1
|
Zhang Y, Xiang QM, Mu CK, Wang CL, Hou CC. Functional Study of PTSMAD4 in the Spermatogenesis of the Swimming Crab Portunus trituberculatus. Int J Mol Sci 2024; 25:13126. [PMID: 39684836 DOI: 10.3390/ijms252313126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Portunus trituberculatus holds significant economic value. The spermatogenesis is regulated by numerous signaling pathways. Among them, the TGF-β signaling pathway plays an important role in the development of testes and spermatogenesis. Smad4 is a Co-Smad protein that forms a complex with R-Smad to regulate the expression of target genes. The sperm structure in crustaceans differs greatly from that in mammals, with mature sperm lacking tails. Our previous studies have reported the function of R-Smad in the spermatogenesis of P. trituberculatus. In this study, we cloned the full-length cDNA sequence of PTSMAD4; immunofluorescence technology revealed that PTSMAD4 is expressed throughout all stages of spermatogenesis. We knocked down the expression of PTSMAD4 in P. trituberculatus using RNAi technology, and the immunofluorescence results show abnormal co-localization and weakened signals of PTSMAD4 and PTSMAD2. Additionally, transcriptome sequencing results enriched functional genes and pathways related to spermatogenesis. This study indicates that PTSMAD4 may participate in the spermatogenesis process through its involvement in signal transduction. This research not only lays the foundation for further study of the function of the TGF-β signaling pathway in spermatogenesis but also provides a theoretical basis for further investigation of the spermatogenesis mechanism in crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiu-Meng Xiang
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Kao Mu
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chun-Lin Wang
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Cong-Cong Hou
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Wang Y, Chen Y, Wu J, Shi X. BMP1 Promotes Keloid by Inducing Fibroblast Inflammation and Fibrogenesis. J Cell Biochem 2024; 125:e30609. [PMID: 38860429 DOI: 10.1002/jcb.30609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Keloid is a typical fibrotic and inflammatory skin disease with unclear mechanisms and few therapeutic targets. In this study, we found that BMP1 was significantly increased in a collagen high-expressing subtype of fibroblast by reanalyzing a public single-cell RNA-sequence data set of keloid. The number of BMP1-positive fibroblast cells was increased in keloid fibrotic loci. Increased levels of BMP1 were further validated in the skin tissues and fibroblasts from keloid patients. Additionally, a positive correlation between BMP1 and the Keloid Area and Severity Index was found in keloid patients. In vitro analysis revealed collagen production, the phosphorylation levels of p65, and the IL-1β secretion decreased in BMP1 interfered keloid fibroblasts. Besides, the knockdown of BMP1 inhibited the growth and migration of keloid fibroblast cells. Mechanistically, BMP1 inhibition downregulated the noncanonical TGF-β pathways, including p-p38 and p-ERK1/2 signaling. Furthermore, we found the delivery of BMP1 siRNAs could significantly alleviate keloid in human keloid-bearing nude mice. Collectively, our results indicated that BMP1 exhibited various pathogenic effects on keloids as promoting cell proliferation, migration, inflammation, and ECM deposition of fibroblast cells by regulating the noncanonical TGF-β/p38 MAPK, and TGF-β/ERK pathways. BMP1-lowing strategies may appear as a potential new therapeutic target for keloid.
Collapse
Affiliation(s)
- Yi Wang
- Department of Plastic and Burns Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yahui Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Rohweder PJ, Jiang Z, Hurysz BM, O'Donoghue AJ, Craik CS. Multiplex substrate profiling by mass spectrometry for proteases. Methods Enzymol 2022; 682:375-411. [PMID: 36948708 PMCID: PMC10201391 DOI: 10.1016/bs.mie.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteolysis is a central regulator of many biological pathways and the study of proteases has had a significant impact on our understanding of both native biology and disease. Proteases are key regulators of infectious disease and misregulated proteolysis in humans contributes to a variety of maladies, including cardiovascular disease, neurodegeneration, inflammatory diseases, and cancer. Central to understanding a protease's biological role, is characterizing its substrate specificity. This chapter will facilitate the characterization of individual proteases and complex, heterogeneous proteolytic mixtures and provide examples of the breadth of applications that leverage the characterization of misregulated proteolysis. Here we present the protocol of Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS), a functional assay that quantitatively characterizes proteolysis using a synthetic library of physiochemically diverse, model peptide substrates, and mass spectrometry. We present a detailed protocol as well as examples of the use of MSP-MS for the study of disease states, for the development of diagnostic and prognostic tests, for the generation of tool compounds, and for the development of protease-targeted drugs.
Collapse
Affiliation(s)
- Peter J Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States.
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
4
|
Gutaj P, Matysiak J, Matuszewska E, Jaskiewicz K, Kamińska D, Światły-Błaszkiewicz A, Szczapa T, Kalantarova A, Gajecka M, Wender-Ozegowska E. Maternal serum proteomic profiles of pregnant women with type 1 diabetes. Sci Rep 2022; 12:8696. [PMID: 35610262 PMCID: PMC9130255 DOI: 10.1038/s41598-022-12221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Despite improvement in the care of diabetes over the years, pregnancy complicated by type 1 diabetes (T1DM) is still associated with adverse maternal and neonatal outcomes. To date, proteomics studies have been conducted to identify T1DM biomarkers in non-pregnant women, however, no studies included T1DM pregnant women. In this study serum proteomic profiling was conducted in pregnant women with T1DM in the late third trimester. Serum samples were collected from 40 women with T1DM and 38 healthy controls within 3 days before delivery at term pregnancy. Significant differences between serum proteomic patterns were revealed, showing discriminative peaks for complement C3 and C4-A, kininogen-1, and fibrinogen alpha chain. Quantification of selected discriminative proteins by ELISA kits was also performed. The serum concentration of kininogen-1 was significantly lower in women with T1DM than in controls. There were no significant differences in serum concentrations of complement C3 and complement C4-A between study groups. These data indicate that pregnant women with T1DM have a distinct proteomic profile involving proteins in the coagulation and inflammatory pathways. However, their utility as biomarkers of pregnancy complications in women with T1DM warrants further investigation.
Collapse
Affiliation(s)
- Paweł Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, 61-701, Poznan, Poland.
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | - Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | - Katarzyna Jaskiewicz
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 61-701, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Dorota Kamińska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | - Agata Światły-Błaszkiewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089, Bydgoszcz, Poland
| | - Tomasz Szczapa
- Department of Neonatology, Neonatal Biophysical Monitoring and Cardiopulmonary Therapies Research Unit, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | | | - Marzena Gajecka
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 61-701, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| |
Collapse
|
5
|
Zhao N, Bardine C, Lourenço AL, Wang YH, Huang Y, Cleary SJ, Wilson DM, Oh DY, Fong L, Looney MR, Evans MJ, Craik CS. In Vivo Measurement of Granzyme Proteolysis from Activated Immune Cells with PET. ACS CENTRAL SCIENCE 2021; 7:1638-1649. [PMID: 34729407 PMCID: PMC8554823 DOI: 10.1021/acscentsci.1c00529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Indexed: 05/28/2023]
Abstract
The biology of human granzymes remains enigmatic in part due to our inability to probe their functions outside of in vitro assays or animal models with divergent granzyme species. We hypothesize that the biology of human granzymes could be better elaborated with a translational imaging technology to reveal the contexts in which granzymes are secreted and biochemically active in vivo. Here, we advance toward this goal by engineering a Granzyme targeting Restricted Interaction Peptide specific to family member B (GRIP B) to measure secreted granzyme B (GZMB) biochemistry with positron emission tomography. A proteolytic cleavage of 64Cu-labeled GRIP B liberates a radiolabeled form of Temporin L, which sequesters the radioisotope by binding to adjacent phospholipid bilayers. Thus, at extended time points postinjection (i.e., hours, not seconds), tissue biodistribution of the radioisotope in vivo reflects relative units of the GZMB activity. As a proof of concept, we show in three syngeneic mouse cancer models that 64Cu-GRIP B detects GZMB from T cells activated with immune checkpoint inhibitors (CPI). Remarkably, the radiotracer detects the proteolysis within tumors but also in lymphoid tissue, where immune cells are activated by a systemic CPI. Control experiments with an uncleavable analogue of 64Cu-GRIP B and tumor imaging studies in germline GZMB knockout mice were applied to show that 64Cu-GRIP B is specific for GZMB proteolysis. Furthermore, we explored a potential noncytotoxic function for GZMB by applying 64Cu-GRIP B to a model of pulmonary inflammation. In summary, we demonstrate that granzyme biochemistry can be assessed in vivo using an imaging modality that can be scaled vertically into human subjects.
Collapse
Affiliation(s)
- Ning Zhao
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Conner Bardine
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - André Luiz Lourenço
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Yung-hua Wang
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Yangjie Huang
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Simon J. Cleary
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - David Y. Oh
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Lawrence Fong
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Mark R. Looney
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Michael J. Evans
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Charles S. Craik
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
6
|
Mahoney M, Damalanka VC, Tartell MA, Chung DH, Lourenço AL, Pwee D, Mayer Bridwell AE, Hoffmann M, Voss J, Karmakar P, Azouz NP, Klingler AM, Rothlauf PW, Thompson CE, Lee M, Klampfer L, Stallings CL, Rothenberg ME, Pöhlmann S, Whelan SPJ, O'Donoghue AJ, Craik CS, Janetka JW. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proc Natl Acad Sci U S A 2021; 118:e2108728118. [PMID: 34635581 PMCID: PMC8694051 DOI: 10.1073/pnas.2108728118] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.
Collapse
Affiliation(s)
- Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
- ProteXase Therapeutics, Inc., Saint Louis, MO 63108
| | - Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael A Tartell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Dong Hee Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Dustin Pwee
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen 37077, Germany
| | - Jorine Voss
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Andrea M Klingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Melody Lee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | | | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen 37077, Germany
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110;
- ProteXase Therapeutics, Inc., Saint Louis, MO 63108
| |
Collapse
|
7
|
Giese M, Davis PD, Woodman RH, Hermanson G, Pokora A, Vermillion M. Linker Architectures as Steric Auxiliaries for Altering Enzyme-Mediated Payload Release from Bioconjugates. Bioconjug Chem 2021; 32:2257-2267. [PMID: 34587447 DOI: 10.1021/acs.bioconjchem.1c00429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-activated prodrugs leverage the increased activity of proteases in the tumor microenvironment and the tight regulation in healthy tissues to provide selective activation of cytotoxins in the tumor while minimizing toxicity to normal tissues. One of the largest classes of protease-activated prodrugs are composed of therapeutic agents conjugated to macromolecular carriers via peptide motifs that are substrates for cathepsin B, and antibody-drug conjugates are one of the most successful designs within this class. However, many of these peptide motifs are also cleaved by extracellular enzymes such as elastase and carboxylesterase 1C. Additionally, some peptide sequences have little selectivity for other lysosomal cathepsins, which have also been found to have extracellular activity in normal physiological processes. A lack of selectivity or oversensitivity to other extracellular enzymes can lead to off-target release of the cytotoxic payload and subsequent toxicities. In this report, we describe an approach for modulating cathepsin-mediated release of the cytotoxic payload through steric shielding provided by the synergistic effects of appropriately designed hydrophilic linkers and the conjugated carrier. We prepared a fluorogenic model payload with a Val-Cit cleavable trigger and attached the trigger-payload to a variety of PEG-based linker architectures with different numbers of PEG arms (y), different numbers of ethylene oxide units in each arm (n), and different distances between the cleavable trigger and PEG branch point (D'). These linker-payloads were then used to prepare DAR2 conjugates with the cleavable triggers at three different distances (D) from the antibody, and cathepsin-mediated payload release was monitored with in vitro assays. The results show that structural variables of the linker architectures can be manipulated to effectively shield enzymatically labile trigger-payloads from enzymes with readily accessible binding sites, and may offer an additional strategy for balancing off-target and tumor-targeted payload release.
Collapse
Affiliation(s)
- Matthew Giese
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Paul D Davis
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Robert H Woodman
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Greg Hermanson
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Alex Pokora
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Melissa Vermillion
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| |
Collapse
|
8
|
Mahoney M, Damalanka VC, Tartell MA, Chung DH, Lourenco AL, Pwee D, Mayer Bridwell AE, Hoffmann M, Voss J, Karmakar P, Azouz N, Klingler AM, Rothlauf PW, Thompson CE, Lee M, Klampfer L, Stallings C, Rothenberg ME, Pöhlmann S, Whelan SP, O'Donoghue AJ, Craik CS, Janetka JW. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34131661 DOI: 10.1101/2021.05.06.442935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered a novel class of small molecule ketobenzothiazole TMPRSS2 inhibitors with significantly improved activity over existing irreversible inhibitors Camostat and Nafamostat. Lead compound MM3122 ( 4 ) has an IC 50 of 340 pM against recombinant full-length TMPRSS2 protein, an EC 50 of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV SARS-CoV-2 chimeric virus, and an EC 50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East Respiratory Syndrome Coronavirus (MERS-CoV) cell entry with an EC 50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice with a half-life of 8.6 hours in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.
Collapse
|