1
|
Taghavi A, Springer NA, Zanon PRA, Li Y, Li C, Childs-Disney JL, Disney MD. The evolution and application of RNA-focused small molecule libraries. RSC Chem Biol 2025; 6:510-527. [PMID: 39957993 PMCID: PMC11824871 DOI: 10.1039/d4cb00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
RNA structure plays a role in nearly every disease. Therefore, approaches that identify tractable small molecule chemical matter that targets RNA and affects its function would transform drug discovery. Despite this potential, discovery of RNA-targeted small molecule chemical probes and medicines remains in its infancy. Advances in RNA-focused libraries are key to enable more successful primary screens and to define structure-activity relationships amongst hit molecules. In this review, we describe how RNA-focused small molecule libraries have been used and evolved over time and provide underlying principles for their application to develop bioactive small molecules. We also describe areas that need further investigation to advance the field, including generation of larger data sets to inform machine learning approaches.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology 130 Scripps Way Jupiter FL 33458 USA
| | - Noah A Springer
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology 130 Scripps Way Jupiter FL 33458 USA
- Department of Chemistry, The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Patrick R A Zanon
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology 130 Scripps Way Jupiter FL 33458 USA
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, The University of Florida Gainesville FL 32610 USA
- Department of Computer & Information Science & Engineering, University of Florida Gainesville FL 32611 USA
| | - Chenglong Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, The University of Florida Gainesville FL 32610 USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology 130 Scripps Way Jupiter FL 33458 USA
| | - Matthew D Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology 130 Scripps Way Jupiter FL 33458 USA
- Department of Chemistry, The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| |
Collapse
|
2
|
Goel K, Saraogi I. Harnessing RNA-Protein Interactions for Therapeutic Interventions. Chem Asian J 2025; 20:e202401117. [PMID: 39714962 DOI: 10.1002/asia.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Interactions between RNAs and proteins play a crucial role in various diseases, including viral infections and cancer. Hence, understanding and inhibiting these interactions are important for the development of novel therapeutics. However, the identification of drugs targeting RNA-protein interactions with high specificity and affinity is challenged by our limited molecular understanding of these interactions. Recent focus on structural and biochemical characterization, coupled with high-throughput screening technologies and computational modeling, have accelerated the identification of new RBPs and optimization of potential inhibitors. This review discusses key examples of inhibitors developed over the past decade that effectively disrupt pathogenic RNA-protein interactions. We focus on small molecule and peptide-based inhibitors that have shown promise in disrupting crucial RNA-protein interactions in eukaryotes, prokaryotes, and viruses. We also present the challenges and future directions in this field, emphasizing the need to achieve improved specificity and reduce the off-target effects of the inhibitors. This review aims to contribute to ongoing efforts towards the development of novel therapeutic agents targeting RNA-protein interactions by providing an in-depth analysis of significant developments and emerging trends in this rapidly growing field.
Collapse
Affiliation(s)
- Khushboo Goel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
3
|
Wicks SL, Morgan BS, Wilson AW, Hargrove AE. Probing Bioactive Chemical Space to Discover RNA-Targeted Small Molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551350. [PMID: 37577658 PMCID: PMC10418101 DOI: 10.1101/2023.07.31.551350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Small molecules have become increasingly recognized as invaluable tools to study RNA structure and function and to develop RNA-targeted therapeutics. To rationally design RNA-targeting ligands, a comprehensive understanding and explicit testing of small molecule properties that govern molecular recognition is crucial. To date, most studies have primarily evaluated properties of small molecules that bind RNA in vitro, with little to no assessment of properties that are distinct to selective and bioactive RNA-targeted ligands. Therefore, we curated an RNA-focused library, termed the Duke RNA-Targeted Library (DRTL), that was biased towards the physicochemical and structural properties of biologically active and non-ribosomal RNA-targeted small molecules. The DRTL represents one of the largest academic RNA-focused small molecule libraries curated to date with more than 800 small molecules. These ligands were selected using computational approaches that measure similarity to known bioactive RNA ligands and that diversify the molecules within this space. We evaluated DRTL binding in vitro to a panel of four RNAs using two optimized fluorescent indicator displacement assays, and we successfully identified multiple small molecule hits, including several novel scaffolds for RNA. The DRTL has and will continue to provide insights into biologically relevant RNA chemical space, such as the identification of additional RNA-privileged scaffolds and validation of RNA-privileged molecular features. Future DRTL screening will focus on expanding both the targets and assays used, and we welcome collaboration from the scientific community. We envision that the DRTL will be a valuable resource for the discovery of RNA-targeted chemical probes and therapeutic leads.
Collapse
Affiliation(s)
- Sarah L. Wicks
- Department of Chemistry; Duke University; 124 Science Drive; Durham, NC 27708
| | - Brittany S. Morgan
- Department of Chemistry & Biochemistry; University of Notre Dame; 123 McCourtney Hall Notre Dame, IN 46556
| | - Alexander W. Wilson
- Department of Chemistry; Duke University; 124 Science Drive; Durham, NC 27708
| | - Amanda E. Hargrove
- Department of Chemistry; Duke University; 124 Science Drive; Durham, NC 27708
| |
Collapse
|
4
|
Tong Y, Lee Y, Liu X, Childs-Disney JL, Suresh BM, Benhamou RI, Yang C, Li W, Costales MG, Haniff HS, Sievers S, Abegg D, Wegner T, Paulisch TO, Lekah E, Grefe M, Crynen G, Van Meter M, Wang T, Gibaut QMR, Cleveland JL, Adibekian A, Glorius F, Waldmann H, Disney MD. Programming inactive RNA-binding small molecules into bioactive degraders. Nature 2023; 618:169-179. [PMID: 37225982 PMCID: PMC10232370 DOI: 10.1038/s41586-023-06091-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Target occupancy is often insufficient to elicit biological activity, particularly for RNA, compounded by the longstanding challenges surrounding the molecular recognition of RNA structures by small molecules. Here we studied molecular recognition patterns between a natural-product-inspired small-molecule collection and three-dimensionally folded RNA structures. Mapping these interaction landscapes across the human transcriptome defined structure-activity relationships. Although RNA-binding compounds that bind to functional sites were expected to elicit a biological response, most identified interactions were predicted to be biologically inert as they bind elsewhere. We reasoned that, for such cases, an alternative strategy to modulate RNA biology is to cleave the target through a ribonuclease-targeting chimera, where an RNA-binding molecule is appended to a heterocycle that binds to and locally activates RNase L1. Overlay of the substrate specificity for RNase L with the binding landscape of small molecules revealed many favourable candidate binders that might be bioactive when converted into degraders. We provide a proof of concept, designing selective degraders for the precursor to the disease-associated microRNA-155 (pre-miR-155), JUN mRNA and MYC mRNA. Thus, small-molecule RNA-targeted degradation can be leveraged to convert strong, yet inactive, binding interactions into potent and specific modulators of RNA function.
Collapse
Affiliation(s)
- Yuquan Tong
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Yeongju Lee
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Xiaohui Liu
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Blessy M Suresh
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Raphael I Benhamou
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Chunying Yang
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Weimin Li
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Matthew G Costales
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Hafeez S Haniff
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Tristan Wegner
- Organisch-Chemisches Institut, University of Münster, Münster, Germany
| | | | - Elizabeth Lekah
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Maison Grefe
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Scripps Research Institute and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Montina Van Meter
- Histology Core, The Scripps Research Institute and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Tenghui Wang
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Quentin M R Gibaut
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster, Münster, Germany.
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Compound Management and Screening Center, Dortmund, Germany.
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
5
|
Morishita EC. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert Opin Drug Discov 2023; 18:207-226. [PMID: 36322542 DOI: 10.1080/17460441.2022.2134852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The field of RNA-targeted small molecules is rapidly evolving, owing to the advances in experimental and computational technologies. With the identification of several bioactive small molecules that target RNA, including the FDA-approved risdiplam, the biopharmaceutical industry is gaining confidence in the field. This review, based on the literature obtained from PubMed, aims to disseminate information about the various technologies developed for targeting RNA with small molecules and propose areas for improvement to develop drugs more efficiently, particularly those linked to diseases with unmet medical needs. AREAS COVERED The technologies for the identification of RNA targets, screening of chemical libraries against RNA, assessing the bioactivity and target engagement of the hit compounds, structure determination, and hit-to-lead optimization are reviewed. Along with the description of the technologies, their strengths, limitations, and examples of how they can impact drug discovery are provided. EXPERT OPINION Many existing technologies employed for protein targets have been repurposed for use in the discovery of RNA-targeted small molecules. In addition, technologies tailored for RNA targets have been developed. Nevertheless, more improvements are necessary, such as artificial intelligence to dissect important RNA structures and RNA-small-molecule interactions and more powerful chemical probing and structure prediction techniques.
Collapse
|
6
|
Wang KW, Riveros I, DeLoye J, Yildirim I. Dynamic docking of small molecules targeting RNA CUG repeats causing myotonic dystrophy type 1. Biophys J 2023; 122:180-196. [PMID: 36348626 PMCID: PMC9822796 DOI: 10.1016/j.bpj.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/05/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Expansion of RNA CUG repeats causes myotonic dystrophy type 1 (DM1). Once transcribed, the expanded CUG repeats strongly attract muscleblind-like 1 (MBNL1) proteins and disturb their functions in cells. Because of its unique structural form, expanded RNA CUG repeats are prospective drug targets, where small molecules can be utilized to target RNA CUG repeats to inhibit MBNL1 binding and ameliorate DM1-associated defects. In this contribution, we developed two physics-based dynamic docking approaches (DynaD and DynaD/Auto) and applied them to nine small molecules known to specifically target RNA CUG repeats. While DynaD uses a distance-based reaction coordinate to study the binding phenomenon, DynaD/Auto combines results of umbrella sampling calculations performed on 1 × 1 UU internal loops and AutoDock calculations to efficiently sample the energy landscape of binding. Predictions are compared with experimental data, displaying a positive correlation with correlation coefficient (R) values of 0.70 and 0.81 for DynaD and DynaD/Auto, respectively. Furthermore, we found that the best correlation was achieved with MM/3D-RISM calculations, highlighting the importance of solvation in binding calculations. Moreover, we detected that DynaD/Auto performed better than DynaD because of the use of prior knowledge about the binding site arising from umbrella sampling calculations. Finally, we developed dendrograms to present how bound states are connected to each other in a binding process. Results are exciting, as DynaD and DynaD/Auto will allow researchers to utilize two novel physics-based and computer-aided drug-design methodologies to perform in silico calculations on drug-like molecules aiming to target complex RNA loops.
Collapse
Affiliation(s)
- Kye Won Wang
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida; Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Ivan Riveros
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida
| | - James DeLoye
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida.
| |
Collapse
|
7
|
Kallert E, Fischer TR, Schneider S, Grimm M, Helm M, Kersten C. Protein-Based Virtual Screening Tools Applied for RNA-Ligand Docking Identify New Binders of the preQ 1-Riboswitch. J Chem Inf Model 2022; 62:4134-4148. [PMID: 35994617 DOI: 10.1021/acs.jcim.2c00751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeting RNA with small molecules is an emerging field. While several ligands for different RNA targets are reported, structure-based virtual screenings (VSs) against RNAs are still rare. Here, we elucidated the general capabilities of protein-based docking programs to reproduce native binding modes of small-molecule RNA ligands and to discriminate known binders from decoys by the scoring function. The programs were found to perform similar compared to the RNA-based docking tool rDOCK, and the challenges faced during docking, namely, protomer and tautomer selection, target dynamics, and explicit solvent, do not largely differ from challenges in conventional protein-ligand docking. A prospective VS with the Bacillus subtilis preQ1-riboswitch aptamer domain performed with FRED, HYBRID, and FlexX followed by microscale thermophoresis assays identified six active compounds out of 23 tested VS hits with potencies between 29.5 nM and 11.0 μM. The hits were selected not solely based on their docking score but for resembling key interactions of the native ligand. Therefore, this study demonstrates the general feasibility to perform structure-based VSs against RNA targets, while at the same time it highlights pitfalls and their potential solutions when executing RNA-ligand docking.
Collapse
Affiliation(s)
- Elisabeth Kallert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Simon Schneider
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Maike Grimm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| |
Collapse
|
8
|
Manigrasso J, Marcia M, De Vivo M. Computer-aided design of RNA-targeted small molecules: A growing need in drug discovery. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Lundquist KP, Panchal V, Gotfredsen CH, Brenk R, Clausen MH. Fragment-Based Drug Discovery for RNA Targets. ChemMedChem 2021; 16:2588-2603. [PMID: 34101375 DOI: 10.1002/cmdc.202100324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/26/2022]
Abstract
Rapid development within the fields of both fragment-based drug discovery (FBDD) and medicinal targeting of RNA provides possibilities for combining technologies and methods in novel ways. This review provides an overview of fragment-based screening (FBS) against RNA targets, including a discussion of the most recently used screening and hit validation methods such as NMR spectroscopy, X-ray crystallography, and virtual screening methods. A discussion of fragment library design based on research from small-molecule RNA binders provides an overview on both the currently limited guidelines within RNA-targeting fragment library design, and future possibilities. Finally, future perspectives are provided on screening and hit validation methods not yet used in combination with both fragment screening and RNA targets.
Collapse
Affiliation(s)
- Kasper P Lundquist
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Charlotte H Gotfredsen
- NMR Center ⋅ DTU, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Clemons PA, Bittker JA, Wagner FF, Hands A, Dančík V, Schreiber SL, Choudhary A, Wagner BK. The Use of Informer Sets in Screening: Perspectives on an Efficient Strategy to Identify New Probes. SLAS DISCOVERY 2021; 26:855-861. [PMID: 34130532 DOI: 10.1177/24725552211019410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Small-molecule discovery typically involves large-scale screening campaigns, spanning multiple compound collections. However, such activities can be cost- or time-prohibitive, especially when using complex assay systems, limiting the number of compounds tested. Further, low hit rates can make the process inefficient. Sparse coverage of chemical structure or biological activity space can lead to limited success in a primary screen and represents a missed opportunity by virtue of selecting the "wrong" compounds to test. Thus, the choice of screening collections becomes of paramount importance. In this perspective, we discuss the utility of generating "informer sets" for small-molecule discovery, and how this strategy can be leveraged to prioritize probe candidates. While many researchers may assume that informer sets are focused on particular targets (e.g., kinases) or processes (e.g., autophagy), efforts to assemble informer sets based on historical bioactivity or successful human exposure (e.g., repurposing collections) have shown promise as well. Another method for generating informer sets is based on chemical structure, particularly when the compounds have unknown activities and targets. We describe our efforts to screen an informer set representing a collection of 100,000 small molecules synthesized through diversity-oriented synthesis (DOS). This process enables researchers to identify activity early and more extensively screen only a few chemical scaffolds, rather than the entire collection. This elegant and economic outcome is a goal of the informer set approach. Here, we aim not only to shed light on this process, but also to promote the use of informer sets more widely in small-molecule discovery projects.
Collapse
Affiliation(s)
- Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Joshua A Bittker
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA.,Vertex Pharmaceuticals, Boston, MA, USA
| | - Florence F Wagner
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA
| | - Allison Hands
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA
| | - Vlado Dančík
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| |
Collapse
|
11
|
Vezina-Dawod S, Angelbello AJ, Choudhary S, Wang KW, Yildirim I, Disney MD. Massively Parallel Optimization of the Linker Domain in Small Molecule Dimers Targeting a Toxic r(CUG) Repeat Expansion. ACS Med Chem Lett 2021; 12:907-914. [PMID: 34141068 PMCID: PMC8201483 DOI: 10.1021/acsmedchemlett.1c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
RNA contributes to disease pathobiology and is an important therapeutic target. The downstream biology of disease-causing RNAs can be short-circuited with small molecules that recognize structured regions. The discovery and optimization of small molecules interacting with RNA is, however, challenging. Herein, we demonstrate a massively parallel one-bead-one-compound methodology, employed to optimize the linker region of a dimeric compound that binds the toxic r(CUG) repeat expansion [r(CUG)exp] causative of myotonic dystrophy type 1 (DM1). Indeed, affinity selection on a 331,776-member library allowed the discovery of a compound with enhanced potency both in vitro (10-fold) and in DM1-patient-derived myotubes (5-fold). Molecular dynamics simulations revealed additional interactions between the optimized linker and the RNA, resulting in ca. 10 kcal/mol lower binding free energy. The compound was conjugated to a cleavage module, which directly cleaved the transcript harboring the r(CUG)exp and alleviated disease-associated defects.
Collapse
Affiliation(s)
- Simon Vezina-Dawod
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Alicia J. Angelbello
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Shruti Choudhary
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kye Won Wang
- Department
of Chemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Ilyas Yildirim
- Department
of Chemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
12
|
Binas O, de Jesus V, Landgraf T, Völklein AE, Martins J, Hymon D, Kaur Bains J, Berg H, Biedenbänder T, Fürtig B, Lakshmi Gande S, Niesteruk A, Oxenfarth A, Shahin Qureshi N, Schamber T, Schnieders R, Tröster A, Wacker A, Wirmer‐Bartoschek J, Wirtz Martin MA, Stirnal E, Azzaoui K, Richter C, Sreeramulu S, José Blommers MJ, Schwalbe H. 19 F NMR-Based Fragment Screening for 14 Different Biologically Active RNAs and 10 DNA and Protein Counter-Screens. Chembiochem 2021; 22:423-433. [PMID: 32794266 PMCID: PMC7436455 DOI: 10.1002/cbic.202000476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Indexed: 11/17/2022]
Abstract
We report here the nuclear magnetic resonance 19 F screening of 14 RNA targets with different secondary and tertiary structure to systematically assess the druggability of RNAs. Our RNA targets include representative bacterial riboswitches that naturally bind with nanomolar affinity and high specificity to cellular metabolites of low molecular weight. Based on counter-screens against five DNAs and five proteins, we can show that RNA can be specifically targeted. To demonstrate the quality of the initial fragment library that has been designed for easy follow-up chemistry, we further show how to increase binding affinity from an initial fragment hit by chemistry that links the identified fragment to the intercalator acridine. Thus, we achieve low-micromolar binding affinity without losing binding specificity between two different terminator structures.
Collapse
Affiliation(s)
- Oliver Binas
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Tom Landgraf
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Albrecht Eduard Völklein
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Jason Martins
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Daniel Hymon
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Hannes Berg
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Thomas Biedenbänder
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Santosh Lakshmi Gande
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Anna Niesteruk
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Nusrat Shahin Qureshi
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Tatjana Schamber
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Robbin Schnieders
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Alix Tröster
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Julia Wirmer‐Bartoschek
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Maria Alexandra Wirtz Martin
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Kamal Azzaoui
- Saverna TherapeuticsGewerbestrasse 244123AllschwilSwitzerland
| | - Christian Richter
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | | | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| |
Collapse
|
13
|
Umuhire Juru A, Hargrove AE. Frameworks for targeting RNA with small molecules. J Biol Chem 2021; 296:100191. [PMID: 33334887 PMCID: PMC7948454 DOI: 10.1074/jbc.rev120.015203] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Since the characterization of mRNA in 1961, our understanding of the roles of RNA molecules has significantly grown. Beyond serving as a link between DNA and proteins, RNA molecules play direct effector roles by binding to various ligands, including proteins, DNA, other RNAs, and metabolites. Through these interactions, RNAs mediate cellular processes such as the regulation of gene transcription and the enhancement or inhibition of protein activity. As a result, the misregulation of RNA molecules is often associated with disease phenotypes, and RNA molecules have been increasingly recognized as potential targets for drug development efforts, which in the past had focused primarily on proteins. Although both small molecule-based and oligonucleotide-based therapies have been pursued in efforts to target RNA, small-molecule modalities are often favored owing to several advantages including greater oral bioavailability. In this review, we discuss three general frameworks (sets of premises and hypotheses) that, in our view, have so far dominated the discovery of small-molecule ligands for RNA. We highlight the unique merits of each framework as well as the pitfalls associated with exclusive focus of ligand discovery efforts within only one framework. Finally, we propose that RNA ligand discovery can benefit from using progress made within these three frameworks to move toward a paradigm that formulates RNA-targeting questions at the level of RNA structural subclasses.
Collapse
Affiliation(s)
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
14
|
Zhang N, Bewick B, Xia G, Furling D, Ashizawa T. A CRISPR-Cas13a Based Strategy That Tracks and Degrades Toxic RNA in Myotonic Dystrophy Type 1. Front Genet 2020; 11:594576. [PMID: 33362853 PMCID: PMC7758406 DOI: 10.3389/fgene.2020.594576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cas13a, an effector of type VI CRISPR-Cas systems, is an RNA guided RNase with multiplexing and therapeutic potential. This study employs the Leptotrichia shahii (Lsh) Cas13a and a repeat-based CRISPR RNA (crRNA) to track and eliminate toxic RNA aggregates in myotonic dystrophy type 1 (DM1) – a neuromuscular disease caused by CTG expansion in the DMPK gene. We demonstrate that LshCas13a cleaves CUG repeat RNA in biochemical assays and reduces toxic RNA load in patient-derived myoblasts. As a result, LshCas13a reverses the characteristic adult-to-embryonic missplicing events in several key genes that contribute to DM1 phenotype. The deactivated LshCas13a can further be repurposed to track RNA-rich organelles within cells. Our data highlights the reprogrammability of LshCas13a and the possible use of Cas13a to target expanded repeat sequences in microsatellite expansion diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Brittani Bewick
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Guangbin Xia
- Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Denis Furling
- Institut National de la Sante et de la Recherche Medicale (INSERM), Centre de Recherche en Myologie (CRM), Association Institut de Myologie, Sorbonne Université, Paris, France
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
15
|
Angelbello AJ, Benhamou RI, Rzuczek SG, Choudhary S, Tang Z, Chen JL, Roy M, Wang KW, Yildirim I, Jun AS, Thornton CA, Disney MD. A Small Molecule that Binds an RNA Repeat Expansion Stimulates Its Decay via the Exosome Complex. Cell Chem Biol 2020; 28:34-45.e6. [PMID: 33157036 DOI: 10.1016/j.chembiol.2020.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Many diseases are caused by toxic RNA repeats. Herein, we designed a lead small molecule that binds the structure of the r(CUG) repeat expansion [r(CUG)exp] that causes myotonic dystrophy type 1 (DM1) and Fuchs endothelial corneal dystrophy (FECD) and rescues disease biology in patient-derived cells and in vivo. Interestingly, the compound's downstream effects are different in the two diseases, owing to the location of the repeat expansion. In DM1, r(CUG)exp is harbored in the 3' untranslated region, and the compound has no effect on the mRNA's abundance. In FECD, however, r(CUG)exp is located in an intron, and the small molecule facilitates excision of the intron, which is then degraded by the RNA exosome complex. Thus, structure-specific, RNA-targeting small molecules can act disease specifically to affect biology, either by disabling the gain-of-function mechanism (DM1) or by stimulating quality control pathways to rid a disease-affected cell of a toxic RNA (FECD).
Collapse
Affiliation(s)
- Alicia J Angelbello
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Raphael I Benhamou
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Suzanne G Rzuczek
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Shruti Choudhary
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Zhenzhi Tang
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Jonathan L Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Madhuparna Roy
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Kye Won Wang
- Department of Chemistry, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Ilyas Yildirim
- Department of Chemistry, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Charles A Thornton
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
16
|
Umuhire Juru A, Cai Z, Jan A, Hargrove AE. Template-guided selection of RNA ligands using imine-based dynamic combinatorial chemistry. Chem Commun (Camb) 2020; 56:3555-3558. [PMID: 32104839 DOI: 10.1039/d0cc00266f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study establishes the applicability of imine-based dynamic combinatorial chemistry to discover non-covalent ligands for RNA targets. We elucidate properties underlying the reactivity of arylamines and demonstrate target-guided amplification of tight binders in an amiloride-based dynamic library.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| | - Zhengguo Cai
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| | - Adina Jan
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| |
Collapse
|
17
|
Ligand-RNA interaction assay based on size-selective fluorescence core-shell nanocomposite. Anal Bioanal Chem 2020; 412:7349-7356. [DOI: 10.1007/s00216-020-02869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
18
|
Haniff HS, Knerr L, Chen JL, Disney MD, Lightfoot HL. Target-Directed Approaches for Screening Small Molecules against RNA Targets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:869-894. [PMID: 32419578 PMCID: PMC7442623 DOI: 10.1177/2472555220922802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA molecules have a variety of cellular functions that can drive disease pathologies. They are without a doubt one of the most intriguing yet controversial small-molecule drug targets. The ability to widely target RNA with small molecules could be revolutionary, once the right tools, assays, and targets are selected, thereby defining which biomolecules are targetable and what constitutes drug-like small molecules. Indeed, approaches developed over the past 5-10 years have changed the face of small molecule-RNA targeting by addressing historic concerns regarding affinity, selectivity, and structural dynamics. Presently, selective RNA-protein complex stabilizing drugs such as branaplam and risdiplam are in clinical trials for the modulation of SMN2 splicing, compounds identified from phenotypic screens with serendipitous outcomes. Fully developing RNA as a druggable target will require a target engagement-driven approach, and evolving chemical collections will be important for the industrial development of this class of target. In this review we discuss target-directed approaches that can be used to identify RNA-binding compounds and the chemical knowledge we have today of small-molecule RNA binders.
Collapse
Affiliation(s)
- Hafeez S. Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
19
|
Fathi Dizaji B. Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00074-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Long non-coding RNAs are important regulators of gene expression and diverse biological processes. Their aberrant expression contributes to a verity of diseases including cancer development and progression, providing them with great potential to be diagnostic and prognostic biomarkers and therapeutic targets. Therefore, they can have a key role in personalized cancer medicine.
This review aims at introducing possible strategies to target long ncRNAs therapeutically in cancer. Also, chemical modification of nucleic acid-based therapeutics to improve their pharmacological properties is explained. Then, approaches for the systematic delivery of reagents into the tumor cells or organs are briefly discussed, followed by describing obstacles to the expansion of the therapeutics.
Main text
Long ncRNAs function as oncogenes or tumor suppressors, whose activity can modulate all hallmarks of cancer. They are expressed in a very restricted spatial and temporal pattern and can be easily detected in the cells or biological fluids of patients. These properties make them excellent targets for the development of anticancer drugs. Targeting methods aim to attenuate oncogenic lncRNAs or interfere with lncRNA functions to prevent carcinogenesis. Numerous strategies including suppression of oncogenic long ncRNAs, alternation of their epigenetic effects, interfering with their function, restoration of downregulated or lost long ncRNAs, and recruitment of long ncRNAs regulatory elements and expression patterns are recommended for targeting long ncRNAs therapeutically in cancer. These approaches have shown inhibitory effects on malignancy. In this regard, proliferation, migration, and invasion of tumor cells have been inhibited and apoptosis has been induced in different cancer cells in vitro and in vivo. Downregulation of oncogenic long ncRNAs and upregulation of some growth factors (e.g., neurotrophic factor) have been achieved.
Conclusions
Targeting long non-coding RNAs therapeutically in cancer and efficient and safe delivery of the reagents have been rarely addressed. Only one clinical trial involving lncRNAs has been reported. Among different technologies, RNAi is the most commonly used and effective tool to target lncRNAs. However, other technologies need to be examined and further research is essential to put lncRNAs into clinical practice.
Collapse
|
20
|
Padroni G, Patwardhan NN, Schapira M, Hargrove AE. Systematic analysis of the interactions driving small molecule-RNA recognition. RSC Med Chem 2020; 11:802-813. [PMID: 33479676 DOI: 10.1039/d0md00167h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
RNA molecules are becoming an important target class in drug discovery. However, the principles for designing RNA-binding small molecules are yet to be fully uncovered. In this study, we examined the Protein Data Bank (PDB) to highlight privileged interactions underlying small molecule-RNA recognition. By comparing this analysis with previously determined small molecule-protein interactions, we find that RNA recognition is driven mostly by stacking and hydrogen bonding interactions, while protein recognition is instead driven by hydrophobic effects. Furthermore, we analyze patterns of interactions to highlight potential strategies to tune RNA recognition, such as stacking and cation-π interactions that favor purine and guanine recognition, and note an unexpected paucity of backbone interactions, even for cationic ligands. Collectively, this work provides further understanding of RNA-small molecule interactions that may inform the design of small molecules targeting RNA.
Collapse
Affiliation(s)
- G Padroni
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| | - N N Patwardhan
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| | - M Schapira
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada.,Department of Pharmacology and Toxicology , University of Toronto , Toronto , ON M5S 1A8 , Canada
| | - A E Hargrove
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This article describes the clinical features, pathogenesis, prevalence, diagnosis, and management of myotonic dystrophy type 1 and myotonic dystrophy type 2. RECENT FINDINGS The prevalence of myotonic dystrophy type 1 is better understood than the prevalence of myotonic dystrophy type 2, and new evidence indicates that the risk of cancer is increased in patients with the myotonic dystrophies. In addition, descriptions of the clinical symptoms and relative risks of comorbidities such as cardiac arrhythmias associated with myotonic dystrophy type 1 have been improved. SUMMARY Myotonic dystrophy type 1 and myotonic dystrophy type 2 are both characterized by progressive muscle weakness, early-onset cataracts, and myotonia. However, both disorders have multisystem manifestations that require a comprehensive management plan. While no disease-modifying therapies have yet been identified, advances in therapeutic development have a promising future.
Collapse
|
22
|
Schein CH. Repurposing approved drugs on the pathway to novel therapies. Med Res Rev 2020; 40:586-605. [PMID: 31432544 PMCID: PMC7018532 DOI: 10.1002/med.21627] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
The time and cost of developing new drugs have led many groups to limit their search for therapeutics to compounds that have previously been approved for human use. Many "repurposed" drugs, such as derivatives of thalidomide, antibiotics, and antivirals have had clinical success in treatment areas well beyond their original approved use. These include applications in treating antibiotic-resistant organisms, viruses, cancers and to prevent burn scarring. The major theoretical justification for reusing approved drugs is that they have known modes of action and controllable side effects. Coadministering antibiotics with inhibitors of bacterial toxins or enzymes that mediate multidrug resistance can greatly enhance their activity. Drugs that control host cell pathways, including inflammation, tumor necrosis factor, interferons, and autophagy, can reduce the "cytokine storm" response to injury, control infection, and aid in cancer therapy. An active compound, even if previously approved for human use, will be a poor clinical candidate if it lacks specificity for the new target, has poor solubility or can cause serious side effects. Synergistic combinations can reduce the dosages of the individual components to lower reactivity. Preclinical analysis should take into account that severely ill patients with comorbidities will be more sensitive to side effects than healthy trial subjects. Once an active, approved drug has been identified, collaboration with medicinal chemists can aid in finding derivatives with better physicochemical properties, specificity, and efficacy, to provide novel therapies for cancers, emerging and rare diseases.
Collapse
Affiliation(s)
- Catherine H Schein
- Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity (IHII), University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
23
|
Benhamou RI, Angelbello AJ, Wang ET, Disney MD. A Toxic RNA Catalyzes the Cellular Synthesis of Its Own Inhibitor, Shunting It to Endogenous Decay Pathways. Cell Chem Biol 2020; 27:223-231.e4. [PMID: 31981476 DOI: 10.1016/j.chembiol.2020.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/22/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
Myotonic dystrophy type 2 (DM2) is a genetically defined disease caused by a toxic expanded repeat of r(CCUG) [r(CCUG)exp], harbored in intron 1 of CCHC-type zinc-finger nucleic acid binding protein (CNBP) pre-mRNA. This r(CCUG)exp causes toxicity via a gain-of-function mechanism, resulting in three pathological hallmarks: aggregation into nuclear foci; sequestration of muscleblind-like-1 (MBNL1) protein, leading to splicing defects; and retention of CNBP intron 1. We studied two types of small molecules with different modes of action, ones that simply bind and ones that are templated by r(CCUG)exp in cells, i.e., the RNA synthesizes its own drug. Indeed, our studies completed in DM2 patient-derived fibroblasts showed that the compounds disrupt the r(CCUG)exp-MBNL1 complex, reduce intron retention, subjecting the liberated intronic r(CCUG)exp to native decay pathways, and rescue other DM2-associated cellular defects. Importantly, this study shows that small molecules can modulate RNA biology by shunting toxic transcripts toward native decay pathways.
Collapse
Affiliation(s)
- Raphael I Benhamou
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Alicia J Angelbello
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, UF Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
24
|
Venkata Subbaiah KC, Hedaya O, Wu J, Jiang F, Yao P. Mammalian RNA switches: Molecular rheostats in gene regulation, disease, and medicine. Comput Struct Biotechnol J 2019; 17:1326-1338. [PMID: 31741723 PMCID: PMC6849081 DOI: 10.1016/j.csbj.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023] Open
Abstract
Alteration of RNA structure by environmental signals is a fundamental mechanism of gene regulation. For example, the riboswitch is a noncoding RNA regulatory element that binds a small molecule and causes a structural change in the RNA, thereby regulating transcription, splicing, or translation of an mRNA. The role of riboswitches in metabolite sensing and gene regulation in bacteria and other lower species was reported almost two decades ago, but riboswitches have not yet been discovered in mammals. An analog of the riboswitch, the protein-directed RNA switch (PDRS), has been identified as an important regulatory mechanism of gene expression in mammalian cells. RNA-binding proteins and microRNAs are two major executors of PDRS via their interaction with target transcripts in mammals. These protein-RNA interactions influence cellular functions by integrating environmental signals and intracellular pathways from disparate stimuli to modulate stability or translation of specific mRNAs. The discovery of a riboswitch in eukaryotes that is composed of a single class of thiamine pyrophosphate (TPP) suggests that additional ligand-sensing RNAs may be present to control eukaryotic or mammalian gene expression. In this review, we focus on protein-directed RNA switch mechanisms in mammals. We offer perspectives on the potential discovery of mammalian protein-directed and compound-dependent RNA switches that are related to human disease and medicine.
Collapse
Affiliation(s)
- Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Omar Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| |
Collapse
|
25
|
Morgan BS, Forte JE, Hargrove AE. Insights into the development of chemical probes for RNA. Nucleic Acids Res 2019; 46:8025-8037. [PMID: 30102391 PMCID: PMC6144806 DOI: 10.1093/nar/gky718] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, the RNA revolution has revealed thousands of non-coding RNAs that are essential for cellular regulation and are misregulated in disease. While the development of methods and tools to study these RNAs has been challenging, the power and promise of small molecule chemical probes is increasingly recognized. To harness existing knowledge, we compiled a list of 116 ligands with reported activity against RNA targets in biological systems (R-BIND). In this survey, we examine the RNA targets, design and discovery strategies, and chemical probe characterization techniques of these ligands. We discuss the applicability of current tools to identify and evaluate RNA-targeted chemical probes, suggest criteria to assess the quality of RNA chemical probes and targets, and propose areas where new tools are particularly needed. We anticipate that this knowledge will expedite the discovery of RNA-targeted ligands and the next phase of the RNA revolution.
Collapse
Affiliation(s)
| | - Jordan E Forte
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, NC 27708, USA.,Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
26
|
Hewitt WM, Calabrese DR, Schneekloth JS. Evidence for ligandable sites in structured RNA throughout the Protein Data Bank. Bioorg Med Chem 2019; 27:2253-2260. [PMID: 30982658 PMCID: PMC8283815 DOI: 10.1016/j.bmc.2019.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 10/27/2022]
Abstract
RNA has attracted considerable attention as a target for small molecules. However, methods to identify, study, and characterize suitable RNA targets have lagged behind strategies for protein targets. One approach that has received considerable attention for protein targets has been to utilize computational analysis to investigate ligandable "pockets" on proteins that are amenable to small molecule binding. These studies have shown that selected physical properties of pockets are important parameters that govern the ability of a structure to bind to small molecules. This work describes a similar analysis to study pockets on all RNAs in the Protein Data Bank (PDB). Using parameters such as buriedness, hydrophobicity, volume, and other properties, the set of all RNAs is analyzed and compared to all proteins. Considerable overlap is observed between the properties of pockets on RNAs and proteins. Thus, many RNAs are capable of populating conformations with pockets that are likely suitable for small molecule binding. Further, principal moment of inertia (PMI) calculations reveal that liganded RNAs exist in diverse structural space, much of which overlaps with protein structural space. Taken together, these results suggest that complex folded RNAs adopt unique structures with pockets that may represent viable opportunities for small molecule targeting.
Collapse
Affiliation(s)
- William M Hewitt
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, United States
| | - David R Calabrese
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, United States
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, United States.
| |
Collapse
|
27
|
Green and Facile Assembly of Diverse Fused N-Heterocycles Using Gold-Catalyzed Cascade Reactions in Water. Molecules 2019; 24:molecules24050988. [PMID: 30862100 PMCID: PMC6429411 DOI: 10.3390/molecules24050988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/30/2022] Open
Abstract
The present study describes an AuPPh3Cl/AgSbF6-catalyzed cascade reaction between amine nucleophiles and alkynoic acids in water. This process proceeds in high step economy with water as the sole coproduct, and leads to the generation of two rings, together with the formation of three new bonds in a single operation. This green cascade process exhibits valuable features such as low catalyst loading, good to excellent yields, high efficiency in bond formation, excellent selectivity, great tolerance of functional groups, and extraordinarily broad substrate scope. In addition, this is the first example of the generation of an indole/thiophene/pyrrole/pyridine/naphthalene/benzene-fused N-heterocycle library through gold catalysis in water from readily available materials. Notably, the discovery of antibacterial molecules from this library demonstrates its high quality and potential for the identification of active pharmaceutical ingredients.
Collapse
|
28
|
L'abbate FP, Müller R, Openshaw R, Combrinck JM, de Villiers KA, Hunter R, Egan TJ. Hemozoin inhibiting 2-phenylbenzimidazoles active against malaria parasites. Eur J Med Chem 2018; 159:243-254. [PMID: 30296683 DOI: 10.1016/j.ejmech.2018.09.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
The 2-phenylbenzimidazole scaffold has recently been discovered to inhibit β-hematin (synthetic hemozoin) formation by high throughput screening. Here, a library of 325,728 N-4-(1H-benzo[d]imidazol-2-yl)aryl)benzamides was enumerated, and Bayesian statistics used to predict β-hematin and Plasmodium falciparum growth inhibition. Filtering predicted inactives and compounds with negligible aqueous solubility reduced the library to 35,124. Further narrowing to compounds with terminal aryl ring substituents only, reduced the library to 18, 83% of which were found to inhibit β-hematin formation <100 μM and 50% parasite growth <2 μM. Four compounds showed nanomolar parasite growth inhibition activities, no cross-resistance in a chloroquine resistant strain and low cytotoxicity. QSAR analysis showed a strong association of parasite growth inhibition with inhibition of β-hematin formation and the most active compound inhibited hemozoin formation in P. falciparum, with consequent increasing exchangeable heme. Pioneering use of molecular docking for this system demonstrated predictive ability and could rationalize observed structure activity trends.
Collapse
Affiliation(s)
- Fabrizio P L'abbate
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Ronel Müller
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Roxanne Openshaw
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Jill M Combrinck
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Observatory, 7925, South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
29
|
Haniff HS, Graves A, Disney MD. Selective Small Molecule Recognition of RNA Base Pairs. ACS COMBINATORIAL SCIENCE 2018; 20:482-491. [PMID: 29966095 PMCID: PMC6325646 DOI: 10.1021/acscombsci.8b00049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many types of RNAs exist in the human transcriptome, yet only the bacterial ribosome has been exploited as a small molecule drug target. Aside from rRNA, other cellular RNAs such as noncoding RNAs have primarily secondary structure and limited tertiary structure. Within these secondary structures of noncanonically paired and unpaired regions, more than 50% are base paired, with most efforts to target these structures focused on looped regions. A void exists in the availability of small molecules capable of targeting RNA base pairs. Using chemoinformatics, an RNA-focused library enriched for nitrogen-containing heterocycles was developed and tested for binding RNA base pairs, leading to the identification of six selective and previously unknown binders. While all binders were derivatives of benzimidazoles, those with expanded aromatic polycycles bound selectively to AU pairs, while those with flexible urea side chains bound selectively to GC pairs. Two of the three selective GC pair binders can distinguish between two different orientations, 5'GG/3'CC and 5'GC/3'CG pairs. Furthermore, all six molecules showed >50-fold selectivity for RNA over DNA. These studies provide foundational knowledge to better exploit RNA as targets for small molecule chemical probes or lead therapeutics by using modules that target RNA base pairs.
Collapse
Affiliation(s)
- Hafeez S Haniff
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Amanda Graves
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Matthew D Disney
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
30
|
Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1477. [PMID: 29726113 PMCID: PMC6002909 DOI: 10.1002/wrna.1477] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022]
Abstract
The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anita Donlic
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
31
|
Velagapudi SP, Costales MG, Vummidi BR, Nakai Y, Angelbello AJ, Tran T, Haniff HS, Matsumoto Y, Wang ZF, Chatterjee AK, Childs-Disney JL, Disney MD. Approved Anti-cancer Drugs Target Oncogenic Non-coding RNAs. Cell Chem Biol 2018; 25:1086-1094.e7. [PMID: 30251629 DOI: 10.1016/j.chembiol.2018.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/03/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
Abstract
Potential RNA drug targets for small molecules are found throughout the human transcriptome, yet small molecules known to elicit a pharmacological response by directly targeting RNA are limited to antibacterials. Herein, we describe AbsorbArray, a small molecule microarray-based approach that allows for unmodified compounds, including FDA-approved drugs, to be probed for binding to RNA motif libraries in a massively parallel format. Several drug classes bind RNA including kinase and topoisomerase inhibitors. The latter avidly bound the motif found in the Dicer site of oncogenic microRNA (miR)-21 and inhibited its processing both in vitro and in cells. The most potent compound de-repressed a downstream protein target and inhibited a miR-21-mediated invasive phenotype. The compound's activity was ablated upon overexpression of pre-miR-21. Target validation via chemical crosslinking and isolation by pull-down showed direct engagement of pre-miR-21 by the small molecule in cells, demonstrating that RNAs should indeed be considered druggable.
Collapse
Affiliation(s)
- Sai Pradeep Velagapudi
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew G Costales
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Balayeshwanth R Vummidi
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yoshio Nakai
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Alicia J Angelbello
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Tuan Tran
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Hafeez S Haniff
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yasumasa Matsumoto
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Zi Fu Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Arnab K Chatterjee
- California Institute for Biomedical Research (CALIBR), 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
32
|
Guyon H, Mavré F, Catala M, Turcaud S, Brachet F, Limoges B, Tisné C, Micouin L. Use of a redox probe for an electrochemical RNA-ligand binding assay in microliter droplets. Chem Commun (Camb) 2018; 53:1140-1143. [PMID: 28054050 DOI: 10.1039/c6cc07785d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, we report an affordable, sensitive, fast and user-friendly electroanalytical method for monitoring the binding between unlabeled RNA and small compounds in microliter-size droplets using a redox-probe and disposable miniaturized screen-printed electrochemical cells.
Collapse
Affiliation(s)
- Hélène Guyon
- Laboratoire de Chimie et Biochimie pharmacologiques et toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints Pères, 75006 Paris, France. and Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, 75205 Paris, France.
| | - François Mavré
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, 75205 Paris, France.
| | - Marjorie Catala
- Laboratoire de Cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 av. de l'Observatoire, 75006 Paris, France.
| | - Serge Turcaud
- Laboratoire de Chimie et Biochimie pharmacologiques et toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints Pères, 75006 Paris, France.
| | - Franck Brachet
- Laboratoire de Cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 av. de l'Observatoire, 75006 Paris, France.
| | - Benoît Limoges
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, 75205 Paris, France.
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 av. de l'Observatoire, 75006 Paris, France.
| | - Laurent Micouin
- Laboratoire de Chimie et Biochimie pharmacologiques et toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
33
|
Eubanks CS, Hargrove AE. Sensing the impact of environment on small molecule differentiation of RNA sequences. Chem Commun (Camb) 2018; 53:13363-13366. [PMID: 29199743 DOI: 10.1039/c7cc07157d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Using pattern recognition of RNA with small molecules (PRRSM) with fluorescent RNA chemosensors and aminoglycosides, we reveal the impact of changing environmental conditions on the differentiation of a range of RNA structures as well as the ability to predict different sequence/size compositions of five canonical RNA motifs.
Collapse
|
34
|
Hsieh WC, Bahal R, Thadke SA, Bhatt K, Sobczak K, Thornton C, Ly DH. Design of a "Mini" Nucleic Acid Probe for Cooperative Binding of an RNA-Repeated Transcript Associated with Myotonic Dystrophy Type 1. Biochemistry 2018; 57:907-911. [PMID: 29334465 DOI: 10.1021/acs.biochem.7b01239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toxic RNAs containing expanded trinucleotide repeats are the cause of many neuromuscular disorders, one being myotonic dystrophy type 1 (DM1). DM1 is triggered by CTG-repeat expansion in the 3'-untranslated region of the DMPK gene, resulting in a toxic gain of RNA function through sequestration of MBNL1 protein, among others. Herein, we report the development of a relatively short miniPEG-γ peptide nucleic acid probe, two triplet repeats in length, containing terminal pyrene moieties, that is capable of binding rCUG repeats in a sequence-specific and selective manner. The newly designed probe can discriminate the pathogenic rCUGexp from the wild-type transcript and disrupt the rCUGexp-MBNL1 complex. The work provides a proof of concept for the development of relatively short nucleic acid probes for targeting RNA-repeat expansions associated with DM1 and other related neuromuscular disorders.
Collapse
Affiliation(s)
- Wei-Che Hsieh
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Raman Bahal
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Shivaji A Thadke
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Kirti Bhatt
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Krzysztof Sobczak
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Charles Thornton
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Danith H Ly
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| |
Collapse
|
35
|
Zhang F, Bodycombe NE, Haskell KM, Sun YL, Wang ET, Morris CA, Jones LH, Wood LD, Pletcher MT. A flow cytometry-based screen identifies MBNL1 modulators that rescue splicing defects in myotonic dystrophy type I. Hum Mol Genet 2018; 26:3056-3068. [PMID: 28535287 PMCID: PMC5886090 DOI: 10.1093/hmg/ddx190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy Type 1 (DM1) is a rare genetic disease caused by the expansion of CTG trinucleotide repeats ((CTG)exp) in the 3' untranslated region of the DMPK gene. The repeat transcripts sequester the RNA binding protein Muscleblind-like protein 1 (MBNL1) and hamper its normal function in pre-mRNA splicing. Overexpressing exogenous MBNL1 in the DM1 mouse model has been shown to rescue the splicing defects and reverse myotonia. Although a viable therapeutic strategy, pharmacological modulators of MBNL1 expression have not been identified. Here, we engineered a ZsGreen tag into the endogenous MBNL1 locus in HeLa cells and established a flow cytometry-based screening system to identify compounds that increase MBNL1 level. The initial screen of small molecule compound libraries identified more than thirty hits that increased MBNL1 expression greater than double the baseline levels. Further characterization of two hits revealed that the small molecule HDAC inhibitors, ISOX and vorinostat, increased MBNL1 expression in DM1 patient-derived fibroblasts and partially rescued the splicing defect caused by (CUG)exp repeats in these cells. These findings demonstrate the feasibility of this flow-based cytometry screen to identify both small molecule compounds and druggable targets for MBNL1 upregulation.
Collapse
Affiliation(s)
| | - Nicole E Bodycombe
- Medicine Design, Worldwide Research and Development, Pfizer, Cambridge, MA 02139, USA
| | - Keith M Haskell
- Pharmacokinetics, Dynamics and Metabolism - New Chemical Entities, Worldwide Research and Development, Pfizer, CT 06340, USA
| | | | - Eric T Wang
- Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA
| | | | - Lyn H Jones
- Medicine Design, Worldwide Research and Development, Pfizer, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
36
|
RNA as a small molecule druggable target. Bioorg Med Chem Lett 2017; 27:5083-5088. [PMID: 29097169 DOI: 10.1016/j.bmcl.2017.10.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/11/2017] [Accepted: 10/22/2017] [Indexed: 12/20/2022]
Abstract
Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents.
Collapse
|
37
|
Morgan BS, Forte JE, Culver RN, Zhang Y, Hargrove AE. Discovery of Key Physicochemical, Structural, and Spatial Properties of RNA-Targeted Bioactive Ligands. Angew Chem Int Ed Engl 2017; 56:13498-13502. [PMID: 28810078 PMCID: PMC5752130 DOI: 10.1002/anie.201707641] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 01/20/2023]
Abstract
While a myriad non-coding RNAs are known to be essential in cellular processes and misregulated in diseases, the development of RNA-targeted small molecule probes has met with limited success. To elucidate the guiding principles for selective small molecule/RNA recognition, we analyzed cheminformatic and shape-based descriptors for 104 RNA-targeted ligands with demonstrated biological activity (RNA-targeted BIoactive ligaNd Database, R-BIND). We then compared R-BIND to both FDA-approved small molecule drugs and RNA ligands without reported bioactivity. Several striking trends emerged for bioactive RNA ligands, including: 1) Compliance to medicinal chemistry rules, 2) distinctive structural features, and 3) enrichment in rod-like shapes over others. This work provides unique insights that directly facilitate the selection and synthesis of RNA-targeted libraries with the goal of efficiently identifying selective small molecule ligands for therapeutically relevant RNAs.
Collapse
Affiliation(s)
- Brittany S Morgan
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Jordan E Forte
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Rebecca N Culver
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Yuqi Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| |
Collapse
|
38
|
Morgan BS, Forte JE, Culver RN, Zhang Y, Hargrove AE. Discovery of Key Physicochemical, Structural, and Spatial Properties of RNA-Targeted Bioactive Ligands. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jordan E. Forte
- Department of Chemistry; Duke University; Durham NC 27708-0346 USA
| | | | - Yuqi Zhang
- Department of Integrative Structural and Computational Biology; The Scripps Research Institute; La Jolla CA 92037 USA
| | | |
Collapse
|
39
|
Konieczny P, Selma-Soriano E, Rapisarda AS, Fernandez-Costa JM, Perez-Alonso M, Artero R. Myotonic dystrophy: candidate small molecule therapeutics. Drug Discov Today 2017; 22:1740-1748. [PMID: 28780071 DOI: 10.1016/j.drudis.2017.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/14/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a rare multisystemic neuromuscular disorder caused by expansion of CTG trinucleotide repeats in the noncoding region of the DMPK gene. Mutant DMPK transcripts are toxic and alter gene expression at several levels. Chiefly, the secondary structure formed by CUGs has a strong propensity to capture and retain proteins, like those of the muscleblind-like (MBNL) family. Sequestered MBNL proteins cannot then fulfill their normal functions. Many therapeutic approaches have been explored to reverse these pathological consequences. Here, we review the myriad of small molecules that have been proposed for DM1, including examples obtained from computational rational design, HTS, drug repurposing, and therapeutic gene modulation.
Collapse
Affiliation(s)
- Piotr Konieczny
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universitat de València, Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Estela Selma-Soriano
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universitat de València, Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Anna S Rapisarda
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universitat de València, Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Juan M Fernandez-Costa
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universitat de València, Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Manuel Perez-Alonso
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universitat de València, Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Ruben Artero
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universitat de València, Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain.
| |
Collapse
|
40
|
González ÀL, Konieczny P, Llamusi B, Delgado-Pinar E, Borrell JI, Teixidó J, García-España E, Pérez-Alonso M, Estrada-Tejedor R, Artero R. In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models. PLoS One 2017; 12:e0178931. [PMID: 28582438 PMCID: PMC5459475 DOI: 10.1371/journal.pone.0178931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/22/2017] [Indexed: 12/24/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a rare multisystemic disorder associated with an expansion of CUG repeats in mutant DMPK (dystrophia myotonica protein kinase) transcripts; the main effect of these expansions is the induction of pre-mRNA splicing defects by sequestering muscleblind-like family proteins (e.g. MBNL1). Disruption of the CUG repeats and the MBNL1 protein complex has been established as the best therapeutic approach for DM1, hence two main strategies have been proposed: targeted degradation of mutant DMPK transcripts and the development of CUG-binding molecules that prevent MBNL1 sequestration. Herein, suitable CUG-binding small molecules were selected using in silico approaches such as scaffold analysis, similarity searching, and druggability analysis. We used polarization assays to confirm the CUG repeat binding in vitro for a number of candidate compounds, and went on to evaluate the biological activity of the two with the strongest affinity for CUG repeats (which we refer to as compounds 1–2 and 2–5) in DM1 mutant cells and Drosophila DM1 models with an impaired locomotion phenotype. In particular, 1–2 and 2–5 enhanced the levels of free MBNL1 in patient-derived myoblasts in vitro and greatly improved DM1 fly locomotion in climbing assays. This work provides new computational approaches for rational large-scale virtual screens of molecules that selectively recognize CUG structures. Moreover, it contributes valuable knowledge regarding two compounds with desirable biological activity in DM1 models.
Collapse
Affiliation(s)
- Àlex L. González
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS)–Universitat Ramon Llull (URL), Barcelona, Catalonia, Spain
| | - Piotr Konieczny
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- Incliva-CIPF joint unit, Valencia, Spain
| | - Beatriz Llamusi
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- Incliva-CIPF joint unit, Valencia, Spain
| | | | - José I. Borrell
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS)–Universitat Ramon Llull (URL), Barcelona, Catalonia, Spain
| | - Jordi Teixidó
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS)–Universitat Ramon Llull (URL), Barcelona, Catalonia, Spain
| | | | - Manuel Pérez-Alonso
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- Incliva-CIPF joint unit, Valencia, Spain
| | - Roger Estrada-Tejedor
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS)–Universitat Ramon Llull (URL), Barcelona, Catalonia, Spain
- * E-mail:
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- Incliva-CIPF joint unit, Valencia, Spain
| |
Collapse
|
41
|
van Agtmaal EL, André LM, Willemse M, Cumming SA, van Kessel IDG, van den Broek WJAA, Gourdon G, Furling D, Mouly V, Monckton DG, Wansink DG, Wieringa B. CRISPR/Cas9-Induced (CTG⋅CAG) n Repeat Instability in the Myotonic Dystrophy Type 1 Locus: Implications for Therapeutic Genome Editing. Mol Ther 2017; 25:24-43. [PMID: 28129118 PMCID: PMC5363205 DOI: 10.1016/j.ymthe.2016.10.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG)n-repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-cleavage in either its 5' or 3' unique flank promotes uncontrollable deletion of large segments from the expanded trinucleotide repeat, rather than formation of short indels usually seen after double-strand break repair. Complete and precise excision of the repeat tract from normal and large expanded DMPK alleles in myoblasts from unaffected individuals, DM1 patients, and a DM1 mouse model could be achieved at high frequency by dual CRISPR/Cas9-cleavage at either side of the (CTG⋅CAG)n sequence. Importantly, removal of the repeat appeared to have no detrimental effects on the expression of genes in the DM1 locus. Moreover, myogenic capacity, nucleocytoplasmic distribution, and abnormal RNP-binding behavior of transcripts from the edited DMPK gene were normalized. Dual sgRNA-guided excision of the (CTG⋅CAG)n tract by CRISPR/Cas9 technology is applicable for developing isogenic cell lines for research and may provide new therapeutic opportunities for patients with DM1.
Collapse
Affiliation(s)
- Ellen L van Agtmaal
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Laurène M André
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Marieke Willemse
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Sarah A Cumming
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ingeborg D G van Kessel
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Walther J A A van den Broek
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Geneviève Gourdon
- Inserm UMR 1163, 75015 Paris, France; Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, 75270 Paris, France
| | - Denis Furling
- UPMC Université Paris 06, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, Sorbonne Universités, 75252 Paris, France
| | - Vincent Mouly
- UPMC Université Paris 06, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, Sorbonne Universités, 75252 Paris, France
| | - Darren G Monckton
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands.
| | - Bé Wieringa
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands.
| |
Collapse
|
42
|
Structure-Based Discovery of Small Molecules Binding to RNA. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1. Bioorg Med Chem Lett 2016; 26:5792-5796. [PMID: 27839685 DOI: 10.1016/j.bmcl.2016.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 01/29/2023]
Abstract
RNA is an important drug target, but current approaches to identify bioactive small molecules have been engineered primarily for protein targets. Moreover, the identification of small molecules that bind a specific RNA target with sufficient potency remains a challenge. Computer-aided drug design (CADD) and, in particular, ligand-based drug design provide a myriad of tools to identify rapidly new chemical entities for modulating a target based on previous knowledge of active compounds without relying on a ligand complex. Herein we describe pharmacophore virtual screening based on previously reported active molecules that target the toxic RNA that causes myotonic dystrophy type 1 (DM1). DM1-associated defects are caused by sequestration of muscleblind-like 1 protein (MBNL1), an alternative splicing regulator, by expanded CUG repeats (r(CUG)exp). Several small molecules have been found to disrupt the MBNL1-r(CUG)exp complex, ameliorating DM1 defects. Our pharmacophore model identified a number of potential lead compounds from which we selected 11 compounds to evaluate. Of the 11 compounds, several improved DM1 defects both in vitro and in cells.
Collapse
|
44
|
Connelly CM, Moon MH, Schneekloth JS. The Emerging Role of RNA as a Therapeutic Target for Small Molecules. Cell Chem Biol 2016; 23:1077-1090. [PMID: 27593111 PMCID: PMC5064864 DOI: 10.1016/j.chembiol.2016.05.021] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/07/2016] [Accepted: 05/18/2016] [Indexed: 01/09/2023]
Abstract
Recent advances in understanding different RNAs and unique features of their biology have revealed a wealth of information. However, approaches to identify small molecules that target these newly discovered regulatory elements have been lacking. The application of new biochemical screening and design-based technologies, coupled with a resurgence of interest in phenotypic screening, has resulted in several compelling successes in targeting RNA. A number of recent advances suggest that achieving the long-standing goal of developing drug-like, biologically active small molecules that target RNA is possible. This review highlights advances and successes in approaches to targeting RNA with diverse small molecules, and the potential for these technologies to pave the way to new types of RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Colleen M Connelly
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Michelle H Moon
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
45
|
Lavorgna G, Vago R, Sarmini M, Montorsi F, Salonia A, Bellone M. Long non-coding RNAs as novel therapeutic targets in cancer. Pharmacol Res 2016; 110:131-138. [DOI: 10.1016/j.phrs.2016.05.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023]
|
46
|
Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg Med Chem 2016; 24:3680-6. [PMID: 27301676 DOI: 10.1016/j.bmc.2016.06.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 01/02/2023]
Abstract
The rise and emergence of resistance to antifungal drugs by diverse pathogenic fungal strains have resulted in an increase in demand for new antifungal agents. Various heterocyclic scaffolds with different mechanisms of action against fungi have been investigated in the past. Herein, we report the synthesis and antifungal activities of 18 alkylated mono-, bis-, and trisbenzimidazole derivatives, their toxicities against mammalian cells, as well as their ability to induce reactive oxygen species (ROS) in yeast cells. Many of our bisbenzimidazole compounds exhibited moderate to excellent antifungal activities against all tested fungal strains, with MIC values ranging from 15.6 to 0.975μg/mL. The fungal activity profiles of our bisbenzimidazoles were found to be dependent on alkyl chain length. Our most potent compounds were found to display equal or superior antifungal activity when compared to the currently used agents amphotericin B, fluconazole, itraconazole, posaconazole, and voriconazole against many of the strains tested.
Collapse
|
47
|
Biochemical and cell biological assays to identify and characterize DNA helicase inhibitors. Methods 2016; 108:130-41. [PMID: 27064001 DOI: 10.1016/j.ymeth.2016.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
The growing number of DNA helicases implicated in hereditary disorders and cancer indicates that this particular class of enzymes plays key roles in genomic stability and cellular homeostasis. Indeed, a large body of work has provided molecular and cellular evidence that helicases act upon a variety of nucleic acid substrates and interact with numerous proteins to enact their functions in replication, DNA repair, recombination, and transcription. Understanding how helicases operate in unique and overlapping pathways is a great challenge to researchers. In this review, we describe a series of experimental approaches and methodologies to identify and characterize DNA helicase inhibitors which collectively provide an alternative and useful strategy to explore their biological significance in cell-based systems. These procedures were used in the discovery of biologically active compounds that inhibited the DNA unwinding function catalyzed by the human WRN helicase-nuclease defective in the premature aging disorder Werner syndrome. We describe in vitro and in vivo experimental approaches to characterize helicase inhibitors with WRN as the model, anticipating that these approaches may be extrapolated to other DNA helicases, particularly those implicated in DNA repair and/or the replication stress response.
Collapse
|
48
|
Dodd DW, Tomchick DR, Corey DR, Gagnon KT. Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches. Biochemistry 2016; 55:1283-6. [PMID: 26878348 DOI: 10.1021/acs.biochem.6b00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expansion of a GGGGCC/CCCCGG repeat sequence in the first intron of the C9ORF72 gene is a leading cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In this combined disorder, called c9FTD/ALS, the expansion is bidirectionally transcribed into sense and antisense repeat RNA associated with disease. To better understand the role of C9ORF72 repeat RNA in molecular disease pathology, we determined crystal structures of a [(CCCCGG)3(CCCC)] model antisense repeat RNA to 1.47 Å resolution. The RNA structure was an A-form-like double helix composed of repeating and regularly spaced tandem C:C mismatch pairs that perturbed helical geometry and surface charge. Solution studies revealed a preference for A-form-like helical conformations as the repeat number increased. Results provide a structural starting point for rationalizing the contribution of repeat RNA to c9FTD/ALS molecular disease mechanisms and for developing molecules to target C9ORF72 repeat RNA as potential therapeutics.
Collapse
Affiliation(s)
- David W Dodd
- Department of Pharmacology, ‡Department of Biophysics, and §Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States.,Department of Biochemistry and Molecular Biology, School of Medicine, and ⊥Department of Chemistry and Biochemistry, Southern Illinois University , Carbondale, Illinois 62901, United States
| | - Diana R Tomchick
- Department of Pharmacology, ‡Department of Biophysics, and §Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States.,Department of Biochemistry and Molecular Biology, School of Medicine, and ⊥Department of Chemistry and Biochemistry, Southern Illinois University , Carbondale, Illinois 62901, United States
| | - David R Corey
- Department of Pharmacology, ‡Department of Biophysics, and §Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States.,Department of Biochemistry and Molecular Biology, School of Medicine, and ⊥Department of Chemistry and Biochemistry, Southern Illinois University , Carbondale, Illinois 62901, United States
| | - Keith T Gagnon
- Department of Pharmacology, ‡Department of Biophysics, and §Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States.,Department of Biochemistry and Molecular Biology, School of Medicine, and ⊥Department of Chemistry and Biochemistry, Southern Illinois University , Carbondale, Illinois 62901, United States
| |
Collapse
|