1
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
3
|
Kim GH, Son J, Nam JM. Advances, Challenges, and Opportunities in Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. ACS NANO 2025; 19:2992-3007. [PMID: 39812822 DOI: 10.1021/acsnano.4c14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Surface-enhanced Raman scattering has been widely used for molecular/material characterization and chemical and biological sensing and imaging applications. In particular, plasmonic nanogap-enhanced Raman scattering (NERS) is based on the highly localized electric field formed within the nanogap between closely spaced metallic surfaces to more strongly amplify Raman signals than the cases with molecules on metal surfaces. Nanoparticle-based NERS offers extraordinarily strong Raman signals and a plethora of opportunities in sensing, imaging and many different types of biomedical applications. Despite its potential, several challenges still remain for NERS to be widely useful in real-world applications. This Perspective introduces various plasmonic nanogap configurations with nanoparticles, discusses key advances and critical challenges while addressing possible misunderstandings in this field, and provides future directions for NERS to generate stronger, more uniform, and stable signals over a large number of structures for practical applications.
Collapse
Affiliation(s)
- Gyeong-Hwan Kim
- The Research Institute of Basic Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
4
|
Li Y, Chen W, He X, Shi J, Cui X, Sun J, Xu H. Boosting Light-Matter Interactions in Plasmonic Nanogaps. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405186. [PMID: 39410718 DOI: 10.1002/adma.202405186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/20/2024] [Indexed: 12/06/2024]
Abstract
Plasmonic nanogaps in strongly coupled metal nanostructures can confine light to nanoscale regions, leading to huge electric field enhancement. This unique capability makes plasmonic nanogaps powerful platforms for boosting light-matter interactions, thereby enabling the rapid development of novel phenomena and applications. This review traces the progress of nanogap systems characterized by well-defined morphologies, controllable optical responses, and a focus on achieving extreme performance. The properties of plasmonic gap modes in far-field resonance and near-field enhancement are explored and a detailed comparative analysis of nanogap fabrication techniques down to sub-nanometer scales is provided, including bottom-up, top-down, and their combined approaches. Additionally, recent advancements and applications across various frontier research areas are highlighted, including surface-enhanced spectroscopy, plasmon-exciton strong coupling, nonlinear optics, optoelectronic devices, and other applications beyond photonics. Finally, the challenges and promising emerging directions in the field are discussed, such as light-driven atomic effects, molecular optomechanics, and alternative new materials.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Wen Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xiaobo He
- Institute of Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Junjun Shi
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Quantum Information Future Technology, Henan University, Kaifeng, 475001, China
| | - Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Jiawei Sun
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Hongxing Xu
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Henan Academy of Sciences, Zhengzhou, Henan, 450046, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
5
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
6
|
Ma L, Zhou K, Wang X, Wang J, Zhao R, Zhang Y, Cheng F. Recent Progress in the Synthesis of 3D Complex Plasmonic Intragap Nanostructures and Their Applications in Surface-Enhanced Raman Scattering. BIOSENSORS 2024; 14:433. [PMID: 39329807 PMCID: PMC11430147 DOI: 10.3390/bios14090433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Plasmonic intragap nanostructures (PINs) have garnered intensive attention in Raman-related analysis due to their exceptional ability to enhance light-matter interactions. Although diverse synthetic strategies have been employed to create these nanostructures, the emphasis has largely been on PINs with simple configurations, which often fall short in achieving effective near-field focusing. Three-dimensional (3D) complex PINs, distinguished by their intricate networks of internal gaps and voids, are emerging as superior structures for effective light trapping. These structures facilitate the generation of hot spots and hot zones that are essential for enhanced near-field focusing. Nevertheless, the synthesis techniques for these complex structures and their specific impacts on near-field focusing are not well-documented. This review discusses the recent advancements in the synthesis of 3D complex PINs and their applications in surface-enhanced Raman scattering (SERS). We begin by describing the foundational methods for fabricating simple PINs, followed by a discussion on the rational design strategies aimed at developing 3D complex PINs with superior near-field focusing capabilities. We also evaluate the SERS performance of various 3D complex PINs, emphasizing their advanced sensing capabilities. Lastly, we explore the future perspective of 3D complex PINs in SERS applications.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Keyi Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinyue Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiayue Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ruyu Zhao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yifei Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
7
|
Fan S, Scarpitti BT, Luo Z, Smith AE, Ye J, Schultz ZD. Facile synthesis of intra-nanogap enhanced Raman tags with different shapes. NANO RESEARCH 2024; 17:8415-8423. [PMID: 39439578 PMCID: PMC11493321 DOI: 10.1007/s12274-024-6807-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 10/25/2024]
Abstract
Hot spot engineering in plasmonic nanostructures plays a significant role in surface enhanced Raman scattering for bioanalysis and cell imaging. However, creating stable, reproducible, and strong SERS signals remains challenging due to the potential interference from surrounding chemicals and locating SERS-active analytes into hot-spot regions. Herein, we developed a straightforward approach to synthesize intra-gap nanoparticles encapsulating 4-nitrobenzenethiol (4-NBT) as a reporter molecule within these gaps to avoid outside interference. We made three kinds of intra-gap nanoparticles using nanorods, bipyramids, and nanospheres as cores, in which the nanorod based intra-gap nanoparticles exhibit the highest SERS activity. The advantage of our method is the ease of preparation of high-yield and stable intra-gap nanoparticles characterized by a short incubation time (10 mins) with 4-NBT and quick synthesis without requiring an additional step to centrifuge for the purification of core nanoparticles. The intense localized field in the synthesized hot spots of these plasmonic gap nanostructures holds great promise as a SERS substrate for a broad range of quantitative optical applications.
Collapse
Affiliation(s)
- Sanjun Fan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Brian T. Scarpitti
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Zhewen Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Abigail E. Smith
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
8
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
9
|
Zhang Y, Chang K, Ogunlade B, Herndon L, Tadesse LF, Kirane AR, Dionne JA. From Genotype to Phenotype: Raman Spectroscopy and Machine Learning for Label-Free Single-Cell Analysis. ACS NANO 2024; 18:18101-18117. [PMID: 38950145 DOI: 10.1021/acsnano.4c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Raman spectroscopy has made significant progress in biosensing and clinical research. Here, we describe how surface-enhanced Raman spectroscopy (SERS) assisted with machine learning (ML) can expand its capabilities to enable interpretable insights into the transcriptome, proteome, and metabolome at the single-cell level. We first review how advances in nanophotonics-including plasmonics, metamaterials, and metasurfaces-enhance Raman scattering for rapid, strong label-free spectroscopy. We then discuss ML approaches for precise and interpretable spectral analysis, including neural networks, perturbation and gradient algorithms, and transfer learning. We provide illustrative examples of single-cell Raman phenotyping using nanophotonics and ML, including bacterial antibiotic susceptibility predictions, stem cell expression profiles, cancer diagnostics, and immunotherapy efficacy and toxicity predictions. Lastly, we discuss exciting prospects for the future of single-cell Raman spectroscopy, including Raman instrumentation, self-driving laboratories, Raman data banks, and machine learning for uncovering biological insights.
Collapse
Affiliation(s)
- Yirui Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Kai Chang
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Babatunde Ogunlade
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Liam Herndon
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Loza F Tadesse
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Jameel Clinic for AI & Healthcare, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amanda R Kirane
- Department of Surgery, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
10
|
Li R, Hu Y, Sun X, Zhang Z, Chen K, Liu Q, Chen X. Intra-nanoparticle plasmonic nanogap based spatial-confinement SERS analysis of polypeptides. Talanta 2024; 273:125899. [PMID: 38484502 DOI: 10.1016/j.talanta.2024.125899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Sensing and characterizing water-soluble polypeptides are essential in various biological applications. However, detecting polypeptides using Surface-Enhanced Raman Scattering (SERS) remains a challenge due to the dominance of aromatic amino acid residues and backbones in the signal, which hinders the detection of non-aromatic amino acid residues. Herein, intra-nanoparticle plasmonic nanogap were designed by etching the Ag shell in Au@AgNPs (i.e., obtaining AuAg cores) with chlorauric acid under mild conditions, at the same time forming the outermost Au shell and the void between the AuAg cores and the Au shell (AuAg@void@Au). By varying the Ag to added chloroauric acid molar ratios, we pioneered a simple, controllable, and general synthetic strategy to form interlayer-free nanoparticles with tunable Au shell thickness, achieving precise regulation of electric field enhancement within the intra-nanogap. As validation, two polypeptide molecules, bacitracin and insulin B, were successfully synchronously encapsulated and spatial-confined in the intra-nanogap for sensing. Compared with concentrated 50 nm AuNPs and Au@AgNPs as SERS substrates, our simultaneous detection method improved the sensitivity of the assay while benefiting to obtain more comprehensive characteristic peaks of polypeptides. The synthetic strategy of confining analytes while fabricating plasmonic nanostructures enables the diffusion of target molecules into the nanogap in a highly specific and sensitive manner, providing the majority of the functionality required to achieve peptide detection or sequencing without the hassle of labeling.
Collapse
Affiliation(s)
- Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuyang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaotong Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Xiangjiang Laboratory, Changsha 410205, China.
| |
Collapse
|
11
|
Kim J, Kim JM, Choi K, Park JE, Nam JM. Open Cross-gap Gold Nanocubes with Strong, Large-Area, Symmetric Electromagnetic Field Enhancement for On-Particle Molecular-Fingerprint Raman Bioassays. J Am Chem Soc 2024; 146:14012-14021. [PMID: 38738871 DOI: 10.1021/jacs.4c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Plasmonic nanoparticles with an externally open nanogap can localize the electromagnetic (EM) field inside the gap and directly detect the target via the open nanogap with surface-enhanced Raman scattering (SERS). It would be beneficial to design and synthesize the open gap nanoprobes in a high yield for obtaining uniform and quantitative signals from randomly oriented nanoparticles and utilizing these particles for direct SERS analysis. Here, we report a facile strategy to synthesize open cross-gap (X-gap) nanocubes (OXNCs) with size- and EM field-tunable gaps in a high yield. The site-specific growth of Au budding structures at the corners of the AuNC using the principle that the Au deposition rate is faster than the surface diffusion rate of the adatoms allows for a uniform X-gap formation. The average SERS enhancement factor (EF) for the OXNCs with 2.6 nm X-gaps was 1.2 × 109, and the EFs were narrowly distributed within 1 order of magnitude for ∼93% of the measured OXNCs. OXNCs consistently displayed strong EM field enhancement on large particle surfaces for widely varying incident light polarization directions, and this can be attributed to the symmetric X-gap geometry and the availability of these gaps on all 6 faces of a cube. Finally, the OXNC probes with varying X-gap sizes have been utilized in directly detecting biomolecules with varying sizes without Raman dyes. The concept, synthetic method, and biosensing results shown here with OXNCs pave the way for designing, synthesizing, and utilizing plasmonic nanoparticles for selective, quantitative molecular-fingerprint Raman sensing and imaging applications.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Kyungin Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Eun Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
12
|
Beermann NS, Fabretti S, Hafez HA, Syskaki MA, Kononenko I, Jakob G, Kläui M, Turchinovich D. Electronic transparency of internal interfaces in metallic nanostructures comprising light, heavy and ferromagnetic metals measured by terahertz spectroscopy. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1883-1890. [PMID: 39635607 PMCID: PMC11501111 DOI: 10.1515/nanoph-2023-0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 12/07/2024]
Abstract
We investigate the electronic transport at the internal interface within a selection of metallic bilayer nanostructures using the contact-free, all-optical method of THz time-domain spectroscopy. The Ru/Co, Ru/Pt, and Ru/Al bilayer nanostructures and their individual constituent metals are studied, with Ru representing an archetypal d-band metal, Co an archetypal ferromagnet, and Pt and Al archetypal heavy and light metals, respectively. The THz conductivity data were analyzed in terms of Drude and Bloch-Grüneisen models, and the interface current coefficient of the internal nanointerface was determined. Strong temperature dependency of the interface current coefficient in the Ru/Co nanostructure is revealed.
Collapse
Affiliation(s)
- Nicolas S. Beermann
- Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, 33615Bielefeld, Germany
| | - Savio Fabretti
- Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, 33615Bielefeld, Germany
| | - Hassan A. Hafez
- Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, 33615Bielefeld, Germany
| | - Maria-Andromachi Syskaki
- Institute of Physics, Johannes Gutenberg Universität Mainz, Staudinger Weg 7, 55128Mainz, Germany
| | - Iryna Kononenko
- Institute of Physics, Johannes Gutenberg Universität Mainz, Staudinger Weg 7, 55128Mainz, Germany
| | - Gerhard Jakob
- Institute of Physics, Johannes Gutenberg Universität Mainz, Staudinger Weg 7, 55128Mainz, Germany
| | - Mathias Kläui
- Institute of Physics, Johannes Gutenberg Universität Mainz, Staudinger Weg 7, 55128Mainz, Germany
| | - Dmitry Turchinovich
- Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, 33615Bielefeld, Germany
| |
Collapse
|
13
|
Wu J, Li S, Ma Y, Zhi W, Chen T, Huang X, Huang C, Zhou X, Zhang P, Zhang Y, Zheng G, Wang Z, Zhong X, Cai H, Wang W, Sun P, Zhou H. 3D hierarchic interfacial assembly of Au nanocage@Au along with IS-AgMNPs for simultaneous, ultrasensitive, reliable, and quantitative SERS detection of colorectal cancer related miRNAs. Biosens Bioelectron 2024; 248:115993. [PMID: 38183788 DOI: 10.1016/j.bios.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Simultaneous, reliable, and ultra-sensitive analysis of promising miRNA biomarkers of colorectal cancer (CRC) in serum is critical for early diagnosis and prognosis of CRC. In this work, we proposed a novel 3D hierarchic assembly clusters-based SERS strategy with dual enrichment and enhancement designed for the ultrasensitive and quantitative analysis of two upregulated CRC-related miRNAs (miR-21 and miR-31). The biosensor contains the following: (1) SERS probe, Au nanocage@Au nanoparticles (AuNC@Au NPs) labeled with Raman reporters (RaRs). (2) magnetic capture unit, Ag-coated Fe3O4 magnetic nanoparticles (AgMNPs) modified with internal standard (IS). (3) signal amplify probes (SA probes) for the formation of hierarchic assembly clusters. Based on this sensing strategy, the intensity ratio IRaRs/IIS with Lg miRNAs presents a wide linear range (10 aM-100 pM) with a limit of detection of 3.46 aM for miR-21, 6.49 aM for miR-31, respectively. Moreover, the biosensor shows good specificity and anti-interference ability, and the reliability and repeatability of the strategy were then verified by practical detection of clinical serum. Finally, the biosensor can distinguish CRC cancer subjects from normal ones and guide the distinct tumor, lymph node, and metastasis (TNM) stages. Overall, benefiting from the face-to-face coupling of hierarchic assembly clusters, rapid magnetic enrichment and IS signal calibration of AgMNPs, the established biosensor achieves ultra-sensitive and simultaneous detection of dual miRNAs and opens potential avenues for prediction and staging of CRC.
Collapse
Affiliation(s)
- Jiamin Wu
- College of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), The Fifth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Shengrong Li
- College of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), The Fifth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yiling Ma
- College of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), The Fifth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Weixia Zhi
- College of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), The Fifth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Tingting Chen
- College of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xueqin Huang
- College of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), The Fifth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Chan Huang
- College of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), The Fifth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Xia Zhou
- College of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), The Fifth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Pengcheng Zhang
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Yuan Zhang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Wang
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xing Zhong
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Wenxia Wang
- College of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Pinghua Sun
- College of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), The Fifth Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Haibo Zhou
- College of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), The Fifth Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Jiang L, Wang X, Zhou J, Fu Q, Lv B, Sun Y, Song L, Huang Y. Plasmonic Multi-Layered Built-in Hotspots Nanogaps for Effectively Activating Analytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306125. [PMID: 38044318 PMCID: PMC10870027 DOI: 10.1002/advs.202306125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Indexed: 12/05/2023]
Abstract
Multi-layered plasmonic nanostructures are able to highly promote the near-field confinement and effectively activate analytes, which are of predominate significance but are extremely challenging. Herein, the semi-open Au core@carved AuAg multi-shell superstructure nanoparticles (multi-Au@Ag-Au NPs, multi = mono, bi, tri, tetra, and penta) are reported with a high designability on electromagnetic field and capability of effectively capturing analytes. By controlling synthetic parameters such as the number of galvanic exchange and Ag growth, multi-Au@Ag-Au NPs are successfully obtained, with tunable layer numbers and asymmetric nanoholes. Due to collective plasmon oscillations of multi-layered built-in nanogaps, the electromagnetic field strength of a single penta-Au@Ag-Au entity reach 48841. More importantly, the penta-Au@Ag-Au NPs show a remarkable light-harvesting capability, which is adaptive to different Raman lasers, supporting high-diversity detection. Additionally, the structural specificity allows analytes to be sufficiently captured into interior hotspots, and further achieve highly sensitive detection with limit of detection down to 3.22 × 10-12 M. This study not only provides an effective pathway for integrating abundant hotspots and activating target molecules in single plasmonic superstructure, but stimulates advancements in SERS substrates for various applications.
Collapse
Affiliation(s)
- Lei Jiang
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Xiaoyuan Wang
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Jingyi Zhou
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Qianqian Fu
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Bihu Lv
- Department of Scientific Facilities Development and ManagementZhejiang LaboratoryHangzhou311100China
| | - Yixuan Sun
- Department of Scientific Facilities Development and ManagementZhejiang LaboratoryHangzhou311100China
| | - Liping Song
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Youju Huang
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
- Laboratory for Functional Molecules MaterialsWestlake UniversityHangzhouZhejiang310030China
| |
Collapse
|
15
|
Kim JM, Kim J, Choi K, Nam JM. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208250. [PMID: 36680474 DOI: 10.1002/adma.202208250] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Metal nanostructures with a tunable plasmonic gap are useful for photonics, surface-enhanced spectroscopy, biosensing, and bioimaging applications. The use of these structures as chemical and biological sensing/imaging probes typically requires an ultra-precise synthesis of the targeted nanostructure in a high yield, with Raman dye-labeling and complex assay components and procedures. Here, a plasmonic nanostructure with tunable dual nanogaps, Au dual-gap nanodumbbells (AuDGNs), is designed and synthesized via the anisotropic adsorption of polyethyleneimine on Au nanorods to facilitate tip-selective Au growths on nanorod tips for forming mushroom-shaped dumbbell-head structures at both tips and results in dual gaps (intra-head and inter-head gaps) within a single particle. AuDGNs are synthesized in a high yield (>90%) while controlling the inter-head gap size, and the average surface-enhanced Raman scattering (SERS) enhancement factor (EF) value is 7.5 × 108 with a very narrow EF distribution from 1.5 × 108 to 1.5 × 109 for >90% of analyzed particles. Importantly, AuDGNs enable label-free on-particle SERS detection assays through the diffusion of target molecules into the intraparticle gap for different DNA sequences with varying ATGC combinations in a highly specific and sensitive manner without a need for Raman dyes.
Collapse
Affiliation(s)
- Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jiyeon Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Kyungin Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
16
|
Liu H, Gao X, Xu C, Liu D. SERS Tags for Biomedical Detection and Bioimaging. Theranostics 2022; 12:1870-1903. [PMID: 35198078 PMCID: PMC8825578 DOI: 10.7150/thno.66859] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 11/05/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a valuable technique for molecular identification. Due to the characteristics of high sensitivity, excellent signal specificity, and photobleaching resistance, SERS has been widely used in the fields of environmental monitoring, food safety, and disease diagnosis. By attaching the organic molecules to the surface of plasmonic nanoparticles, the obtained SERS tags show high-performance multiplexing capability for biosensing. The past decade has witnessed the progress of SERS tags for liquid biopsy, bioimaging, and theranostics applications. This review focuses on the advances of SERS tags in biomedical fields. We first introduce the building blocks of SERS tags, followed by the summarization of recent progress in SERS tags employed for detecting biomarkers, such as DNA, miRNA, and protein in biological fluids, as well as imaging from in vitro cell, bacteria, tissue to in vivo tumors. Further, we illustrate the appealing applications of SERS tags for delineating tumor margins and cancer diagnosis. In the end, perspectives of SERS tags projecting into the possible obstacles are deliberately proposed in future clinical translation.
Collapse
Affiliation(s)
- Huiqiao Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300000, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Kim JM, Lee C, Lee Y, Lee J, Park SJ, Park S, Nam JM. Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006966. [PMID: 34013617 DOI: 10.1002/adma.202006966] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Plasmonic gap nanostructures (PGNs) have been extensively investigated mainly because of their strongly enhanced optical responses, which stem from the high intensity of the localized field in the nanogap. The recently developed methods for the preparation of versatile nanogap structures open new avenues for the exploration of unprecedented optical properties and development of sensing applications relying on the amplification of various optical signals. However, the reproducible and controlled preparation of highly uniform plasmonic nanogaps and the prediction, understanding, and control of their optical properties, especially for nanogaps in the nanometer or sub-nanometer range, remain challenging. This is because subtle changes in the nanogap significantly affect the plasmonic response and are of paramount importance to the desired optical performance and further applications. Here, recent advances in the synthesis, assembly, and fabrication strategies, prediction and control of optical properties, and sensing applications of PGNs are discussed, and perspectives toward addressing these challenging issues and the future research directions are presented.
Collapse
Affiliation(s)
- Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Chungyeon Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Yeonhee Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jinhaeng Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
18
|
Wang H, Liu Y, Rao G, Wang Y, Du X, Hu A, Hu Y, Gong C, Wang X, Xiong J. Coupling enhancement mechanisms, materials, and strategies for surface-enhanced Raman scattering devices. Analyst 2021; 146:5008-5032. [PMID: 34296232 DOI: 10.1039/d1an00624j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become one of the most sensitive analytical techniques for identifying the chemical components, molecular structures, molecular conformations, and the interactions between molecules. However, great challenges still need to be addressed until it can be widely accepted by the absolute quantification of analytes. Recently, many efforts have been devoted to addressing these issues via various electromagnetic (EM), chemical (CM), and EM-CM hybrid coupling enhancement strategies. In comparison with uncoupled SERS devices, they offer key advantages in terms of sensitivity, reproducibility, uniformity, stability, controllability and reliability. This review provides an in-depth analysis of coupled SERS devices, including coupling enhancement mechanisms, materials and approaches. Finally, we also discuss the remaining bottlenecks and possible strategies for the development of coupling-enhanced SERS devices in the future.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhu R, Feng H, Li Q, Su L, Fu Q, Li J, Song J, Yang H. Asymmetric Core–Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| |
Collapse
|
20
|
Chen QQ, Hou RN, Zhu YZ, Wang XT, Zhang H, Zhang YJ, Zhang L, Tian ZQ, Li JF. Au@ZIF-8 Core-Shell Nanoparticles as a SERS Substrate for Volatile Organic Compound Gas Detection. Anal Chem 2021; 93:7188-7195. [PMID: 33945260 DOI: 10.1021/acs.analchem.0c05432] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a promising ultrasensitive analysis technology due to outstanding molecular fingerprint identification. However, the measured molecules generally need to be adsorbed on a SERS substrate, which makes it difficult to detect weakly adsorbed molecules, for example, the volatile organic compound (VOC) molecules. Herein, we developed a kind of a SERS detection method for weak adsorption molecules with Au@ZIF-8 core-shell nanoparticles (NPs). The well-uniformed single- and multicore-shell NPs can be synthesized controllably, and the shell thickness of the ZIF-8 was able to be precisely controlled (from 3 to 50 nm) to adjust the distance and electromagnetic fields between metal nanoparticles. After analyzing the chemical and physical characterization, Au@ZIF-8 core-shell NPs were employed to detect VOC gas by SERS. In contrast with multicore or thicker-shell nanoparticles, Au@ZIF-8 with a shell thickness of 3 nm could efficiently probe various VOC gas molecules, such as toluene, ethylbenzene, and chlorobenzene. Besides, we were capable of observing the process of toluene gas adsorption and desorption using real-time SERS technology. As observed from the experimental results, this core-shell nanostructure has a promising prospect in diverse gas detection and is expected to be applied to the specific identification of intermediates in catalytic reactions.
Collapse
Affiliation(s)
- Qing-Qi Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Ruo-Nan Hou
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yue-Zhou Zhu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Ting Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hua Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhong-Qun Tian
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Zhu R, Feng H, Li Q, Su L, Fu Q, Li J, Song J, Yang H. Asymmetric Core–Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Angew Chem Int Ed Engl 2021; 60:12560-12568. [DOI: 10.1002/anie.202102893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| |
Collapse
|
22
|
Xu J, Dong Z, Asbahi M, Wu Y, Wang H, Liang L, Ng RJH, Liu H, Vallée RAL, Yang JKW, Liu X. Multiphoton Upconversion Enhanced by Deep Subwavelength Near-Field Confinement. NANO LETTERS 2021; 21:3044-3051. [PMID: 33687219 DOI: 10.1021/acs.nanolett.1c00232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient generation of anti-Stokes emission within nanometric volumes enables the design of ultracompact, miniaturized photonic devices for a host of applications. Many subwavelength crystals, such as metal nanoparticles and two-dimensional layered semiconductors, have been coupled with plasmonic nanostructures for augmented anti-Stokes luminescence through multiple-harmonic generation. However, their upconversion process remains inefficient due to their intrinsic low absorption coefficients. Here, we demonstrate on-chip, site-specific integration of lanthanide-activated nanocrystals within gold nanotrenches of sub-25 nm gaps via bottom-up self-assembly. Coupling of upconversion nanoparticles to subwavelength gap-plasmon modes boosts 3.7-fold spontaneous emission rates and enhances upconversion by a factor of 100 000. Numerical investigations reveal that the gap-mode nanocavity confines incident excitation radiation into nanometric photonic hotspots with extremely high field intensity, accelerating multiphoton upconversion processes. The ability to design lateral gap-plasmon modes for enhanced frequency conversion may hold the potential to develop on-chip, background-free molecular sensors and low-threshold upconversion lasers.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Chemistry and The N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Mohamed Asbahi
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Yiming Wu
- Department of Chemistry and The N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Hao Wang
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Liangliang Liang
- Department of Chemistry and The N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Ray Jia Hong Ng
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Hailong Liu
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | | | - Joel K W Yang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Xiaogang Liu
- Department of Chemistry and The N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin, University International Campus of Tianjin University, Fuzhou 350207, P.R. China
| |
Collapse
|
23
|
Lee S, Lee S, Kim JM, Son J, Cho E, Yoo S, Hilal H, Nam JM, Park S. Au nanolenses for near-field focusing. Chem Sci 2021; 12:6355-6361. [PMID: 34084434 PMCID: PMC8115063 DOI: 10.1039/d1sc00202c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a novel strategy for the synthesis of Pt@Au nanorings possessing near-field focusing capabilities at the center through which single-particle surface enhanced Raman scattering could be readily observed. We utilized Pt@Au nanorings as a light-absorber; the absorbed light could be focused at the center with the aid of a Au nanoporous structure. We synthesized the Au nanolens structure through a Galvanic exchange process between Au ions and Ag block at the inner domain of the Pt@Au nanoring. For this step, Ag was selectively pre-deposited at the inner domain of the Pt@Au nanorings through electrochemical potential-tuned growth control and different surface energies with regard to the inner and outer boundaries of the nanoring. Then, the central nanoporous architecture was fabricated through the Galvanic exchange of sacrificial Ag with Au ions leading to the resulting Au nanoring with a Au nanoporous structure at the center. We monitored the shape-transformation by observing their corresponding localized surface plasmon resonance (LSPR) profiles. By varying the rim thickness of the starting Pt@Au nanorings, the inner diameter of the nanolens was accordingly tuned to maximize near-field focusing, which enabled us to obtain the reproducible and light-polarization independent measurements of single-particle SERS. Through theoretical simulation, the near-field electromagnetic field focusing capability was visualized and confirmed through single-particle SERS measurement showing an enhancement factor of 1.9 × 108 to 1.0 × 109. We synthesized a Au nanolens with electromagnetic near-field focusing capability by integrating a Au nanoporous structure at the center of the Pt@Au nanoring via synthetic steps of eccentric growth of Ag and nanoscale Galvanic exchange reaction.![]()
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University Seoul 08826 South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University Seoul 08826 South Korea
| | - Eunbyeol Cho
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| | - Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University Seoul 08826 South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| |
Collapse
|
24
|
Kang H, Jeong S, Yang JK, Jo A, Lee H, Heo EH, Jeong DH, Jun BH, Chang H, Lee YS. Template-Assisted Plasmonic Nanogap Shells for Highly Enhanced Detection of Cancer Biomarkers. Int J Mol Sci 2021; 22:ijms22041752. [PMID: 33578653 PMCID: PMC7916425 DOI: 10.3390/ijms22041752] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/24/2023] Open
Abstract
We present a template-assisted method for synthesizing nanogap shell structures for biomolecular detections based on surface-enhanced Raman scattering. The interior nanogap-containing a silver shell structure, referred to as a silver nanogap shell (Ag NGS), was fabricated on silver nanoparticles (Ag NPs)-coated silica, by adsorbing small aromatic thiol molecules on the Ag NPs. The Ag NGSs showed a high enhancement factor and good signal uniformity, using 785-nm excitation. We performed in vitro immunoassays using a prostate-specific antigen as a model cancer biomarker with a detection limit of 2 pg/mL. To demonstrate the versatility of Ag NGS nanoprobes, extracellular duplex surface-enhanced Raman scattering (SERS) imaging was also performed to evaluate the co-expression of cancer biomarkers, human epidermal growth factor-2 (HER2) and epidermal growth factor receptor (EGFR), in a non-small cell lung cancer cell line (H522). Developing highly sensitive Ag NGS nanoprobes that enable multiplex biomolecular detection and imaging can open up new possibilities for point-of-care diagnostics and provide appropriate treatment options and prognosis.
Collapse
Affiliation(s)
- Homan Kang
- Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 08826, Korea; (H.K.); (D.H.J.)
| | - Sinyoung Jeong
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea;
| | - Jin-Kyoung Yang
- School of Chemical & Biological Engineering, Seoul National University, Seoul 08826, Korea; (J.-K.Y.); (H.L.)
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Hyunmi Lee
- School of Chemical & Biological Engineering, Seoul National University, Seoul 08826, Korea; (J.-K.Y.); (H.L.)
| | - Eun Hae Heo
- Division of Science Education, Kangwon National University, Chuncheon 24341, Korea;
| | - Dae Hong Jeong
- Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 08826, Korea; (H.K.); (D.H.J.)
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
- Correspondence: (B.-H.J.); (H.C.); (Y.-S.L.)
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (B.-H.J.); (H.C.); (Y.-S.L.)
| | - Yoon-Sik Lee
- School of Chemical & Biological Engineering, Seoul National University, Seoul 08826, Korea; (J.-K.Y.); (H.L.)
- Correspondence: (B.-H.J.); (H.C.); (Y.-S.L.)
| |
Collapse
|
25
|
Yang W, Lim DK. Recent Advances in the Synthesis of Intra-Nanogap Au Plasmonic Nanostructures for Bioanalytical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002219. [PMID: 33063429 DOI: 10.1002/adma.202002219] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Indexed: 05/24/2023]
Abstract
Plasmonic nanogap-enhanced Raman scattering has attracted considerable attention in the fields of Raman-based bioanalytical applications and materials science. Various strategies have been proposed to prepare nanostructures with an inter- or intra-nanogap for fundamental study models or applications. This report focuses on recent advances in synthetic methods to fabricate intra-nanogap structures with diverse dimensions, with detailed focus on the theory and bioanalytical applications. Synthetic strategies ranging from the use of a silica layer to small molecules, the use of polymers and galvanic replacement, are extensively investigated. Furthermore, various core structures, such as spherical, rod-, and cube-shaped, are widely studied, and greatly expand the diversity of plasmonic nanostructures with an intra-nanogap. Theoretical calculations, ranging from the first plasmonic hybridization model that is applied to a concentric Au-SiO2 -Au nanosphere to the modern quantum corrected model, have evolved to accurately describe the plasmonic resonance property in concentric core-shell nanostructures with a subnanometer nanogap. The greatly enhanced and uniform Raman responses from the localized Raman reporter in the built-in nanogap have made it possible to achieve promising probes with an extraordinary high sensitivity in various formats, such as biomolecule detection, high-resolution cell imaging, and an in vivo imaging application.
Collapse
Affiliation(s)
- Wonseok Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seong-buk gu, Seoul, 02841, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seong-buk gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
26
|
Kim JM, Kim J, Ha M, Nam JM. Cyclodextrin-Based Synthesis and Host-Guest Chemistry of Plasmonic Nanogap Particles with Strong, Quantitative, and Highly Multiplexable Surface-Enhanced Raman Scattering Signals. J Phys Chem Lett 2020; 11:8358-8364. [PMID: 32956585 DOI: 10.1021/acs.jpclett.0c02624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We developed a synthetic strategy to form cyclodextrin-based intrananogap particles (CIPs) with a well-defined ∼1 nm interior gap in a high yield (∼97%), and were able to incorporate 10 different Raman dyes inside the gap using the cyclodextrin-based host-guest chemistry, leading to strong, reproducible, and highly multiplexable surface-enhanced Raman scattering (SERS) signals. The average SERS enhancement factor (EF) for CIPs was 3.0 × 109 with a very narrow distribution of the EFs that range from 9.5 × 108 to 9.5 × 109 for ∼95% of the measured particles. Remarkably, 10 different Raman dyes can be loaded within the nanogap of CIPs, and 6 different Raman dye-loaded CIPs with little spectral overlaps were distinctly detected for cancer cell imaging applications with a single excitation source. Our synthetic strategy provides new platforms in precisely forming plasmonic nanogap structures with all key features for widespread use of SERS including strong signal intensity, reliability in quantification of signal and multiplexing capability.
Collapse
Affiliation(s)
- Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jiyeon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Minji Ha
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
27
|
Bi Y, Di H, Zeng E, Li Q, Li W, Yang J, Liu D. Reliable Quantification of pH Variation in Live Cells Using Prussian Blue-Caged Surface-Enhanced Raman Scattering Probes. Anal Chem 2020; 92:9574-9582. [PMID: 32600040 DOI: 10.1021/acs.analchem.0c00714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intracellular pH is an important parameter that is highly associated with diverse physiological processes. The reliable measurement of pH values inside cells remains a formidable challenge because of the complexity of cytoplasm. Herein, we report a robust Prussian blue (PB)-caged pH-responsive surface-enhanced Raman scattering (SERS) probe for precisely mapping the dynamic pH values in live cells. The PB shell has a subnanoscale porous structure that allows only very small biospecies such as H+ or OH- to pass freely through the shell and react with the encased pH-responsive SERS probe, while physically resisting the entry of large biomolecules. This probe achieved unmatched detection linearity (R2 > 0.999) for pH measurements in diverse complex biological samples. Moreover, the nitrile (C≡N) in PB shows a sharp band in the cellular Raman-silent region, which serves as a background-free internal standard for accurate profiling of the probe distribution inside the cells. We applied the proposed probe to monitor the dynamic pH changes during cellular autophagy induced by different stimuli and thereby demonstrated that the PB-caged probe can reliably quantify subtle intracellular pH variations, providing an effective tool for revealing the relationship between abnormal intracellular pH and cellular functions.
Collapse
Affiliation(s)
- Yingna Bi
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Huixia Di
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Erzao Zeng
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Qiang Li
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Wenshuai Li
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Jie Yang
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Yoo S, Lee J, Kim J, Kim JM, Haddadnezhad M, Lee S, Choi S, Park D, Nam JM, Park S. Silver Double Nanorings with Circular Hot Zone. J Am Chem Soc 2020; 142:12341-12348. [DOI: 10.1021/jacs.0c04419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Junghwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | | | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Sungwoo Choi
- Department of Applied Optics and Physics, Hallym University, Chuncheon 24252, South Korea
| | - Doojae Park
- Department of Applied Optics and Physics, Hallym University, Chuncheon 24252, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| |
Collapse
|
29
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1685] [Impact Index Per Article: 337.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
30
|
Khlebtsov NG, Lin L, Khlebtsov BN, Ye J. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications. Theranostics 2020; 10:2067-2094. [PMID: 32089735 PMCID: PMC7019156 DOI: 10.7150/thno.39968] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/11/2019] [Indexed: 01/15/2023] Open
Abstract
Gap-enhanced Raman tags (GERTs) are emerging probes of surface-enhanced Raman scattering (SERS) spectroscopy that have found promising analytical, bioimaging, and theranostic applications. Because of their internal location, Raman reporter molecules are protected from unwanted external environments and particle aggregation and demonstrate superior SERS responses owing to the strongly enhanced electromagnetic fields in the gaps between metal core-shell structures. In this review, we discuss recent progress in the synthesis, simulation, and experimental studies of the optical properties and biomedical applications of novel spherically symmetrical and anisotropic GERTs fabricated with common plasmonic metals—gold (Au) and silver (Ag). Our discussion is focused on the design and synthetic strategies that ensure the optimal parameters and highest enhancement factors of GERTs for sensing and theranostics. In particular, we consider various core-shell structures with build-in nanogaps to explain why they would benefit the plasmonic GERTs as a superior SERS tag and how this would help future research in clinical analytics and therapeutics.
Collapse
|
31
|
Ha M, Kim JH, You M, Li Q, Fan C, Nam JM. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem Rev 2019; 119:12208-12278. [PMID: 31794202 DOI: 10.1021/acs.chemrev.9b00234] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jae-Ho Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Myunghwa You
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
32
|
Lee S, Kim J, Yang H, Cortés E, Kang S, Han SW. Particle‐in‐a‐Frame Nanostructures with Interior Nanogaps. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Seunghoon Lee
- Center for Nanotectonics Department of Chemistry and KI for the NanoCentury KAIST Daejeon 34141 Korea
| | - Jaeyoung Kim
- Center for Nanotectonics Department of Chemistry and KI for the NanoCentury KAIST Daejeon 34141 Korea
| | - Hyunwoo Yang
- Center for Nanotectonics Department of Chemistry and KI for the NanoCentury KAIST Daejeon 34141 Korea
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems Nanoinstitut München Fakultät für Physik Ludwig-Maximilians-Universität München 80799 München Germany
| | - Seungwoo Kang
- Center for Nanotectonics Department of Chemistry and KI for the NanoCentury KAIST Daejeon 34141 Korea
| | - Sang Woo Han
- Center for Nanotectonics Department of Chemistry and KI for the NanoCentury KAIST Daejeon 34141 Korea
| |
Collapse
|
33
|
Lee S, Kim J, Yang H, Cortés E, Kang S, Han SW. Particle‐in‐a‐Frame Nanostructures with Interior Nanogaps. Angew Chem Int Ed Engl 2019; 58:15890-15894. [DOI: 10.1002/anie.201908291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/17/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Seunghoon Lee
- Center for Nanotectonics Department of Chemistry and KI for the NanoCentury KAIST Daejeon 34141 Korea
| | - Jaeyoung Kim
- Center for Nanotectonics Department of Chemistry and KI for the NanoCentury KAIST Daejeon 34141 Korea
| | - Hyunwoo Yang
- Center for Nanotectonics Department of Chemistry and KI for the NanoCentury KAIST Daejeon 34141 Korea
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems Nanoinstitut München Fakultät für Physik Ludwig-Maximilians-Universität München 80799 München Germany
| | - Seungwoo Kang
- Center for Nanotectonics Department of Chemistry and KI for the NanoCentury KAIST Daejeon 34141 Korea
| | - Sang Woo Han
- Center for Nanotectonics Department of Chemistry and KI for the NanoCentury KAIST Daejeon 34141 Korea
| |
Collapse
|
34
|
Kim M, Lee J, Nam J. Plasmonic Photothermal Nanoparticles for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900471. [PMID: 31508273 PMCID: PMC6724476 DOI: 10.1002/advs.201900471] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/19/2019] [Indexed: 05/02/2023]
Abstract
Recent advances of plasmonic nanoparticles include fascinating developments in the fields of energy, catalyst chemistry, optics, biotechnology, and medicine. The plasmonic photothermal properties of metallic nanoparticles are of enormous interest in biomedical fields because of their strong and tunable optical response and the capability to manipulate the photothermal effect by an external light source. To date, most biomedical applications using photothermal nanoparticles have focused on photothermal therapy; however, to fully realize the potential of these particles for clinical and other applications, the fundamental properties of photothermal nanoparticles need to be better understood and controlled, and the photothermal effect-based diagnosis, treatment, and theranostics should be thoroughly explored. This Progress Report summarizes recent advances in the understanding and applications of plasmonic photothermal nanoparticles, particularly for sensing, imaging, therapy, and drug delivery, and discusses the future directions of these fields.
Collapse
Affiliation(s)
- Minho Kim
- Department of ChemistrySeoul National UniversitySeoul08826South Korea
| | - Jung‐Hoon Lee
- Department of ChemistryCity University of Hong KongHong Kong SAR, P. R. China
| | - Jwa‐Min Nam
- Department of ChemistrySeoul National UniversitySeoul08826South Korea
| |
Collapse
|
35
|
Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Nat Commun 2019; 10:3905. [PMID: 31467266 PMCID: PMC6715656 DOI: 10.1038/s41467-019-11829-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/07/2019] [Indexed: 11/08/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is advantageous over fluorescence for bioimaging due to ultra-narrow linewidth of the fingerprint spectrum and weak photo-bleaching effect. However, the existing SERS imaging speed lags far behind practical needs, mainly limited by Raman signals of SERS nanoprobes. In this work, we report ultrabright gap-enhanced Raman tags (GERTs) with strong electromagnetic hot spots from interior sub-nanometer gaps and external petal-like shell structures, larger immobilization surface area, and Raman cross section of reporter molecules. These GERTs reach a Raman enhancement factor beyond 5 × 109 and a detection sensitivity down to a single-nanoparticle level. We use a 370 μW laser to realize high-resolution cell imaging within 6 s and high-contrast (a signal-to-background ratio of 80) wide-area (3.2 × 2.8 cm2) sentinel lymph node imaging within 52 s. These nanoprobes offer a potential solution to overcome the current bottleneck in the field of SERS-based bioimaging. The speed of surface-enhanced Raman spectroscopy (SERS) imaging is generally limited due to low Raman signals. Here, the authors develop bright gap-enhanced Raman tags with external hot spots and demonstrate their use in fast near-infrared bioimaging.
Collapse
|
36
|
Wu D, Chen Y, Hou S, Fang W, Duan H. Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures. Chembiochem 2019; 20:2432-2441. [PMID: 30957950 DOI: 10.1002/cbic.201900191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS), with greatly amplified fingerprint spectra, holds great promise in biochemical and biomedical research. In particular, the possibility of exciting a library of SERS probes and differentially detecting them simultaneously has stimulated widespread interest in multiplexed biodetection. Herein, recent progress in developing SERS-active plasmonic nanostructures for cellular and intracellular detection is summarized. The development of nanosensors with tailored plasmonic and multifunctional properties for profiling molecular and pathological processes is highlighted. Future challenges towards the routine use of SERS technology in quantitative bioanalysis and clinical diagnostics are further discussed.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P.R. China.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Yonghao Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
37
|
Kim M, Ko SM, Lee C, Son J, Kim J, Kim JM, Nam JM. Hierarchic Interfacial Nanocube Assembly for Sensitive, Selective, and Quantitative DNA Detection with Surface-Enhanced Raman Scattering. Anal Chem 2019; 91:10467-10476. [PMID: 31265240 DOI: 10.1021/acs.analchem.9b01272] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Surface-enhanced Raman scattering (SERS)-based sensing is promising in that it has potential to allow for highly sensitive, selective, and multiplexed detection and imaging. However, the controlled assembly and gap formation between plasmonic particles for generating strong SERS signals in a quantitative manner is highly challenging, especially on biodetection platforms, and particle-to-particle variation in the signal enhancement can vary by several orders of magnitude in a single batch, largely limiting the reliable use of SERS for practical sensing applications. Here, a hierarchic-nanocube-assembly based SERS (H-Cube-SERS) bioassay to controllably amplify the electromagnetic field between gold nanocubes (AuNCs) is developed. Based on this strategy, H-Cube-SERS assay allows for detecting target DNA with a wide dynamic range from 100 aM to 10 pM concentrations in a stable and reproducible manner. It is also found that the uniformly formed AuNCs with flat surfaces are much more suitable for highly sensitive, reliable, and quantitative biodetection assays due to faster DNA binding kinetics, sharper DNA melting transition, wider hot spot regions, and less dependence on light polarization direction than spherical Au nanoparticles with curved interfaces. This work paves the pathways to the quantitative and sensitive biodetection on a SERS platform and can be extended to other particle assembly systems.
Collapse
Affiliation(s)
- Minho Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Sung Min Ko
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Chungyeon Lee
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jiwoong Son
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jiyeon Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jae-Myoung Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
38
|
Miao X, Wen S, Su Y, Fu J, Luo X, Wu P, Cai C, Jelinek R, Jiang LP, Zhu JJ. Graphene Quantum Dots Wrapped Gold Nanoparticles with Integrated Enhancement Mechanisms as Sensitive and Homogeneous Substrates for Surface-Enhanced Raman Spectroscopy. Anal Chem 2019; 91:7295-7303. [PMID: 31062958 DOI: 10.1021/acs.analchem.9b01001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rational engineering of highly stable and Raman-active nanostructured substrates is still urgently in demand for achieving sensitive and reliable surface-enhanced Raman spectroscopy (SERS) analysis in solution phase. Herein, monodisperse N-doping graphene quantum dots wrapped Au nanoparticles (Au-NGQD NPs) were facilely prepared, and further their applications as substrates in SERS-based detection and cellular imaging have been explored. The as-prepared Au-NGQD NPs exhibit superior long-term stability and biocompatibility, as well as large enhancement capability due to the integration of electromagnetic and chemical enhancements. The practical applicability of the Au-NGQD NPs was verified via the direct SERS tests of several kinds of aromatics in solution phase. Finite-difference time-domain simulations in combination with density functional theory calculation were also successfully used to explain the enhancement mechanism. Furthermore, the Au-NGQD NPs were conjugated with 4-nitrobenzenethiol (4-NBT, as reporter) and 4-mercaptophenylboronic acid (MPBA, as targeting element) to construct the MPBA/4-NBT@Au-NGQD probes, which could specifically recognize glycan-overexpressed cancer cells through SERS imaging on a cell surface. The prepared Au-NGQDs show great potential as superior SERS substrates in solution phase for on-site Raman detection.
Collapse
Affiliation(s)
- Xuran Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Shengping Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yu Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jiaju Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xiaojun Luo
- Jiangsu Key Laboratory of New Power Batteries, College of Chemistry & Materials Science , Nanjing Normal University , Nanjing 210097 , China
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, College of Chemistry & Materials Science , Nanjing Normal University , Nanjing 210097 , China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, College of Chemistry & Materials Science , Nanjing Normal University , Nanjing 210097 , China
| | - Raz Jelinek
- Department of Chemistry , Ben Gurion University of the Negev , Beer Sheva 84105 , Israel
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
39
|
Ning CF, Tian YF, Zhou W, Yin BC, Ye BC. Ultrasensitive SERS detection of specific oligonucleotides based on Au@AgAg bimetallic nanorods. Analyst 2019; 144:2929-2935. [PMID: 30919851 DOI: 10.1039/c9an00306a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We synthesized a novel and sensitive Au/Ag bimetallic SERS-active nanotag, Au-Ag-Ag core-shell-shell nanorod (Au@AgAgNR). The Au@AgAgNR nanotag exhibited a strong SERS signal and was easily assembled from bilayer silver shells on an Au nanorod (AuNR) core with embedded Raman reporter molecules in the core-shell-shell gaps. The SERS activity of the nanotags was investigated with 2-mercaptopyridine (2-Mpy) as a Raman reporter, which could form pyridine/Ag+ coordination complexes to mediate the formation of silver shells. Specific enhancement of Raman signals was observed in the following order: AuNR < Au@AgNR < Au@AgAgNR. Then, Au@AgAgNR nanotags were coupled with magnetic beads (MBs) via specific DNA hybridization as a SERS sensor with a detection limit of 1 fM for a segment of the gene HPV-16. Factors affecting sensitivity and selectivity were investigated, including Raman dye concentration, silver nitrate dosage and the response to similar oligonucleotides. The proposed SERS sensor is expected to be a facile and sensitive method for specific gene detection.
Collapse
Affiliation(s)
- Cui-Fang Ning
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ya-Fei Tian
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Wen Zhou
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. and Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China and School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China
| |
Collapse
|
40
|
Gurav DD, Jia YA, Ye J, Qian K. Design of plasmonic nanomaterials for diagnostic spectrometry. NANOSCALE ADVANCES 2019; 1:459-469. [PMID: 36132258 PMCID: PMC9473262 DOI: 10.1039/c8na00319j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/23/2018] [Indexed: 05/09/2023]
Abstract
Molecular diagnostics relies on the efficient extraction of biomarker information from the given bio-systems. Plasmonic nanomaterials with tailored structural parameters are promising for the development of biomarker assays due to enrichment effect and signal enhancement. Herein, we overview the recent progress on the development of plasmonic nanomaterials for diagnostic spectrometry, encompassing the interface, mechanism, and application of these materials. For interface, we summarized the types of plasmonic nanomaterials used as interfaces between different materials and light. For mechanism, we descirbe the key parameters (e.g., hot carriers and heat) that characterize the plasmonic effect of materials. For application, we highlighted recent advances in matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) and surface enhanced Raman spectroscopy (SERS) toward precision in in vitro and in vivo diagnostics. We foresee the upcoming era of precision diagnostics by nano-assisted spectrometry methods in both academy and industry, which will require the interest and effort of scientists with diverse backgrounds.
Collapse
Affiliation(s)
- Deepanjali Dattatray Gurav
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai 200030 People's Republic of China
| | - Yi Alec Jia
- School of Environment and Science, Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus Queensland 4111 Australia
| | - Jian Ye
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai 200030 People's Republic of China
| | - Kun Qian
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University Shanghai 200030 People's Republic of China
| |
Collapse
|
41
|
Nehra K, Pandian SK, Bharati MSS, Soma VR. Enhanced catalytic and SERS performance of shape/size controlled anisotropic gold nanostructures. NEW J CHEM 2019. [DOI: 10.1039/c8nj06206d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Au nanostars of different sizes and shapes prepared using a simple method and their applications.
Collapse
Affiliation(s)
- Kamalesh Nehra
- Department of Physics and Astrophysics, University of Delhi
- Delhi 110007
- India
| | | | - Moram Sree Satya Bharati
- Advanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad
- Hyderabad 500046
- India
| | - Venugopal Rao Soma
- Advanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad
- Hyderabad 500046
- India
| |
Collapse
|
42
|
Lee M, Kim H, Kim E, Yi SY, Hwang SG, Yang S, Lim EK, Kim B, Jung J, Kang T. Multivalent Antibody-Nanoparticle Conjugates To Enhance the Sensitivity of Surface-Enhanced Raman Scattering-Based Immunoassays. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37829-37834. [PMID: 30360053 DOI: 10.1021/acsami.8b13180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multivalent immunoprobes can improve the sensitivity of biosensors because increased valency can strengthen the binding affinity between the receptor and target biomolecules. Here, we report surface-enhanced Raman scattering (SERS)-based immunoassays using multivalent antibody-conjugated nanoparticles (NPs) for the first time. Multivalent antibodies were generated through the ligation of Fab fragments fused with Fc-binding peptides to immunoglobulin G. This fabrication method is easy and fast because of the elimination of heterologous protein expression, high degrees of antibody modifications, and covalent chemical ligation steps. We constructed multivalent antibody-NP conjugates (MANCs) and employed them as SERS immunoprobes. MANCs improved the sensitivity of SERS-based immunoassays by 100 times compared to standard antibody-NP conjugates. MANCs will increase the feasibility of practical SERS-based immunoassays.
Collapse
Affiliation(s)
- Miyeon Lee
- Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | | | - Eungwang Kim
- Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | | | - Seul Gee Hwang
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| | - Siyeong Yang
- Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Eun-Kyung Lim
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| | - Bongsoo Kim
- Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Juyeon Jung
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| | - Taejoon Kang
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| |
Collapse
|
43
|
Zhang Y, Li C, Fakhraai Z, Moosa B, Yang P, Khashab NM. Synthesis of Spiked Plasmonic Nanorods with an Interior Nanogap for Quantitative Surface-Enhanced Raman Scattering Analysis. ACS OMEGA 2018; 3:14399-14405. [PMID: 31458127 PMCID: PMC6645439 DOI: 10.1021/acsomega.8b01153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/02/2018] [Indexed: 06/10/2023]
Abstract
Realizing quantitative surface-enhanced Raman scattering (SERS) analysis is extremely helpful and challenging. Here, we utilize a facile method to synthesize spiked plasmonic nanorods with an interior gap. The Raman signal from the molecules embedded in the gap can be dramatically enhanced, leading to strong, stable, and reproducible SERS signals that can be used as an internal reference for quantitative SERS analysis. We demonstrate that the rough exterior surface has a good performance in enhancing the Raman signal of polycyclic aromatic hydrocarbon molecules adsorbed on the surface. The result shows that this method is applicable for a large range of analyte concentrations and there is an excellent linear relationship between the SERS intensity ratio and the analyte concentration (0.5-100 μM).
Collapse
Affiliation(s)
- Yang Zhang
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Chen Li
- Department
of Chemistry, University of Pennsylvania, Philadelphia 19104, United States
| | - Zahra Fakhraai
- Department
of Chemistry, University of Pennsylvania, Philadelphia 19104, United States
| | - Basem Moosa
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peng Yang
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Niveen M. Khashab
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
44
|
Park JE, Jung Y, Kim M, Nam JM. Quantitative Nanoplasmonics. ACS CENTRAL SCIENCE 2018; 4:1303-1314. [PMID: 30410968 PMCID: PMC6202639 DOI: 10.1021/acscentsci.8b00423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 05/05/2023]
Abstract
Plasmonics, the study of the interactions between photons and collective oscillations of electrons, has seen tremendous advances during the past decade. Controllable nanometer- and sub-nanometer-scale engineering in plasmonic resonance and electromagnetic field localization at the subwavelength scale have propelled diverse studies in optics, materials science, chemistry, biotechnology, energy science, and various applications in spectroscopy. However, for translation of these accomplishments from research into practice, major hurdles including low reproducibility and poor controllability in target structures must be overcome, particularly for reliable quantification of plasmonic signals and functionalities. This Outlook introduces and summarizes the recent attempts and findings of many groups toward more quantitative and reliable nanoplasmonics, and discusses the challenges and possible future directions.
Collapse
|
45
|
Loh KY, Liu X. Gapping into Ultrahigh Surface-Enhanced Raman Scattering Amplification. ACS CENTRAL SCIENCE 2018; 4:137-139. [PMID: 29532011 PMCID: PMC5833008 DOI: 10.1021/acscentsci.8b00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Kang Yong Loh
- Institute of Materials
Research and Engineering, Agency for Science,
Technology and Research (A*STAR), Innovis, 138634, Singapore
| | - Xiaogang Liu
- Institute of Materials
Research and Engineering, Agency for Science,
Technology and Research (A*STAR), Innovis, 138634, Singapore
- Department of Chemistry, National University
of Singapore, Singapore 117543, Singapore
- />E-mail:
| |
Collapse
|