2024]
Abstract
Pseudouridine (Ψ) is one of the most abundant modifications in cellular RNA. However, its function remains elusive, mainly due to the lack of highly sensitive and accurate detection methods. Here, we introduced 2-bromoacrylamide-assisted cyclization sequencing (BACS), which enables Ψ-to-C transitions, for quantitative profiling of Ψ at single-base resolution. BACS allowed the precise identification of Ψ positions, especially in densely modified Ψ regions and consecutive uridine sequences. BACS detected all known Ψ sites in human rRNA and spliceosomal small nuclear RNAs and generated the quantitative Ψ map of human small nucleolar RNA and tRNA. Furthermore, BACS simultaneously detected adenosine-to-inosine editing sites and N1-methyladenosine. Depletion of pseudouridine synthases TRUB1, PUS7 and PUS1 elucidated their targets and sequence motifs. We further identified a highly abundant Ψ114 site in Epstein-Barr virus-encoded small RNA EBER2. Surprisingly, applying BACS to a panel of RNA viruses demonstrated the absence of Ψ in their viral transcripts or genomes, shedding light on differences in pseudouridylation across virus families.
Collapse
MESH Headings
- Humans
- Pseudouridine/metabolism
- Pseudouridine/genetics
- Transcriptome
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Ribosomal/genetics
- Sequence Analysis, RNA/methods
- RNA, Viral/genetics
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Adenosine/analogs & derivatives
- Adenosine/genetics
- Adenosine/metabolism
- Adenosine/chemistry
- Herpesvirus 4, Human/genetics
- Intramolecular Transferases
Collapse
Affiliation(s)
- Haiqi Xu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Linzhen Kong
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jingfei Cheng
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Khatoun Al Moussawi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xiufei Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aleema Iqbal
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A C Wing
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Azman Embarc-Buh
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Guifeng Wei
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alfredo Castello
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Ding H, Liu N, Wang Y, Adam SA, Jin J, Feng W, Sun J. Implications of RNA pseudouridylation for cancer biology and therapeutics: a narrative review. J Transl Med 2024; 22:906. [PMID: 39375731 PMCID: PMC11457414 DOI: 10.1186/s12967-024-05687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Pseudouridine (Ψ), a C5-glycoside isomer of uridine, stands as one of the most prevalent RNA modifications in all RNA types. Distinguishing from the C-N bond linking uridine to ribose, the link between Ψ and ribose is a C-C bond, endowing Ψ modified RNA distinct properties and functions in various biological processes. The conversion of uridine to Ψ is governed by pseudouridine synthases (PUSs). RNA pseudouridylation is implicated in cancer biology and therapeutics. OBJECTIVES In this review, we will summarize the methods for detecting Ψ, the process of Ψ generation, the impact of Ψ modification on RNA metabolism and gene expression, the roles of dysregulated Ψ and pseudouridine synthases in cancers, and the underlying mechanism. METHODS We conducted a comprehensive search of PubMed from its inception through February 2024. The search terms included "pseudouridine"; "pseudouridine synthase"; "PUS"; "dyskerin"; "cancer"; "tumor"; "carcinoma"; "malignancy"; "tumorigenesis"; "biomarker"; "prognosis" and "therapy". We included studies published in peer-reviewed journals that focused on Ψ detection, specific mechanisms involving Ψ and PUSs, and prognosis in cancer patients with high Ψ expression. We excluded studies lacking sufficient methodological details or appropriate controls. RESULTS Ψ has been recognized as a significant biomarker in cancer diagnosis and prognosis. Abnormal Ψ modifications mediated by various PUSs result in dysregulated RNA metabolism and impaired RNA function, promoting the development of various cancers. Overexpression of PUSs is common in cancer cells and predicts poor prognosis. PUSs inhibition arrests cell proliferation and enhances apoptosis in cancer cells, suggesting PUS-targeting cancer therapy may be a potential strategy in cancer treatment. DISCUSSION High Ψ levels in serum, urine, and saliva may suggest cancer, but do not specify the type, requiring additional lab markers and imaging for accurate diagnosis. Standardized detection methods are also crucial for reliable results. PUSs are linked to cancer, but more researches are needed to understand their mechanisms in different cancers. Anticancer treatments targeting PUSs are still under developed.
Collapse
Affiliation(s)
- Hanyi Ding
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Na Liu
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Sofia Abdulkadir Adam
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| | - Weiying Feng
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Makhamreh A, Tavakoli S, Fallahi A, Kang X, Gamper H, Nabizadehmashhadtoroghi M, Jain M, Hou YM, Rouhanifard SH, Wanunu M. Nanopore signal deviations from pseudouridine modifications in RNA are sequence-specific: quantification requires dedicated synthetic controls. Sci Rep 2024; 14:22457. [PMID: 39341872 PMCID: PMC11438862 DOI: 10.1038/s41598-024-72994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Chemical modifications to mRNA respond dynamically to environmental cues and are important modulators of gene expression. Nanopore direct RNA sequencing has been applied for assessing the presence of pseudouridine (ψ) modifications through basecalling errors and signal analysis. These approaches strongly depend on the sequence context around the modification, and the occupancies derived from these measurements are not quantitative. In this work, we combine direct RNA sequencing of synthetic RNAs bearing site-specific modifications and supervised machine learning models (ModQuant) to achieve near-analytical, site-specific ψ quantification. Our models demonstrate that the ionic current signal features important for accurate ψ classification are sequence dependent and encompass information extending beyond n + 2 and n - 2 nucleotides from the ψ site. This is contradictory to current models, which assume that accurate ψ classification can be achieved with signal information confined to the 5-nucleotide k-mer window (n + 2 and n - 2 nucleotides from the ψ site). We applied our models to quantitatively profile ψ occupancy in five mRNA sites in datasets from seven human cell lines, demonstrating conserved and variable sites. Our study motivates a wider pipeline that uses ground-truth RNA control sets with site-specific modifications for quantitative profiling of RNA modifications. The ModQuant pipeline and guide are freely available at https://github.com/wanunulab/ModQuant .
Collapse
Affiliation(s)
- Amr Makhamreh
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sepideh Tavakoli
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ali Fallahi
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Xinqi Kang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Meni Wanunu
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Department of Physics, Northeastern University, Boston, MA, USA.
| |
Collapse
|
11
|
Guimaraes GJ, Kim J, Bartlett MG. Characterization of mRNA therapeutics. MASS SPECTROMETRY REVIEWS 2024; 43:1066-1090. [PMID: 37401740 DOI: 10.1002/mas.21856] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 07/05/2023]
Abstract
Therapeutic messenger RNAs (mRNAs) have emerged as powerful tools in the treatment of complex diseases, especially for conditions that lack efficacious treatment. The successful application of this modality can be attributed to its ability to encode entire proteins. While the large nature of these molecules has supported their success as therapeutics, its extended size creates several analytical challenges. To further support therapeutic mRNA development and its deployment in clinical trials, appropriate methods to support their characterization must be developed. In this review, we describe current analytical methods that have been used in the characterization of RNA quality, identity, and integrity. Advantages and limitations from several analytical techniques ranging from gel electrophoresis to liquid chromatography-mass spectrometry and from shotgun sequencing to intact mass measurements are discussed. We comprehensively describe the application of analytical methods in the measurements of capping efficiency, poly A tail analysis, as well as their applicability in stability studies.
Collapse
Affiliation(s)
- Guilherme J Guimaraes
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Jaeah Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
12
|
Snyder LR, Koutmou KS. Studying the intersection of nucleoside modifications and SARS-CoV-2 RNA-dependent RNA transcription using an in vitro reconstituted system. Methods Enzymol 2024; 705:81-109. [PMID: 39389674 PMCID: PMC11849750 DOI: 10.1016/bs.mie.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
There is growing recognition that viral RNA genomes possess enzymatically incorporated modified nucleosides. These small chemical changes are analogous to epigenomic modifications in DNA and have the potential to be similarly important modulators of viral transcription and evolution. However, the molecular level consequences of individual sites of modification remain to be broadly explored. Here we describe an in vitro assay to examine the impact of nucleoside modifications on the rate and fidelity of SARS-CoV-2 RNA transcription. Establishing the role of modified nucleotides in SARS-CoV-2 is of interest both for advancing fundamental knowledge of RNA modifications in viruses, and because modulating the modification-landscape of SARS-CoV-2 may represent a therapeutic strategy to interfere with viral RNA replication. Our approach can be used to assess the influence both of modifications present in a template RNA, as well nucleotide analog inhibitors. These methods provide a reproducible guide for generating active SARS-CoV-2 replication/transcription complexes capable of establishing how RNA modifications influence the pre-steady state rate constants of nucleotide addition by RNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- Laura R Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
13
|
Snyder LR, Kilde I, Nemudryi A, Wiedenheft B, Koutmos M, Koutmou KS. Adenosine modifications impede SARS-CoV-2 RNA-dependent RNA transcription. RNA (NEW YORK, N.Y.) 2024; 30:1141-1150. [PMID: 38942480 PMCID: PMC11331411 DOI: 10.1261/rna.079991.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024]
Abstract
SARS-CoV-2, the causative virus of the COVID-19 pandemic, follows SARS and MERS as recent zoonotic coronaviruses causing severe respiratory illness and death in humans. The recurrent impact of zoonotic coronaviruses demands a better understanding of their fundamental molecular biochemistry. Nucleoside modifications, which modulate many steps of the RNA life cycle, have been found in SARS-CoV-2 RNA, although whether they confer a pro- or antiviral effect is unknown. Regardless, the viral RNA-dependent RNA polymerase will encounter these modifications as it transcribes through the viral genomic RNA. We investigated the functional consequences of nucleoside modification on the pre-steady state kinetics of SARS-CoV-2 RNA-dependent RNA transcription using an in vitro reconstituted transcription system with modified RNA templates. Our findings show that N 6-methyladenosine and 2'-O-methyladenosine modifications slow the rate of viral transcription at magnitudes specific to each modification, which has the potential to impact SARS-CoV-2 genome maintenance.
Collapse
Affiliation(s)
- Laura R Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ingrid Kilde
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
14
|
McCormick CA, Akeson S, Tavakoli S, Bloch D, Klink IN, Jain M, Rouhanifard SH. Multicellular, IVT-derived, unmodified human transcriptome for nanopore-direct RNA analysis. GIGABYTE 2024; 2024:gigabyte129. [PMID: 38962390 PMCID: PMC11221353 DOI: 10.46471/gigabyte.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
Nanopore direct RNA sequencing (DRS) enables measurements of RNA modifications. Modification-free transcripts are a practical and targeted control for DRS, providing a baseline measurement for canonical nucleotides within a matched and biologically-derived sequence context. However, these controls can be challenging to generate and carry nanopore-specific nuances that can impact analyses. We produced DRS datasets using modification-free transcripts from in vitro transcription of cDNA from six immortalized human cell lines. We characterized variation across cell lines and demonstrated how these may be interpreted. These data will serve as a versatile control and resource to the community for RNA modification analyses of human transcripts.
Collapse
Affiliation(s)
| | - Stuart Akeson
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Sepideh Tavakoli
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Dylan Bloch
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Isabel N. Klink
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - Sara H. Rouhanifard
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
15
|
McCormick CA, Akeson S, Tavakoli S, Bloch D, Klink IN, Jain M, Rouhanifard SH. Multicellular, IVT-derived, unmodified human transcriptome for nanopore-direct RNA analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.06.535889. [PMID: 37066160 PMCID: PMC10104151 DOI: 10.1101/2023.04.06.535889] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Nanopore direct RNA sequencing (DRS) enables measurements of RNA modifications. Modification-free transcripts are a practical and targeted control for DRS, providing a baseline measurement for canonical nucleotides within a matched and biologically derived sequence context. However, these controls can be challenging to generate and carry nanopore-specific nuances that can impact analysis. We produced DRS datasets using modification-free transcripts from in vitro transcription (IVT) of cDNA from six immortalized human cell lines. We characterized variation across cell lines and demonstrated how these may be interpreted. These data will serve as a versatile control and resource to the community for RNA modification analysis of human transcripts.
Collapse
Affiliation(s)
- Caroline A. McCormick
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Stuart Akeson
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Sepideh Tavakoli
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Dylan Bloch
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Isabel N. Klink
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
- Department of Physics, Northeastern University, Boston, MA, 02115, United States
| | - Sara H. Rouhanifard
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| |
Collapse
|
16
|
Yin YD, Yang L, Song XT, Hu J, Chen FF, Xu M, Gu ZY. Determination of Acetylamantadine by γ-Cyclodextrin-Assisted α-HL Nanopore for Potential Cancer Prediagnosis. Anal Chem 2024; 96:8325-8331. [PMID: 38738931 DOI: 10.1021/acs.analchem.3c04986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The high expression of Spermidine/spermine N1-acetyltransferase (SSAT-1) is an important indicator in early cancer diagnosis. Here, we developed a nanopore-based methodology with γ-cyclodextrin as an adaptor to detect and quantify acetylamantadine, the specific SSAT-1-catalyzed product from amantadine, to accordingly reflect the activity of SSAT-1. We employ γ-cyclodextrin and report that amantadine cannot cause any secondary signals in γ-cyclodextrin-assisted α-HL nanopore, while its acetylation product, acetylamantadine, does. This allows γ-cyclodextrin to practically detect acetylamantadine in the interference of excessive amantadine, superior to the previously reported β-cyclodextrin. The quantification of acetylamantadine was not interfered with even a 50-fold amantadine and displayed no interference in artificial urine sample analysis, which indicates the good feasibility of this nanopore-based methodology in painless cancer prediagnosis. In addition, the discrimination mechanism is also explored by 2-D nuclear magnetic resonance (NMR) and nanopore experiments with a series of adamantane derivatives with different hydrophilic and hydrophobic groups. We found that both the hydrophobic region matching effect and hydrophilic interactions play a synergistic effect in forming a host-guest complex to further generate the characteristic signals, which may provide insights for the subsequent design and study of drug-cyclodextrin complexes.
Collapse
Affiliation(s)
- Yun-Dong Yin
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lei Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xi-Tong Song
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Hu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang-Fang Chen
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
17
|
Grasso L, Fonzino A, Manzari C, Leonardi T, Picardi E, Gissi C, Lazzaro F, Pesole G, Muzi-Falconi M. Detection of ribonucleotides embedded in DNA by Nanopore sequencing. Commun Biol 2024; 7:491. [PMID: 38654143 PMCID: PMC11039623 DOI: 10.1038/s42003-024-06077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Ribonucleotides represent the most common non-canonical nucleotides found in eukaryotic genomes. The sources of chromosome-embedded ribonucleotides and the mechanisms by which unrepaired rNMPs trigger genome instability and human pathologies are not fully understood. The available sequencing technologies only allow to indirectly deduce the genomic location of rNMPs. Oxford Nanopore Technologies (ONT) may overcome such limitation, revealing the sites of rNMPs incorporation in genomic DNA directly from raw sequencing signals. We synthesized two types of DNA molecules containing rNMPs at known or random positions and we developed data analysis pipelines for DNA-embedded ribonucleotides detection by ONT. We report that ONT can identify all four ribonucleotides incorporated in DNA by capturing rNMPs-specific alterations in nucleotide alignment features, current intensity, and dwell time. We propose that ONT may be successfully employed to directly map rNMPs in genomic DNA and we suggest a strategy to build an ad hoc basecaller to analyse native genomes.
Collapse
Grants
- IG-21806 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- PRIN2017_2022KJHC7S Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN_2022JA8JY5 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- CN_00000041 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN2017_2022KJHC7S Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- National Research Centers: “High Performance Computing, Big Data and Quantum Computing” (Project no. CN_00000013)
- National Research Centers: “High Performance Computing, Big Data and Quantum Computing” extended Partnerships: MNESYS (Project no. PE_0000006) and Age-It (Project no. PE_00000015). ELIXIR-IT through the empowering project ELIXIRNextGenIT (Grant Code IR0000010).
Collapse
Affiliation(s)
- Lavinia Grasso
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Adriano Fonzino
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
| | - Caterina Manzari
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139, Milano, Italy
| | - Ernesto Picardi
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy
| | - Carmela Gissi
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| | - Graziano Pesole
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy.
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy.
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
18
|
Zhang M, Zhang X, Ma Y, Yi C. New directions for Ψ and m 1A decoding in mRNA: deciphering the stoichiometry and function. RNA (NEW YORK, N.Y.) 2024; 30:537-547. [PMID: 38531648 PMCID: PMC11019747 DOI: 10.1261/rna.079950.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Over the past decade, advancements in epitranscriptomics have significantly enhanced our understanding of mRNA metabolism and its role in human development and diseases. This period has witnessed breakthroughs in sequencing technologies and the identification of key proteins involved in RNA modification processes. Alongside the well-studied m6A, Ψ and m1A have emerged as key epitranscriptomic markers. Initially identified through transcriptome-wide profiling, these modifications are now recognized for their broad impact on RNA metabolism and gene expression. In this Perspective, we focus on the detections and functions of Ψ and m1A modifications in mRNA and discuss previous discrepancies and future challenges. We summarize recent advances and highlight the latest sequencing technologies for stoichiometric detection and their mechanistic investigations for functional unveiling in mRNA as the new research directions.
Collapse
Affiliation(s)
- Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yichen Ma
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Fleming AM, Dingman JC, Wu Y, Hoon SS, Burrows CJ. Nanopore Direct RNA Sequencing for Modified Uridine Nucleotides Yields Signals Dependent on the Physical Properties of the Modified Base. Isr J Chem 2024; 64:e202300177. [PMID: 40123827 PMCID: PMC11928017 DOI: 10.1002/ijch.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 03/25/2025]
Abstract
Sequencing for RNA modifications with the nanopore direct RNA sequencing platform provides ionic current levels, helicase dwell times, and base call data that differentiate the modifications from the canonical form. Herein, model RNAs were synthesized with site-specific uridine (U) base modifications that enable the study of increasing an alkyl group size, halogen identity, or a change in base acidity to impact the nanopore data. The analysis concluded that increases in alkyl size trend with greater current blockage but a similar change in base-call error was not found. The addition of a halogen series to C5 of U revealed that the current levels recorded a trend with the water-octanol partition coefficient of the base, as well as the base call error. Studies with U modifications that are deprotonated (i.e., anionic) under the sequencing conditions gave broad current levels that influenced the base call error. Some modifications led to helicase dwell time changes. These insights provide design parameters for modification-specific chemical reagents that can shift nanopore signatures to minimize false positive reads, a known issue with this sequencing approach.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, United States
| | - Justin C. Dingman
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, United States
| | - Yizhou Wu
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, United States
| | - Spencer S. Hoon
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, United States
| |
Collapse
|
20
|
Tan L, Guo Z, Wang X, Kim DY, Li R. Utilization of nanopore direct RNA sequencing to analyze viral RNA modifications. mSystems 2024; 9:e0116323. [PMID: 38294229 PMCID: PMC10878088 DOI: 10.1128/msystems.01163-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Modifications on viral RNAs (vRNAs), either genomic RNAs or RNA transcripts, have complex effects on the viral life cycle and cellular responses to viral infection. The advent of Oxford Nanopore Technologies Direct RNA Sequencing provides a new strategy for studying RNA modifications. To this end, multiple computational tools have been developed, but a systemic evaluation of their performance in mapping vRNA modifications is lacking. Here, 10 computational tools were tested using the Sindbis virus (SINV) RNAs isolated from infected mammalian (BHK-21) or mosquito (C6/36) cells, with in vitro-transcribed RNAs serving as modification-free control. Three single-mode approaches were shown to be inapplicable in the viral context, and three out of seven comparative methods required cutoff adjustments to reduce false-positive predictions. Utilizing optimized cutoffs, an integrated analysis of comparative tools suggested that the intersected predictions of Tombo_com and xPore were significantly enriched compared with the background. Consequently, a pipeline integrating Tombo_com and xPore was proposed for vRNA modification detection; the performance of which was supported by N6-methyladenosine prediction in severe acute respiratory syndrome coronavirus 2 RNAs using publicly available data. When applied to SINV RNAs, this pipeline revealed more intensive modifications in subgenomic RNAs than in genomic RNAs. Modified uridines were frequently identified, exhibiting substantive overlapping between vRNAs generated in different cell lines. On the other hand, the interpretation of other modifications remained unclear, underlining the limitations of the current computational tools despite their notable potential.IMPORTANCEComputational approaches utilizing Oxford Nanopore Technologies Direct RNA Sequencing data were almost exclusively designed to map eukaryotic epitranscriptomes. Therefore, extra caution must be exercised when using these tools to detect vRNA modifications, as in most cases, vRNA modification profiles should be regarded as unknown epitranscriptomes without prior knowledge. Here, we comprehensively evaluated the performance of 10 computational tools in detecting vRNA modification sites. All tested single-mode methods failed to differentiate native and in vitro-transcribed samples. Using optimized cutoff values, seven tested comparative tools generated very different predictions. An integrated analysis showed significant enrichment of Tombo_com and xPore predictions against the background. A pipeline for vRNA modification detection was proposed accordingly and applied to Sindbis virus RNAs. In conclusion, our study underscores the need for the careful application of computational tools to analyze viral epitranscriptomics. It also offers insights into alphaviral RNA modifications, although further validation is required.
Collapse
Affiliation(s)
- Lu Tan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhihao Guo
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaoming Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dal Young Kim
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Rodell R, Robalin N, Martinez NM. Why U matters: detection and functions of pseudouridine modifications in mRNAs. Trends Biochem Sci 2024; 49:12-27. [PMID: 38097411 PMCID: PMC10976346 DOI: 10.1016/j.tibs.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 01/07/2024]
Abstract
The uridine modifications pseudouridine (Ψ), dihydrouridine, and 5-methyluridine are present in eukaryotic mRNAs. Many uridine-modifying enzymes are associated with human disease, underscoring the importance of uncovering the functions of uridine modifications in mRNAs. These modified uridines have chemical properties distinct from those of canonical uridines, which impact RNA structure and RNA-protein interactions. Ψ, the most abundant of these uridine modifications, is present across (pre-)mRNAs. Recent work has shown that many Ψs are present at intermediate to high stoichiometries that are likely conducive to function and at locations that are poised to influence pre-/mRNA processing. Technological innovations and mechanistic investigations are unveiling the functions of uridine modifications in pre-mRNA splicing, translation, and mRNA stability, which are discussed in this review.
Collapse
Affiliation(s)
- Rebecca Rodell
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Nicolas Robalin
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Martinez
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Giambruno R, Zacco E, Ugolini C, Vandelli A, Mulroney L, D’Onghia M, Giuliani B, Criscuolo E, Castelli M, Clementi N, Clementi M, Mancini N, Bonaldi T, Gustincich S, Leonardi T, Tartaglia GG, Nicassio F. Unveiling the role of PUS7-mediated pseudouridylation in host protein interactions specific for the SARS-CoV-2 RNA genome. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102052. [PMID: 38028201 PMCID: PMC10630655 DOI: 10.1016/j.omtn.2023.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive single-stranded RNA virus, engages in complex interactions with host cell proteins throughout its life cycle. While these interactions enable the host to recognize and inhibit viral replication, they also facilitate essential viral processes such as transcription, translation, and replication. Many aspects of these virus-host interactions remain poorly understood. Here, we employed the catRAPID algorithm and utilized the RNA-protein interaction detection coupled with mass spectrometry technology to predict and validate the host proteins that specifically bind to the highly structured 5' and 3' terminal regions of the SARS-CoV-2 RNA. Among the interactions identified, we prioritized pseudouridine synthase PUS7, which binds to both ends of the viral RNA. Using nanopore direct RNA sequencing, we discovered that the viral RNA undergoes extensive post-transcriptional modifications. Modified consensus regions for PUS7 were identified at both terminal regions of the SARS-CoV-2 RNA, including one in the viral transcription regulatory sequence leader. Collectively, our findings offer insights into host protein interactions with the SARS-CoV-2 UTRs and highlight the likely significance of pseudouridine synthases and other post-transcriptional modifications in the viral life cycle. This new knowledge enhances our understanding of virus-host dynamics and could inform the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Roberto Giambruno
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
- Institute of Biomedical Technologies, National Research Council, 20090 Segrate, Italy
| | - Elsa Zacco
- Central RNA and RNA Systems Biology Labs, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Camilla Ugolini
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, 20122 Milano, Italy
| | - Andrea Vandelli
- Central RNA and RNA Systems Biology Labs, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Logan Mulroney
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire CB10 1SD, UK
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, RM 00015, Italy
| | - Manfredi D’Onghia
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
| | - Bianca Giuliani
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milano, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, 20122 Milano, Italy
| | - Stefano Gustincich
- Central RNA and RNA Systems Biology Labs, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
| | - Gian Gaetano Tartaglia
- Central RNA and RNA Systems Biology Labs, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
- Catalan Institution for Research and Advanced Studies, ICREA, 08010 Barcelona, Spain
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
| |
Collapse
|
23
|
Fleming AM, Zhu J, Done VK, Burrows CJ. Advantages and challenges associated with bisulfite-assisted nanopore direct RNA sequencing for modifications. RSC Chem Biol 2023; 4:952-964. [PMID: 37920399 PMCID: PMC10619145 DOI: 10.1039/d3cb00081h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 11/04/2023] Open
Abstract
Nanopore direct RNA sequencing is a technology that allows sequencing for epitranscriptomic modifications with the possibility of a quantitative assessment. In the present work, pseudouridine (Ψ) was sequenced with the nanopore before and after the pH 7 bisulfite reaction that yields stable ribose adducts at C1' of Ψ. The adducted sites produced greater base call errors in the form of deletion signatures compared to Ψ. Sequencing studies on E. coli rRNA and tmRNA before and after the pH 7 bisulfite reaction demonstrated that using chemically-assisted nanopore sequencing has distinct advantages for minimization of false positives and false negatives in the data. The rRNA from E. coli has 19 known U/C sequence variations that give similar base call signatures as Ψ, and therefore, are false positives when inspecting base call data; however, these sites are refractory to reacting with bisulfite as is easily observed in nanopore data. The E. coli tmRNA has a low occupancy Ψ in a pyrimidine-rich sequence context that is called a U representing a false negative; partial occupancy by Ψ is revealed after the bisulfite reaction. In a final study, 5-methylcytidine (m5C) in RNA can readily be observed after the pH 5 bisulfite reaction in which the parent C deaminates to U and the modified site does not react. This locates m5C when using bisulfite-assisted nanopore direct RNA sequencing, which is otherwise challenging to observe. The advantages and challenges of the overall approach are discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| | - Judy Zhu
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| | - Vilhelmina K Done
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| |
Collapse
|
24
|
Fleming AM, Bommisetti P, Xiao S, Bandarian V, Burrows CJ. Direct Nanopore Sequencing for the 17 RNA Modification Types in 36 Locations in the E. coli Ribosome Enables Monitoring of Stress-Dependent Changes. ACS Chem Biol 2023; 18:2211-2223. [PMID: 37345867 PMCID: PMC10594579 DOI: 10.1021/acschembio.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
The bacterium Escherichia coli possesses 16S and 23S rRNA strands that have 36 chemical modification sites with 17 different structures. Nanopore direct RNA sequencing using a protein nanopore sensor and helicase brake, which is also a sensor, was applied to the rRNAs. Nanopore current levels, base calling profile, and helicase dwell times for the modifications relative to unmodified synthetic rRNA controls found signatures for nearly all modifications. Signatures for clustered modifications were determined by selective sequencing of writer knockout E. coli and sequencing of synthetic RNAs utilizing some custom-synthesized nucleotide triphosphates for their preparation. The knowledge of each modification's signature, apart from 5-methylcytidine, was used to determine how metabolic and cold-shock stress impact rRNA modifications. Metabolic stress resulted in either no change or a decrease, and one site increased in modification occupancy, while cold-shock stress led to either no change or a decrease. The double modification m4Cm1402 resides in 16S rRNA, and it decreased with both stressors. Using the helicase dwell time, it was determined that the N4 methyl group is lost during both stressors, and the 2'-OMe group remained. In the ribosome, this modification stabilizes binding to the mRNA codon at the P-site resulting in increased translational fidelity that is lost during stress. The E. coli genome has seven rRNA operons (rrn), and the earlier studies aligned the nanopore reads to a single operon (rrnA). Here, the reads were aligned to all seven operons to identify operon-specific changes in the 11 pseudouridines. This study demonstrates that direct sequencing for >16 different RNA modifications in a strand is achievable.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Praneeth Bommisetti
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Songjun Xiao
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake
City, Utah 84112-0850, United States
| |
Collapse
|
25
|
Burrows CJ, Fleming AM. Bisulfite and Nanopore Sequencing for Pseudouridine in RNA. Acc Chem Res 2023; 56:2740-2751. [PMID: 37700703 PMCID: PMC10911771 DOI: 10.1021/acs.accounts.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Nucleophilic addition of bisulfite to pyrimidine bases has been known for a half century, and the reaction has been in use for at least a quarter of a century for identifying 5-methylcytidine in DNA. This account focuses on the chemistry of bisulfite with pseudouridine, an isomer of the RNA nucleoside uridine in which the uracil base is connected to C1' of ribose via C5 instead of N1. Pseudouridine, Ψ, is the most common nucleotide modification found in cellular RNA overall, in part due to its abundance in rRNAs and tRNAs. It has a stabilizing influence on RNA structure because N1 is now available for additional hydrogen bonding and because the heterocycle is slightly better at π stacking. The isomerization of U to Ψ in RNA strands is catalyzed by 13 different enzymes in humans and 11 in E. coli; some of these enzymes are implicated in disease states which is testament to the biological importance of pseudouridine in cells. Recently, pseudouridine came into the limelight as the key modification that, after N1 methylation, enables mRNA vaccines to be delivered efficiently into human tissue with minimal generation of a deleterious immunogenic response. Here we describe the bisulfite reaction with pseudouridine which gives rise to a chemical sequencing method to map the modified base in the epitranscriptome. Unlike the reaction with cytidine, the addition of bisulfite to Ψ leads irreversibly to form an adduct that is bypassed during cDNA synthesis by reverse transcriptases yielding a characteristic deletion signature. Although there were hints to the structure of the bisulfite adduct(s) 30 to 50 years ago, it took modern spectroscopic and computational methods to solve the mystery. Raman spectroscopy along with extensive NMR, ECD, and computational work led to the assignment of the major product as the (R) diastereomer of an oxygen adduct at C1' of a ring-opened pseudouridine. Mechanistically, this arose from a succession of conjugate addition, E2 elimination, and a [2,3] sigmatropic rearrangement, all of which are stereodefined reactions. A minor reaction with excess bisulfite led to the (S) isomer of a S-adducted SO3- group. Understanding structure and mechanism aided the design of a Ψ-specific sequencing reaction and guided attempts to improve the utility and specificity of the method. Separately, we have been investigating the use of nanopore direct RNA sequencing, a single-molecule method that directly analyzes RNA strands isolated from cells after end-ligation of adaptor sequences. By combining the electrical current and base-calling data from the nanopore with dwell-time analysis from the helicase employed to deliver RNA to the nanopore, we were able to map Ψ sites in nearly all sequence contexts. This analysis was employed to find Ψ residues in the SARS-CoV-2 vRNA, to analyze the sequence context effects of mRNA vaccine synthesis via in vitro transcription, and to evaluate the impact of stress on chemical modifications in the E. coli ribosome. Most recently, we found that bisulfite treatment of RNA leading to Ψ adducts could modulate the nanopore signal to help in mapping modifications of low occupancy.
Collapse
Affiliation(s)
- Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
26
|
Zhang Q, Bao X, Cui M, Wang C, Ji J, Jing J, Zhou X, Chen K, Tang L. Identification and validation of key biomarkers based on RNA methylation genes in sepsis. Front Immunol 2023; 14:1231898. [PMID: 37701433 PMCID: PMC10493392 DOI: 10.3389/fimmu.2023.1231898] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background RNA methylation is closely involved in immune regulation, but its role in sepsis remains unknown. Here, we aim to investigate the role of RNA methylation-associated genes (RMGs) in classifying and diagnosing of sepsis. Methods Five types of RMGs (m1A, m5C, m6Am, m7G and Ψ) were used to identify sepsis subgroups based on gene expression profile data obtained from the GEO database (GSE57065, GSE65682, and GSE95233). Unsupervised clustering analysis was used to identify distinct RNA modification subtypes. The CIBERSORT, WGCNA, GO and KEGG analysis were performed to explore immune infiltration pattern and biological function of each cluster. RF, SVM, XGB, and GLM algorithm were applied to identify the diagnostic RMGs in sepsis. Finally, the expression levels of the five key RMGs were verified by collecting PBMCs from septic patients using qRT-PCR, and their diagnostic efficacy for sepsis was verified in combination with clinical data using ROC analysis. Results Sepsis was divided into three subtypes (cluster 1 to 3). Cluster 1 highly expressed NSUN7 and TRMT6, with the characteristic of neutrophil activation and upregulation of MAPK signaling pathways. Cluster 2 highly expressed NSUN3, and was featured by the regulation of mRNA stability and amino acid metabolism. NSUN5 and NSUN6 were upregulated in cluster 3 which was involved in ribonucleoprotein complex biogenesis and carbohydrate metabolism pathways. In addition, we identified that five RMGs (NSUN7, NOP2, PUS1, PUS3 and FTO) could function as biomarkers for clinic diagnose of sepsis. For validation, we determined that the relative expressions of NSUN7, NOP2, PUS1 and PUS3 were upregulated, while FTO was downregulated in septic patients. The area under the ROC curve (AUC) of NSUN7, NOP2, PUS1, PUS3 and FTO was 0.828, 0.707, 0.846, 0.834 and 0.976, respectively. Conclusions Our study uncovered that dysregulation of RNA methylation genes (m1A, m5C, m6Am, m7G and Ψ) was closely involved in the pathogenesis of sepsis, providing new insights into the classification of sepsis endotypes. We also revealed that five hub RMGs could function as novel diagnostic biomarkers and potential targets for treatment.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Internal Emergency Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Xiaowei Bao
- Department of Internal Emergency Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Mintian Cui
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chunxue Wang
- Department of Internal Emergency Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Jinlu Ji
- Department of Internal Emergency Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Jiongjie Jing
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Kun Chen
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lunxian Tang
- Department of Internal Emergency Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
27
|
White LK, Strugar SM, MacFadden A, Hesselberth JR. Nanopore sequencing of internal 2'-PO 4 modifications installed by RNA repair. RNA (NEW YORK, N.Y.) 2023; 29:847-861. [PMID: 36854608 PMCID: PMC10187680 DOI: 10.1261/rna.079290.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/09/2023] [Indexed: 05/18/2023]
Abstract
Ligation by plant and fungal RNA ligases yields an internal 2'-phosphate group on each RNA ligation product. In budding yeast, this covalent mark occurs at the splice junction of two targets of ligation: intron-containing tRNAs and the messenger RNA HAC1 The repertoire of RNA molecules repaired by RNA ligation has not been explored due to a lack of unbiased approaches for identifying RNA ligation products. Here, we define several unique signals produced by 2'-phosphorylated RNAs during nanopore sequencing. A 2'-phosphate at the splice junction of HAC1 mRNA inhibits 5' → 3' degradation, enabling detection of decay intermediates in yeast RNA repair mutants by nanopore sequencing. During direct RNA sequencing, intact 2'-phosphorylated RNAs on HAC1 and tRNAs produce diagnostic changes in nanopore current properties and base calling features, including stalls produced as the modified RNA translocates through the nanopore motor protein. These approaches enable directed studies to identify novel RNA repair events in other contexts.
Collapse
Affiliation(s)
- Laura K White
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Saylor M Strugar
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
28
|
Huang A, Riepler L, Rieder D, Kimpel J, Lusser A. No evidence for epitranscriptomic m 5C modification of SARS-CoV-2, HIV and MLV viral RNA. RNA (NEW YORK, N.Y.) 2023; 29:756-763. [PMID: 36889928 PMCID: PMC10187675 DOI: 10.1261/rna.079549.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 05/18/2023]
Abstract
The addition of chemical groups to cellular RNA to modulate RNA fate and/or function is summarized under the term epitranscriptomic modification. More than 170 different modifications have been identified on cellular RNA, such as tRNA, rRNA and, to a lesser extent, on other RNA types. Recently, epitranscriptomic modification of viral RNA has received considerable attention as a possible additional mechanism regulating virus infection and replication. N6-methyladenosine (m6A) and C5-methylcytosine (m5C) have been most broadly studied in different RNA viruses. Various studies, however, reported varying results with regard to number and extent of the modification. Here we investigated the m5C methylome of SARS-CoV-2, and we reexamined reported m5C sites in HIV and MLV. Using a rigorous bisulfite-sequencing protocol and stringent data analysis, we found no evidence for the presence of m5C in these viruses. The data emphasize the necessity for optimizing experimental conditions and bioinformatic data analysis.
Collapse
Affiliation(s)
- Anming Huang
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Lydia Riepler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Dietmar Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
29
|
Gamper H, McCormick C, Makhamreh A, Wanunu M, Rouhanifard SH, Hou YM. Enzymatic synthesis of RNA standards for mapping and quantifying RNA modifications in sequencing analysis. Methods Enzymol 2023; 692:127-153. [PMID: 37925177 DOI: 10.1016/bs.mie.2023.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Synthesis of RNA standards that contain an internal site-specific modification is important for mapping and quantification of the modified nucleotide in sequencing analysis. While RNA containing a site-specific modification can be readily synthesized by solid-state coupling for less than 100-mer nucleotides, longer RNA must be synthesized by enzymatic ligation in the presence of a DNA splint. However, long RNAs have structural heterogeneity, and those generated by in vitro transcription have 3'-end sequence heterogeneity, which together substantially reduce the yield of ligation. Here we describe a method of 3-part splint ligation that joins an in vitro transcribed left-arm RNA, an in vitro transcribed right-arm RNA, and a chemically synthesized modification-containing middle RNA, with an efficiency higher than previously reported. We report that the improved efficiency is largely attributed to the inclusion of a pair of DNA disruptors proximal to the ligation sites, and to a lesser extent to the homogeneous processing of the 3'-end of the left-arm RNA. The yields of the ligated long RNA are sufficiently high to afford purification to homogeneity for practical RNA research. We also verify the sequence accuracy at each ligation junction by nanopore sequencing.
Collapse
Affiliation(s)
- Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caroline McCormick
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Amr Makhamreh
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Meni Wanunu
- Department of Bioengineering, Northeastern University, Boston, MA, United States; Department of Physics, Northeastern University, Boston, MA, United States
| | - Sara H Rouhanifard
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
30
|
Thomas CA, Craig JM, Hoshika S, Brinkerhoff H, Huang JR, Abell SJ, Kim HC, Franzi MC, Carrasco JD, Kim HJ, Smith DC, Gundlach JH, Benner SA, Laszlo AH. Assessing Readability of an 8-Letter Expanded Deoxyribonucleic Acid Alphabet with Nanopores. J Am Chem Soc 2023; 145:10.1021/jacs.3c00829. [PMID: 37036666 PMCID: PMC11619810 DOI: 10.1021/jacs.3c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Chemists have now synthesized new kinds of DNA that add nucleotides to the four standard nucleotides (guanine, adenine, cytosine, and thymine) found in standard Terran DNA. Such "artificially expanded genetic information systems" are today used in molecular diagnostics; to support directed evolution to create medically useful receptors, ligands, and catalysts; and to explore issues related to the early evolution of life. Further applications are limited by the inability to directly sequence DNA containing nonstandard nucleotides. Nanopore sequencing is well-suited for this purpose, as it does not require enzymatic synthesis, amplification, or nucleotide modification. Here, we take the first steps to realize nanopore sequencing of an 8-letter "hachimoji" expanded DNA alphabet by assessing its nanopore signal range using the MspA (Mycobacterium smegmatis porin A) nanopore. We find that hachimoji DNA exhibits a broader signal range in nanopore sequencing than standard DNA alone and that hachimoji single-base substitutions are distinguishable with high confidence. Because nanopore sequencing relies on a molecular motor to control the motion of DNA, we then assessed the compatibility of the Hel308 motor enzyme with nonstandard nucleotides by tracking the translocation of single Hel308 molecules along hachimoji DNA, monitoring the enzyme kinetics and premature enzyme dissociation from the DNA. We find that Hel308 is compatible with hachimoji DNA but dissociates more frequently when walking over C-glycoside nucleosides, compared to N-glycosides. C-glycocide nucleosides passing a particular site within Hel308 induce a higher likelihood of dissociation. This highlights the need to optimize nanopore sequencing motors to handle different glycosidic bonds. It may also inform designs of future alternative DNA systems that can be sequenced with existing motors and pores.
Collapse
Affiliation(s)
| | - Jonathan M. Craig
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, USA
| | - Henry Brinkerhoff
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Jesse R. Huang
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Sarah J. Abell
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Hwanhee C. Kim
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Michaela C. Franzi
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | | | - Hyo-Joong Kim
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, USA
| | - Drew C. Smith
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Jens H. Gundlach
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, USA
| | - Andrew H. Laszlo
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
31
|
Spangenberg J, Zu Siederdissen CH, Žarković M, Triebel S, Rose R, Christophersen CM, Paltzow L, Hegab MM, Wansorra A, Srivastava A, Krumbholz A, Marz M. Magnipore: Prediction of differential single nucleotide changes in the Oxford Nanopore Technologies sequencing signal of SARS-CoV-2 samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533105. [PMID: 36993667 PMCID: PMC10055291 DOI: 10.1101/2023.03.17.533105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Oxford Nanopore Technologies (ONT) allows direct sequencing of ribonucleic acids (RNA) and, in addition, detection of possible RNA modifications due to deviations from the expected ONT signal. The software available so far for this purpose can only detect a small number of modifications. Alternatively, two samples can be compared for different RNA modifications. We present Magnipore, a novel tool to search for significant signal shifts between samples of Oxford Nanopore data from similar or related species. Magnipore classifies them into mutations and potential modifications. We use Magnipore to compare SARS-CoV-2 samples. Included were representatives of the early 2020s Pango lineages (n=6), samples from Pango lineages B.1.1.7 (n=2, Alpha), B.1.617.2 (n=1, Delta), and B.1.529 (n=7, Omicron). Magnipore utilizes position-wise Gaussian distribution models and a comprehensible significance threshold to find differential signals. In the case of Alpha and Delta, Magnipore identifies 55 detected mutations and 15 sites that hint at differential modifications. We predicted potential virus-variant and variant-group-specific differential modifications. Magnipore contributes to advancing RNA modification analysis in the context of viruses and virus variants.
Collapse
Affiliation(s)
- Jannes Spangenberg
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | | | - Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Sandra Triebel
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, 24105 Kiel, Germany
| | | | - Lea Paltzow
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Mohsen M Hegab
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Anna Wansorra
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Akash Srivastava
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, 24105 Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
- European Virus Bioinformatics Center 2, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
32
|
Nielsen TK, Forero-Junco LM, Kot W, Moineau S, Hansen LH, Riber L. Detection of nucleotide modifications in bacteria and bacteriophages: Strengths and limitations of current technologies and software. Mol Ecol 2023; 32:1236-1247. [PMID: 36052951 DOI: 10.1111/mec.16679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022]
Abstract
RNA and DNA modifications occur in eukaryotes and prokaryotes, as well as in their viruses, and serve a wide range of functions, from gene regulation to nucleic acid protection. Although the first nucleotide modification was discovered almost 100 years ago, new and unusual modifications are still being described. Nucleotide modifications have also received more attention lately because of their increased significance, but also because new sequencing approaches have eased their detection. Chiefly, third generation sequencing platforms PacBio and Nanopore offer direct detection of modified bases by measuring deviations of the signals. These unusual modifications are especially prevalent in bacteriophage genomes, the viruses of bacteria, where they mostly appear to protect DNA against degradation from host nucleases. In this Opinion article, we highlight and discuss current approaches to detect nucleotide modifications, including hardwares and softwares, and look onward to future applications, especially for studying unusual, rare, or complex genome modifications in bacteriophages. The ability to distinguish between several types of nucleotide modifications may even shed new light on metagenomic studies.
Collapse
Affiliation(s)
- Tue Kjaergaard Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Quebec, Canada
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
33
|
Fleming AM, Burrows CJ. Nanopore sequencing for N1-methylpseudouridine in RNA reveals sequence-dependent discrimination of the modified nucleotide triphosphate during transcription. Nucleic Acids Res 2023; 51:1914-1926. [PMID: 36727474 PMCID: PMC9976907 DOI: 10.1093/nar/gkad044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Direct RNA sequencing with a commercial nanopore platform was used to sequence RNA containing uridine (U), pseudouridine (Ψ) or N1-methylpseudouridine (m1Ψ) in >100 different 5-nucleotide contexts. The base calling data for Ψ or m1Ψ were similar but different from U allowing their detection. Understanding the nanopore signatures for Ψ and m1Ψ enabled a running start T7 RNA polymerase assay to study the selection of UTP versus ΨTP or m1ΨTP competing mixtures in all possible adjacent sequence contexts. A significant sequence context dependency was observed for T7 RNA polymerase with insertion yields for ΨTP versus UTP spanning a range of 20-65%, and m1ΨTP versus UTP producing variable yields that differ by 15-70%. Experiments with SP6 RNA polymerase, as well as chemically-modified triphosphates and DNA templates provide insight to explain the observations. The SP6 polymerase introduced m1ΨTP when competed with UTP with a smaller window of yields (15-30%) across all sequence contexts studied. These results may aid in future efforts that employ RNA polymerases to make therapeutic mRNAs with sub-stoichiometric amounts of m1Ψ.
Collapse
Affiliation(s)
- Aaron M Fleming
- Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J Burrows
- Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
34
|
Tavakoli S, Nabizadeh M, Makhamreh A, Gamper H, McCormick CA, Rezapour NK, Hou YM, Wanunu M, Rouhanifard SH. Semi-quantitative detection of pseudouridine modifications and type I/II hypermodifications in human mRNAs using direct long-read sequencing. Nat Commun 2023; 14:334. [PMID: 36658122 PMCID: PMC9852470 DOI: 10.1038/s41467-023-35858-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Here, we develop and apply a semi-quantitative method for the high-confidence identification of pseudouridylated sites on mammalian mRNAs via direct long-read nanopore sequencing. A comparative analysis of a modification-free transcriptome reveals that the depth of coverage and specific k-mer sequences are critical parameters for accurate basecalling. By adjusting these parameters for high-confidence U-to-C basecalling errors, we identify many known sites of pseudouridylation and uncover previously unreported uridine-modified sites, many of which fall in k-mers that are known targets of pseudouridine synthases. Identified sites are validated using 1000-mer synthetic RNA controls bearing a single pseudouridine in the center position, demonstrating systematic under-calling using our approach. We identify mRNAs with up to 7 unique modification sites. Our workflow allows direct detection of low-, medium-, and high-occupancy pseudouridine modifications on native RNA molecules from nanopore sequencing data and multiple modifications on the same strand.
Collapse
Affiliation(s)
- Sepideh Tavakoli
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Mohammad Nabizadeh
- Department of Mechanical Engineering, Northeastern University, Boston, MA, USA
| | - Amr Makhamreh
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Neda K Rezapour
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Meni Wanunu
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
35
|
Petushkov I, Esyunina D, Kulbachinskiy A. Effects of natural RNA modifications on the activity of SARS-CoV-2 RNA-dependent RNA polymerase. FEBS J 2023; 290:80-92. [PMID: 35916766 PMCID: PMC9538676 DOI: 10.1111/febs.16587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
RNA-dependent RNA polymerase (RdRp) plays a key role in the replication of RNA viruses, including SARS-CoV-2. Processive RNA synthesis by RdRp is crucial for successful genome replication and expression, especially in the case of very long coronaviral genomes. Here, we analysed the activity of SARS-CoV-2 RdRp (the nsp12-nsp7-nsp8 complex) on synthetic primer-templates of various structures, including substrates with mismatched primers or template RNA modifications. It has been shown that RdRp cannot efficiently extend RNA primers containing mismatches and has no intrinsic RNA cleavage activity to remove the primer 3'-end, thus necessitating the action of exoribonuclease for proofreading. Similar to DNA-dependent RNA polymerases, RdRp can perform processive pyrophosphorolysis of the nascent RNA product but this reaction is also blocked in the presence of mismatches. Furthermore, we have demonstrated that several natural post-transcriptional modifications in the RNA template, which do not prevent complementary interactions (N6-methyladenosine, 5-methylcytosine, inosine and pseudouridine), do not change RdRp processivity. At the same time, certain modifications of RNA bases and ribose residues strongly block RNA synthesis, either prior to nucleotide incorporation (3-methyluridine and 1-methylguanosine) or immediately after it (2'-O-methylation). The results demonstrate that the activity of SARS-CoV-2 RdRp can be strongly inhibited by common modifications of the RNA template suggesting a way to design novel antiviral compounds.
Collapse
Affiliation(s)
- Ivan Petushkov
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”MoscowRussia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”MoscowRussia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”MoscowRussia
| |
Collapse
|
36
|
Ramasamy S, Sahayasheela VJ, Sharma S, Yu Z, Hidaka T, Cai L, Thangavel V, Sugiyama H, Pandian GN. Chemical Probe-Based Nanopore Sequencing to Selectively Assess the RNA Modifications. ACS Chem Biol 2022; 17:2704-2709. [PMID: 36190780 DOI: 10.1021/acschembio.2c00221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanopore direct RNA sequencing (dRNA-Seq) reads reveal RNA modifications through consistent error profiles specific to a modified nucleobase. However, a null data set is required to identify actual RNA modification-associated errors for distinguishing it from confounding highly intrinsic sequencing errors. Here, we reveal that inosine creates a signature mismatch error in dRNA-Seq reads and obviates the need for a null data set by harnessing the selective reactivity of acrylonitrile for validating the presence of actual inosine modifications. Selective reactivity of acrylonitrile toward inosine altered multiple dRNA-Seq parameters like signal intensity and trace value. We also deduced the stoichiometry of inosine modification through deviation in signal intensity and trace value using this chemical biology approach. Furthermore, we devised Nano ICE-Seq, a protocol to overcome the low coverage issue associated with direct RNA sequencing. Taken together, our chemical probe-based approach may facilitate the knockout-free detection of disease-associated RNA modifications in clinical scenarios.
Collapse
Affiliation(s)
- Soundhar Ramasamy
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo Ku, Kyoto 606-8501, Japan
| | - Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo Ku, Kyoto 606-8502, Japan
| | - Surbhi Sharma
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo Ku, Kyoto 606-8501, Japan
| | - Zutao Yu
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo Ku, Kyoto 606-8501, Japan
| | - Takuya Hidaka
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo Ku, Kyoto 606-8501, Japan
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08855, United States of America
| | - Vaijayanthi Thangavel
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo Ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo Ku, Kyoto 606-8501, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo Ku, Kyoto 606-8502, Japan
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo Ku, Kyoto 606-8501, Japan
| |
Collapse
|
37
|
Affiliation(s)
- Miten Jain
- Northeastern University, Boston, MA, USA.
| | | | | | - Mark Akeson
- University of California, Santa Cruz, CA, USA.
| |
Collapse
|
38
|
Song Z, Liang Y, Yang J. Nanopore Detection Assisted DNA Information Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183135. [PMID: 36144924 PMCID: PMC9504103 DOI: 10.3390/nano12183135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 05/27/2023]
Abstract
The deoxyribonucleotide (DNA) molecule is a stable carrier for large amounts of genetic information and provides an ideal storage medium for next-generation information processing technologies. Technologies that process DNA information, representing a cross-disciplinary integration of biology and computer techniques, have become attractive substitutes for technologies that process electronic information alone. The detailed applications of DNA technologies can be divided into three components: storage, computing, and self-assembly. The quality of DNA information processing relies on the accuracy of DNA reading. Nanopore detection allows researchers to accurately sequence nucleotides and is thus widely used to read DNA. In this paper, we introduce the principles and development history of nanopore detection and conduct a systematic review of recent developments and specific applications in DNA information processing involving nanopore detection and nanopore-based storage. We also discuss the potential of artificial intelligence in nanopore detection and DNA information processing. This work not only provides new avenues for future nanopore detection development, but also offers a foundation for the construction of more advanced DNA information processing technologies.
Collapse
Affiliation(s)
- Zichen Song
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuan Liang
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
39
|
Wang Y, Zhang S, Jia W, Fan P, Wang L, Li X, Chen J, Cao Z, Du X, Liu Y, Wang K, Hu C, Zhang J, Hu J, Zhang P, Chen HY, Huang S. Identification of nucleoside monophosphates and their epigenetic modifications using an engineered nanopore. NATURE NANOTECHNOLOGY 2022; 17:976-983. [PMID: 35851382 DOI: 10.1038/s41565-022-01169-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/01/2022] [Indexed: 05/25/2023]
Abstract
RNA modifications play critical roles in the regulation of various biological processes and are associated with many human diseases. Direct identification of RNA modifications by sequencing remains challenging, however. Nanopore sequencing is promising, but the current strategy is complicated by sequence decoding. Sequential nanopore identification of enzymatically cleaved nucleoside monophosphates may simultaneously provide accurate sequence and modification information. Here we show a phenylboronic acid-modified hetero-octameric Mycobacterium smegmatis porin A nanopore, with which direct distinguishing between monophosphates of canonical nucleosides, 5-methylcytidine, N6-methyladenosine, N7-methylguanosine, N1-methyladenosine, inosine, pseudouridine and dihydrouridine was achieved. A custom machine learning algorithm, which reports an accuracy of 0.996, was also applied to the quantitative analysis of modifications in microRNA and natural transfer RNA. It is generally suitable for sensing of a variety of other nucleoside or nucleotide derivatives and may bring new insights to epigenetic RNA sequencing.
Collapse
Affiliation(s)
- Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xinyue Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jialu Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Chengzhen Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jinyue Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jun Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
40
|
Hong A, Kim D, Kim VN, Chang H. Analyzing viral epitranscriptomes using nanopore direct RNA sequencing. J Microbiol 2022; 60:867-876. [PMID: 36001233 PMCID: PMC9400574 DOI: 10.1007/s12275-022-2324-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
RNA modifications are a common occurrence across all domains of life. Several chemical modifications, including N6-methyladenosine, have also been found in viral transcripts and viral RNA genomes. Some of the modifications increase the viral replication efficiency while also helping the virus to evade the host immune system. Nonetheless, there are numerous examples in which the host's RNA modification enzymes function as antiviral factors. Although established methods like MeRIP-seq and miCLIP can provide a transcriptome- wide overview of how viral RNA is modified, it is difficult to distinguish between the complex overlapping viral transcript isoforms using the short read-based techniques. Nanopore direct RNA sequencing (DRS) provides both long reads and direct signal readings, which may carry information about the modifications. Here, we describe a refined protocol for analyzing the RNA modifications in viral transcriptomes using nanopore technology.
Collapse
Affiliation(s)
- Ari Hong
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongwan Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
41
|
Role of Epitranscriptomic and Epigenetic Modifications during the Lytic and Latent Phases of Herpesvirus Infections. Microorganisms 2022; 10:microorganisms10091754. [PMID: 36144356 PMCID: PMC9503318 DOI: 10.3390/microorganisms10091754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Herpesviruses are double-stranded DNA viruses occurring at a high prevalence in the human population and are responsible for a wide array of clinical manifestations and diseases, from mild to severe. These viruses are classified in three subfamilies (Alpha-, Beta- and Gammaherpesvirinae), with eight members currently known to infect humans. Importantly, all herpesviruses can establish lifelong latent infections with symptomatic or asymptomatic lytic reactivations. Accumulating evidence suggest that chemical modifications of viral RNA and DNA during the lytic and latent phases of the infections caused by these viruses, are likely to play relevant roles in key aspects of the life cycle of these viruses by modulating and regulating their replication, establishment of latency and evasion of the host antiviral response. Here, we review and discuss current evidence regarding epitranscriptomic and epigenetic modifications of herpesviruses and how these can influence their life cycles. While epitranscriptomic modifications such as m6A are the most studied to date and relate to positive effects over the replication of herpesviruses, epigenetic modifications of the viral genome are generally associated with defense mechanisms of the host cells to suppress viral gene transcription. However, herpesviruses can modulate these modifications to their own benefit to persist in the host, undergo latency and sporadically reactivate.
Collapse
|
42
|
Fleming AM, Xiao S, Burrows CJ. Pseudouridine and N1-Methylpseudouridine Display pH-Independent Reaction Rates with Bisulfite Yielding Ribose Adducts. Org Lett 2022; 24:6182-6185. [PMID: 35960324 PMCID: PMC9942683 DOI: 10.1021/acs.orglett.2c02427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In RNA, pseudouridine (Ψ) and 5-methylcytidine (m5C) are located by their differential reactions with NaHSO3 at pH 5. The pyrimidines were allowed to react with NaHSO3, NaN3, NaCN, or NaSCN at pH 5 to find that NaHSO3 was unique in achieving quantitative yields. Pseudouridine reaction selectivity with NaHSO3 was found at pH 7 supported by the reaction rate constants. The Ψ derivative N1-methylpseudouridine found in mRNA vaccines reacts similarly with bisulfite to yield ribose adducts.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Dept. of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT, 84112-0850
| | - Songjun Xiao
- Dept. of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT, 84112-0850
| | - Cynthia J. Burrows
- Dept. of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT, 84112-0850
| |
Collapse
|
43
|
Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. Microbiol Mol Biol Rev 2022; 86:e0005721. [PMID: 35862724 PMCID: PMC9491204 DOI: 10.1128/mmbr.00057-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SARS-CoV-2, the etiological agent responsible for the COVID-19 pandemic, is a member of the virus family Coronaviridae, known for relatively extensive (~30-kb) RNA genomes that not only encode for numerous proteins but are also capable of forming elaborate structures. As highlighted in this review, these structures perform critical functions in various steps of the viral life cycle, ultimately impacting pathogenesis and transmissibility. We examine these elements in the context of coronavirus evolutionary history and future directions for curbing the spread of SARS-CoV-2 and other potential human coronaviruses. While we focus on structures supported by a variety of biochemical, biophysical, and/or computational methods, we also touch here on recent evidence for novel structures in both protein-coding and noncoding regions of the genome, including an assessment of the potential role for RNA structure in the controversial finding of SARS-CoV-2 integration in “long COVID” patients. This review aims to serve as a consolidation of previous works on coronavirus and more recent investigation of SARS-CoV-2, emphasizing the need for improved understanding of the role of RNA structure in the evolution and adaptation of these human viruses.
Collapse
|
44
|
Ramakrishnan M, Rajan KS, Mullasseri S, Palakkal S, Kalpana K, Sharma A, Zhou M, Vinod KK, Ramasamy S, Wei Q. The plant epitranscriptome: revisiting pseudouridine and 2'-O-methyl RNA modifications. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1241-1256. [PMID: 35445501 PMCID: PMC9241379 DOI: 10.1111/pbi.13829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2023]
Abstract
There is growing evidence that post-transcriptional RNA modifications are highly dynamic and can be used to improve crop production. Although more than 172 unique types of RNA modifications have been identified throughout the kingdom of life, we are yet to leverage upon the understanding to optimize RNA modifications in crops to improve productivity. The contributions of internal mRNA modifications such as N6-methyladenosine (m6 A) and 5-methylcytosine (m5 C) methylations to embryonic development, root development, leaf morphogenesis, flowering, fruit ripening and stress response are sufficiently known, but the roles of the two most abundant RNA modifications, pseudouridine (Ψ) and 2'-O-methylation (Nm), in the cell remain unclear due to insufficient advances in high-throughput technologies in plant development. Therefore, in this review, we discuss the latest methods and insights gained in mapping internal Ψ and Nm and their unique properties in plants and other organisms. In addition, we discuss the limitations that remain in high-throughput technologies for qualitative and quantitative mapping of these RNA modifications and highlight future challenges in regulating the plant epitranscriptome.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingJiangsuChina
- Bamboo Research InstituteNanjing Forestry UniversityNanjingJiangsuChina
| | - K. Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology InstituteBar‐Ilan University52900Ramat‐GanIsrael
- Department of Chemical and Structural BiologyWeizmann Institute7610001RehovotIsrael
| | - Sileesh Mullasseri
- School of Ocean Science and TechnologyKerala University of Fisheries and Ocean StudiesCochinIndia
| | - Sarin Palakkal
- The Institute for Drug ResearchSchool of PharmacyThe Hebrew University of JerusalemJerusalemIsrael
| | - Krishnan Kalpana
- Department of Plant PathologyAgricultural College and Research InstituteTamilnadu Agricultural University625 104MaduraiTamil NaduIndia
| | - Anket Sharma
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouZhejiangChina
| | - Mingbing Zhou
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouZhejiangChina
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐Efficiency UtilizationZhejiang A&F UniversityHangzhouZhejiangChina
| | | | - Subbiah Ramasamy
- Cardiac Metabolic Disease LaboratoryDepartment of BiochemistrySchool of Biological SciencesMadurai Kamaraj UniversityMaduraiTamil NaduIndia
| | - Qiang Wei
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingJiangsuChina
- Bamboo Research InstituteNanjing Forestry UniversityNanjingJiangsuChina
| |
Collapse
|
45
|
Abstract
The chemical modification of ribonucleotides plays an integral role in the biology of diverse viruses and their eukaryotic host cells. Mapping the precise identity, location, and abundance of modified ribonucleotides remains a key goal of many studies aimed at characterizing the function and importance of a given modification. While mapping of specific RNA modifications through short-read sequencing approaches has powered a wealth of new discoveries in the past decade, this approach is limited by inherent biases and an absence of linkage information. Moreover, in viral contexts, the challenge is increased due to the compact nature of viral genomes giving rise to many overlapping transcript isoforms that cannot be adequately resolved using short-read sequencing approaches. The recent emergence of nanopore sequencing, specifically the ability to directly sequence native RNAs from virus-infected host cells, provides not just a new methodology for mapping modified ribonucleotides but also a new conceptual framework for what can be derived from the resulting sequencing data. In this minireview, we provide a detailed overview of how nanopore direct RNA sequencing works, the computational approaches applied to identify modified ribonucleotides, and the core concepts underlying both. We further highlight recent studies that have applied this approach to interrogating viral biology and finish by discussing key experimental considerations and how we predict that these methodologies will continue to evolve.
Collapse
Affiliation(s)
- Jonathan S. Abebe
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Ruth Verstraten
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
46
|
Wang L, Wang H, Chen X, Zhou S, Wang Y, Guan X. Chemistry solutions to facilitate nanopore detection and analysis. Biosens Bioelectron 2022; 213:114448. [PMID: 35716643 DOI: 10.1016/j.bios.2022.114448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Characteristic ionic current modulations will be produced in a single molecule manner during the communication of individual molecules with a nanopore. Hence, the information regarding the length, composition, and structure of a molecule can be extracted from deciphering the electrical message. However, until now, achieving a satisfactory resolution for observation and quantification of a target analyte in a complex system remains a nontrivial task. In this review, we summarize the progress and especially the recent advance in utilizing chemistry solutions to facilitate nanopore detection and analysis. The discussed chemistry solutions are classified into several major categories, including covalent/non-covalent chemistry, redox chemistry, displacement chemistry, back titration chemistry, chelation chemistry, hydrolysis-chemistry, and click chemistry. Considering the significant success of using chemical reaction-assisted nanopore sensing strategies to improve sensor sensitivity & selectivity and to study various topics, other non-chemistry based methodologies can undoubtedly be employed by nanopore sensors to explore new applications in the interdisciplinary area of chemistry, biology, materials, and nanotechnology.
Collapse
Affiliation(s)
- Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Han Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
47
|
Izadpanah A, Rappaport J, Datta PK. Epitranscriptomics of SARS-CoV-2 Infection. Front Cell Dev Biol 2022; 10:849298. [PMID: 35465335 PMCID: PMC9032796 DOI: 10.3389/fcell.2022.849298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies on the epitranscriptomic code of SARS-CoV-2 infection have discovered various RNA modifications, such as N6-methyladenosine (m6A), pseudouridine (Ψ), and 2′-O-methylation (Nm). The effects of RNA methylation on SARS-CoV-2 replication and the enzymes involved in this mechanism are emerging. In this review, we summarize the advances in this emerging field and discuss the role of various players such as readers, writers, and erasers in m6A RNA methylation, the role of pseudouridine synthase one and seven in epitranscriptomic modification Ψ, an isomer of uridine, and role of nsp16/nsp10 heterodimer in 2′-O-methylation of the ribose sugar of the first nucleotide of SARS-CoV-2 mRNA. We also discuss RNA expression levels of various enzymes involved in RNA modifications in blood cells of SARS-CoV-2 infected individuals and their impact on host mRNA modification. In conclusion, these observations will facilitate the development of novel strategies and therapeutics for targeting RNA modification of SARS-CoV-2 RNA to control SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Amin Izadpanah
- Division of Comparative Pathology, Tulane National Primate Center, Covington, LA, United States
| | - Jay Rappaport
- Division of Comparative Pathology, Tulane National Primate Center, Covington, LA, United States
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Prasun K. Datta
- Division of Comparative Pathology, Tulane National Primate Center, Covington, LA, United States
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, United States
- *Correspondence: Prasun K. Datta,
| |
Collapse
|
48
|
Ofusa K, Chijimatsu R, Ishii H. Techniques to detect epitranscriptomic marks. Am J Physiol Cell Physiol 2022; 322:C787-C793. [PMID: 35294846 DOI: 10.1152/ajpcell.00460.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Similar to epigenetic DNA modification, RNA can be methylated and altered for stability and processing. RNA modifications, i.e., epitranscriptomes involve three functions, that is, writing, erasing, and reading of marks. Methods for measurement and position detection are useful for the assessment of cellular function and human disease biomarkers. Since the first detection of pyrimidine 5-methylcytosine hundred years ago, numerous techniques have been developed to study the modifications of nucleotides, including RNAs. Recent studies focused on high throughput and direct measurements to investigate the precise function of epitranscriptomes, including the characterization of SARS-CoV-2. The current work presents an overview of the development of detection techniques for epitranscriptomic marks and updates recent progress on the related field.
Collapse
Affiliation(s)
- Ken Ofusa
- Prophoenix Division, Food and Life-Science Laboratory, Idea Consultants, Inc., Osaka-city, Osaka, Japan.,Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryota Chijimatsu
- Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
49
|
Shiao YH. Promising Assays for Examining a Putative Role of Ribosomal Heterogeneity in COVID-19 Susceptibility and Severity. Life (Basel) 2022; 12:203. [PMID: 35207490 PMCID: PMC8880406 DOI: 10.3390/life12020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
The heterogeneity of ribosomes, characterized by structural variations, arises from differences in types, numbers, and/or post-translational modifications of participating ribosomal proteins (RPs), ribosomal RNAs (rRNAs) sequence variants plus post-transcriptional modifications, and additional molecules essential for forming a translational machinery. The ribosomal heterogeneity within an individual organism or a single cell leads to preferential translations of selected messenger RNA (mRNA) transcripts over others, especially in response to environmental cues. The role of ribosomal heterogeneity in SARS-CoV-2 coronavirus infection, propagation, related symptoms, or vaccine responses is not known, and a technique to examine these has not yet been developed. Tools to detect ribosomal heterogeneity or to profile translating mRNAs independently cannot identify unique or specialized ribosome(s) along with corresponding mRNA substrate(s). Concurrent characterizations of RPs and/or rRNAs with mRNA substrate from a single ribosome would be critical to decipher the putative role of ribosomal heterogeneity in the COVID-19 disease, caused by the SARS-CoV-2, which hijacks the host ribosome to preferentially translate its RNA genome. Such a protocol should be able to provide a high-throughput screening of clinical samples in a large population that would reach a statistical power for determining the impact of a specialized ribosome to specific characteristics of the disease. These characteristics may include host susceptibility, viral infectivity and transmissibility, severity of symptoms, antiviral treatment responses, and vaccine immunogenicity including its side effect and efficacy. In this study, several state-of-the-art techniques, in particular, chemical probing of ribosomal components or rRNA structures, proximity ligation to generate rRNA-mRNA chimeras for sequencing, nanopore gating of individual ribosomes, nanopore RNA sequencing and/or structural analyses, single-ribosome mass spectrometry, and microfluidic droplets for separating ribosomes or indexing rRNAs/mRNAs, are discussed. The key elements for further improvement and proper integration of the above techniques to potentially arrive at a high-throughput protocol for examining individual ribosomes and their mRNA substrates in a clinical setting are also presented.
Collapse
Affiliation(s)
- Yih-Horng Shiao
- US Patent Trademark Office, Department of Commerce, Alexandria, VA 22314, USA
| |
Collapse
|
50
|
Meier UT. Guide RNA acrobatics: the one-for-two shuffle. Genes Dev 2022; 36:1-3. [PMID: 35022325 PMCID: PMC8763051 DOI: 10.1101/gad.349285.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA modifications are crucial for the proper function of the RNAs. The sites of pseudouridines are often specified by dual hairpin guide RNAs, with one or both hairpins identifying a target uridine. In this issue of Genes & Development, Jády and colleagues (pp. 70-83) identify a novel mechanism by which a single guide RNA hairpin can specify two uridines adjacent to each other or separated by 1 nt; i.e., one for two or guide RNA acrobatics.
Collapse
Affiliation(s)
- U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|