1
|
Appadurai MI, Chaudhary S, Shah A, Natarajan G, Alsafwani ZW, Khan P, Shinde DD, Lele SM, Smith LM, Nasser MW, Batra SK, Ganti AK, Lakshmanan I. ST6GalNAc-I regulates tumor cell sialylation via NECTIN2/MUC5AC-mediated immunosuppression and angiogenesis in non-small cell lung cancer. J Clin Invest 2025; 135:e186863. [PMID: 40371640 PMCID: PMC12077904 DOI: 10.1172/jci186863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/12/2025] [Indexed: 05/16/2025] Open
Abstract
Glycosylation controls immune evasion, tumor progression, and metastasis. However, how tumor cell sialylation regulates immune evasion remains poorly characterized. ST6GalNAc-I, a sialyltransferase that conjugates sialic acid to the glycans in glycoproteins, was overexpressed in an aggressive-type KPA (KrasG12D/+ Trp53R172H/+ Ad-Cre) lung adenocarcinoma (LUAD) model and patient samples. Proteomic and biochemical analysis indicated that ST6GalNAc-I mediated NECTIN2 sialylation in LUAD cells. ST6GalNAc-I-deficient tumor cells cocultured with T cells were more susceptible to T cell-mediated tumor cell killing, indicating a key role for NECTIN2 in T cell dysfunction. Mice injected with St6galnac-I-knockdown syngeneic cells showed reduced lung tumor incidence and Nectin2/Tigit-associated immunosuppression. ST6GalNAc-I-deficient cells exhibited reduced P-DMEA metabolite levels, while administration of P-DMEA promoted LUAD cell proliferation via MUC5AC. MUC5AC interacted and colocalized with PRRC1 in the Golgi, suggesting a potential role for PRRC1 in MUC5AC glycosylation. Mice injected with ST6GalNAc-I/MUC5AC-deficient cells (human LUAD) exhibited reduced lung tumor incidence, angiogenesis, and liver metastases. Mechanistically, ST6GalNAc-I/MUC5AC regulates VCAN-V1, a key factor in tumor matrix remodeling during angiogenesis and metastasis. These findings demonstrate that ST6GalNAc-I-mediated sialylation of NECTIN2/MUC5AC is critical for immune evasion and tumor angiogenesis. Targeting this pathway may prevent LUAD development and/or metastasis.
Collapse
MESH Headings
- Animals
- Humans
- Lung Neoplasms/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/blood supply
- Mice
- Nectins/genetics
- Nectins/immunology
- Nectins/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/blood supply
- Sialyltransferases/genetics
- Sialyltransferases/immunology
- Sialyltransferases/metabolism
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Cell Line, Tumor
- Angiogenesis
Collapse
Affiliation(s)
| | | | - Ashu Shah
- Department of Biochemistry and Molecular Biology
| | | | | | - Parvez Khan
- Department of Biochemistry and Molecular Biology
| | | | | | | | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology
- Fred & Pamela Buffett Cancer Center; and
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology
- Fred & Pamela Buffett Cancer Center; and
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology
- Fred & Pamela Buffett Cancer Center; and
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | | |
Collapse
|
2
|
Kamra M, Chen YI, Delgado PC, Seeley EH, Seidlits SK, Yeh HC, Brock A, Parekh SH. Ketomimetic nutrients remodel the glycocalyx and trigger a metabolic defense in breast cancer cells. Cancer Metab 2025; 13:18. [PMID: 40205476 PMCID: PMC11984013 DOI: 10.1186/s40170-025-00385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/20/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND While the triggers for the metastatic transformation of breast cancer (BC) cells remain unknown, recent evidence suggests that intrinsic cellular metabolism could be a crucial driver of migratory disposition and chemoresistance. Aiming to decipher the molecular mechanisms involved in BC cell metabolic maneuvering, we study how a ketomimetic (ketone body-rich, low glucose) nutrient medium can engineer the glycocalyx and metabolic signature of BC cells, to further maneuver their response to therapy. METHODS Doxorubicin (DOX) has been used as a model chemotherapeutic in this study. Bioorthogonal imaging was used to assess the degree of sialylation of the glycocalyx along with measurements of drug-induced cytotoxicity and drug internalization. Single cell label-free metabolic imaging has been performed, coupled with measurement of cellular proliferative and migratory abilities, and MS-based metabolomic screens. Transcriptomic analysis of crucial enzymes was performed using total RNA extraction and rt-qPCR. RESULTS We found an inverse correlation of glycocalyx sialylation with drug-induced cytotoxicity and drug internalization, where ketomimetic media enhanced sialylation and protected BC cells from DOX. These hypersialylated cells proliferated slower and migrated faster as compared to their counterparts receiving a high glucose media, while exhibiting a preference for glycolysis. These cells also showed pronounced lipid droplet accumulation coupled with an inversion in their metabolomic profile. Enzymatic removal of sialic acid moieties at the glycocalyx revealed for the first time, a direct role of sialic acids as defense guards, blocking DOX entry at the cellular membrane to curtail internalization. Interestingly, the non-cancerous mammary epithelial cells exhibited opposite trends and this differential pattern in cancer vs. normal cells was traced to its biochemical roots, i.e. the expression levels of key enzymes involved in sialylation and fatty acid synthesis. CONCLUSIONS Our findings revealed that a ketomimetic medium enhances chemoresistance and invasive disposition of BC cells via two main oncogenic pathways: hypersialylation and lipid synthesis. We propose that the crosstalk between these pathways, juxtaposed at the synthesis of the glycan precursor UDP-GlcNAc, furthers advancement of a metastatic phenotype in BC cells under ketomimetic conditions. Non-cancerous cells lack this dual defense machinery and end up being sensitized to DOX under ketomimetic conditions.
Collapse
Affiliation(s)
- Mohini Kamra
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Paula C Delgado
- Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Stephanie K Seidlits
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Amy Brock
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Jame-Chenarboo F, Reyes JN, Arachchige TU, Mahal LK. Profiling the regulatory landscape of sialylation through miRNA targeting of CMP- sialic acid synthetase. J Biol Chem 2025; 301:108340. [PMID: 40010608 PMCID: PMC11982980 DOI: 10.1016/j.jbc.2025.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Cell surface sialic acid is an important glycan modification that contributes to both normal and pathological physiology. The enzyme cytidine monophosphate N-acetylneuraminic acid synthetase (CMAS) biosynthesizes the activated sugar donor cytidine monophosphate (CMP) sialic acid, which is required for all sialylation. CMAS levels impact sialylation with corresponding biological effects. The mechanisms that regulate CMAS are relatively uncharacterized. Herein, we use a high throughput genetically encoded fluorescence assay (miRFluR) to comprehensively profile the posttranscriptional regulation of CMAS by miRNA. These small non-coding RNAs have been found to impact glycosylation. Mapping the interactions of the human miRNAome with the 3'-untranslated region of CMAS, we identified miRNA whose impact on CMAS expression was either downregulatory or upregulatory. This follows previous work from our laboratory and others showing that miRNA regulation is bidirectional. Validation of the high-throughput results confirmed our findings. We also identified the direct binding sites for two upregulatory and two downregulatory miRNAs. Functional enrichment analysis for miRNAs upregulating CMAS revealed associations with pancreatic cancer, where sialic acid metabolism and the α-2,6-sialyltransferase ST6GAL1 have been found to be important. We found that miRNA associated with the enriched signature enhanced pancreatic cell-surface α-2,6-sialylation via CMAS expression in the absence of effects on ST6GAL1. We also find overlap between the miRNA regulation of CMAS and that of previously analyzed sialyltransferases. Overall, our work points to the importance of miRNA in regulating sialylation levels in disease and add further evidence to the bidirectional nature of miRNA regulation.
Collapse
Affiliation(s)
| | - Joseph N Reyes
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Chen YZ, Xu S, Ren H, Zhang J, Jia Y, Sun H. Characterization of novel sialylation-associated microRNA signature for prognostic assessment in breast cancer and its implications for the tumor microenvironment. J Steroid Biochem Mol Biol 2025; 248:106683. [PMID: 39900230 DOI: 10.1016/j.jsbmb.2025.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Sialylation, a key post-translational modification essential for protein function, is regulated by steroid hormones, along with other glycosylations like fucosylation. These modifications influence tumor growth and metastasis by modulating immune activation. MicroRNAs (miRNAs), crucial in gene expression, affect sialylation and are emerging as promising biomarkers in breast cancer, though their prognostic value remains unclear. Sialylation-related miRNAs were identified through Pearson correlation analysis, and an eight-miRNA risk signature was developed using univariate and Least Absolute Shrinkage and Selection Operator (LASSO) regression in the TCGA dataset. The prognostic value was validated in two independent GEO datasets. Multivariate analysis confirmed that the miRNA risk score is an independent predictor of overall survival (OS). A nomogram integrating clinical characteristics and the risk score was created to predict 1-, 3-, and 5-year OS, assessed through calibration curves, ROC curves, and area under the ROC curve (AUC). Biological pathways were explored using GSEA and GSVA, while immune infiltrates were identified through CIBERSORT and TIMER. The eight-miRNA signature effectively predicted OS, recurrence-free survival, and disease-free survival. High-risk patients exhibited increased macrophage and neutrophil levels, indicative of a poor prognosis. High-risk patients, especially those with triple-negative breast cancer, had significantly worse outcomes. This risk score could inform personalized treatment strategies in breast cancer management.
Collapse
Affiliation(s)
- Yong-Zi Chen
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Shilei Xu
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hailing Ren
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jun Zhang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yongsheng Jia
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Haiyan Sun
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
5
|
Peixoto A, Ferreira D, Miranda A, Relvas-Santos M, Freitas R, Veth TS, Brandão A, Ferreira E, Paulo P, Cardoso M, Gaiteiro C, Cotton S, Soares J, Lima L, Teixeira F, Ferreira R, Palmeira C, Heck AJ, Oliveira MJ, Silva AM, Santos LL, Ferreira JA. Multilevel plasticity and altered glycosylation drive aggressiveness in hypoxic and glucose-deprived bladder cancer cells. iScience 2025; 28:111758. [PMID: 39906564 PMCID: PMC11791300 DOI: 10.1016/j.isci.2025.111758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/04/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Bladder tumors with aggressive characteristics often present microenvironmental niches marked by low oxygen levels (hypoxia) and limited glucose supply due to inadequate vascularization. The molecular mechanisms facilitating cellular adaptation to these stimuli remain largely elusive. Employing a multi-omics approach, we discovered that hypoxic and glucose-deprived cancer cells enter a quiescent state supported by mitophagy, fatty acid β-oxidation, and amino acid catabolism, concurrently enhancing their invasive capabilities. Reoxygenation and glucose restoration efficiently reversed cell quiescence without affecting cellular viability, highlighting significant molecular plasticity in adapting to microenvironmental challenges. Furthermore, cancer cells exhibited substantial perturbation of protein O-glycosylation, leading to simplified glycophenotypes with shorter glycosidic chains. Exploiting glycoengineered cell models, we established that immature glycosylation contributes to reduced cell proliferation and increased invasion. Our findings collectively indicate that hypoxia and glucose deprivation trigger cancer aggressiveness, reflecting an adaptive escape mechanism underpinned by altered metabolism and protein glycosylation, providing grounds for clinical intervention.
Collapse
Affiliation(s)
- Andreia Peixoto
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Dylan Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Andreia Miranda
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Marta Relvas-Santos
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rui Freitas
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Tim S. Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
- Netherlands Proteomics Center, Padualaan, Utrecht, the Netherlands
| | - Andreia Brandão
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Eduardo Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Paula Paulo
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Marta Cardoso
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Cristiana Gaiteiro
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Sofia Cotton
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Janine Soares
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Luís Lima
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | | | - Rita Ferreira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlos Palmeira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- Department of Immunology, Portuguese Oncology Institute of Porto, Porto, Portugal
- Health School of University Fernando Pessoa, Porto, Portugal
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
- Netherlands Proteomics Center, Padualaan, Utrecht, the Netherlands
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - André M.N. Silva
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- Health School of University Fernando Pessoa, Porto, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - José Alexandre Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Kamra M, Chen YI, Delgado P, Seeley E, Seidlits S, Yeh HC, Brock A, Parekh SH. Ketomimetic Nutrients Trigger a Dual Metabolic Defense in Breast Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601966. [PMID: 39005423 PMCID: PMC11244981 DOI: 10.1101/2024.07.03.601966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
While the triggers for the metastatic transformation of breast cancer (BC) cells remain unknown, recent evidence suggests that intrinsic cellular metabolism could be a crucial driver of migratory disposition and chemoresistance. Aiming to decode the molecular mechanisms involved in BC cell metabolic maneuvering, we study how a ketomimetic (ketone body rich, low glucose) medium affects Doxorubicin (DOX) susceptibility and invasive disposition of BC cells. We quantified glycocalyx sialylation and found an inverse correlation with DOX-induced cytotoxicity and DOX internalization. These measurements were coupled with single-cell metabolic imaging, bulk migration studies, along with transcriptomic and metabolomic analyses. Our findings revealed that a ketomimetic medium enhances chemoresistance and invasive disposition of BC cells via two main oncogenic pathways: hypersialylation and lipid synthesis. We propose that the crosstalk between these pathways, juxtaposed at the synthesis of the glycan precursor UDP-GlcNAc, furthers advancement of a metastatic phenotype in BC cells under ketomimetic conditions.
Collapse
|
7
|
Suntiparpluacha M, Chanthercrob J, Sa-nguanraksa D, Sitthikornpaiboon J, Chaiboonchoe A, Kueanjinda P, Jinawath N, Sampattavanich S. Retrospective study of transcriptomic profiling identifies Thai triple-negative breast cancer patients who may benefit from immune checkpoint and PARP inhibitors. PeerJ 2023; 11:e15350. [PMID: 37334114 PMCID: PMC10269579 DOI: 10.7717/peerj.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/13/2023] [Indexed: 06/20/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a rare and aggressive breast cancer subtype. Unlike the estrogen receptor-positive subtype, whose recurrence risk can be predicted by gene expression-based signature, TNBC is more heterogeneous, with diverse drug sensitivity levels to standard regimens. This study explored the benefit of gene expression-based profiling for classifying the molecular subtypes of Thai TNBC patients. Methods The nCounter-based Breast 360 gene expression was used to classify Thai TNBC retrospective cohort subgroups. Their expression profiles were then compared against the previously established TNBC classification system. The differential characteristics of the tumor microenvironment and DNA damage repair signatures across subgroups were also explored. Results Thai TNBC cohort could be classified into four main subgroups, corresponding to the LAR, BL-2, and M subtypes based on Lehmann's TNBC classification. The PAM50 gene set classified most samples as basal-like subtypes except for Group 1. Group 1 exhibited similar enrichment of the metabolic and hormone response pathways to the LAR subtype. Group 2 shared pathway activation with the BL-2 subtype. Group 3 showed an increase in the EMT pathway, similar to the M subtype. Group 4 showed no correlation with Lehmann's TNBC. The tumor microenvironment (TME) analysis showed high TME cell abundance with increased expression of immune blockade genes in Group 2. Group 4 exhibited low TME cell abundance and reduced immune blockade gene expressions. We also observed distinct signatures of the DNA double-strand break repair genes in Group 1. Conclusions Our study reported unique characteristics between the four TNBC subgroups and showed the potential use of immune checkpoint and PARP inhibitors in subsets of Thai TNBC patients. Our findings warrant further clinical investigation to validate TNBC's sensitivity to these regimens.
Collapse
Affiliation(s)
- Monthira Suntiparpluacha
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jantappapa Chanthercrob
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Doonyapat Sa-nguanraksa
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Juthamas Sitthikornpaiboon
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Leong SK, Hsiao JC, Shie JJ. A Multiscale Molecular Dynamic Analysis Reveals the Effect of Sialylation on EGFR Clustering in a CRISPR/Cas9-Derived Model. Int J Mol Sci 2022; 23:ijms23158754. [PMID: 35955894 PMCID: PMC9368999 DOI: 10.3390/ijms23158754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial and viral pathogens can modulate the glycosylation of key host proteins to facilitate pathogenesis by using various glycosidases, particularly sialidases. Epidermal growth factor receptor (EGFR) signaling is activated by ligand-induced receptor dimerization and oligomerization. Ligand binding induces conformational changes in EGFR, leading to clusters and aggregation. However, information on the relevance of EGFR clustering in the pattern of glycosylation during bacterial and viral invasion remains unclear. In this study, (1) we established CRISPR/Cas9-mediated GFP knock-in (EGFP-KI) HeLa cells expressing fluorescently tagged EGFR at close to endogenous levels to study EGF-induced EGFR clustering and molecular dynamics; (2) We studied the effect of sialylation on EGF-induced EGFR clustering and localization in live cells using a high content analysis platform and raster image correlation spectroscopy (RICS) coupled with a number and brightness (N&B) analysis; (3) Our data reveal that the removal of cell surface sialic acids by sialidase treatment significantly decreases EGF receptor clustering with reduced fluorescence intensity, number, and area of EGFR-GFP clusters per cell upon EGF stimulation. Sialylation appears to mediate EGF-induced EGFR clustering as demonstrated by the change of EGFR-GFP clusters in the diffusion coefficient and molecular brightness, providing new insights into the role of sialylation in EGF-induced EGFR activation; and (4) We envision that the combination of CRISPR/Cas9-mediated fluorescent tagging of endogenous proteins and fluorescence imaging techniques can be the method of choice for studying the molecular dynamics and interactions of proteins in live cells.
Collapse
Affiliation(s)
- Shwee Khuan Leong
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science & Technology (SCST), Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30050, Taiwan
| | - Jye-Chian Hsiao
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Doostkam A, Malekmakan L, Hosseinpour A, Janfeshan S, Roozbeh J, Masjedi F. Sialic acid: an attractive biomarker with promising biomedical applications. ASIAN BIOMED 2022; 16:153-167. [PMID: 37551166 PMCID: PMC10321195 DOI: 10.2478/abm-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This broad, narrative review highlights the roles of sialic acids as acidic sugars found on cellular membranes. The role of sialic acids in cellular communication and development has been well established. Recently, attention has turned to the fundamental role of sialic acids in many diseases, including viral infections, cardiovascular diseases, neurological disorders, diabetic nephropathy, and malignancies. Sialic acid may be a target for developing new drugs to treat various cancers and inflammatory processes. We recommend the routine measurement of serum sialic acid as a sensitive inflammatory marker in various diseases.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Leila Malekmakan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Alireza Hosseinpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz7134853185, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| |
Collapse
|
10
|
Soukhtehzari S, Berish RB, Fazli L, Watson PH, Williams KC. The different prognostic significance of polysialic acid and CD56 expression in tumor cells and lymphocytes identified in breast cancer. NPJ Breast Cancer 2022; 8:78. [PMID: 35780131 PMCID: PMC9250520 DOI: 10.1038/s41523-022-00442-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Protein glycosylation, the attachment of carbohydrates onto proteins, is a fundamental process that alters the biological activity of proteins. Changes to glycosylation states are associated with many forms of cancer including breast cancer. Through immunohistological analysis of breast cancer patient tumors, we have discovered the expression of an atypical glycan-polysialic acid (polySia)-in breast cancer. Notably, we have identified polySia expression in not only tumor cells but also on tumor-infiltrating lymphocytes (TILs) and our study reveals ST8Sia4 as the predominant polysialyltransferase expressed. Evaluation of ST8Sia4 expression in tumor cells identified an association between high expression levels and poor patient outcomes whereas ST8Sia4 expression in infiltrating stromal cells was associated with good patient outcomes. Investigation into CD56, a protein known to be polysialylated, found CD56 and polySia expression on breast tumor cells and TILs. CD56 expression did not positively correlate with polySia expression except in patient tumors which expressed HER2. In these HER2 expressing tumors, CD56 expression was significantly associated with HER2 expression score. Evaluation of CD56 tumor cell expression identified a significant association between CD56 expression and poor patient outcomes. By contrast, CD56 expression on TILs was significantly associated with good clinical outcomes. Tumors with CD56+ TILs were also consistently polySia TIL positive. Interestingly, in tumors where TILs were CD56 low-to-negative, a polySia+ lymphocyte population was still identified and the presence of these lymphocytes was a poor prognostic indicator. Overall, this study provides the first detailed report of polySia and CD56 in breast cancer and demonstrates that the prognostic significance is dependent on the cell type expression within the tumor.
Collapse
Affiliation(s)
- Sepideh Soukhtehzari
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Richard B Berish
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ladan Fazli
- Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, V6H 3Z6, BC, Canada
| | - Peter H Watson
- Deeley Research Centre, BC Cancer Agency, Vancouver Island Centre, University of British Columbia, 2410 Lee Avenue, Victoria, BC, V8R 6V5, Canada
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
11
|
Li M, Huang J, Ma M, Shi X, Li L. Selective Enrichment of Sialylglycopeptides Enabled by Click Chemistry and Dynamic Covalent Exchange. Anal Chem 2022; 94:6681-6688. [PMID: 35467842 DOI: 10.1021/acs.analchem.1c05158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite the important roles of protein sialylation in biological processes such as cellular interaction and cancer progression, simple and effective methods for the analysis of intact sialylglycopeptides (SGPs) are still limited. Analyses of low-abundance SGPs typically require efficient enrichment prior to comprehensive liquid chromatography-mass spectrometry (LC-MS)-based analysis. Here, a novel workflow combining mild periodate oxidation, hydrazide chemistry, copper-catalyzed azide/alkyne cycloaddition (CuAAC) click chemistry, and dynamic covalent exchange has been developed for selective enrichment of SGPs. The intact SGPs could be separated easily from protein tryptic digests, and the signature ions were produced during LC-MS/MS for unambiguous identification. The structure of the signature ions and corresponding dynamic covalent exchange were confirmed by using an isotopic reagent. Under the optimized condition, over 70% enrichment efficiency of SGPs was achieved using bovine fetuin digests, and the method was successfully applied to complex biological samples, such as a mouse lung tissue extract. The high enrichment efficiency, good reproducibility, and easily adopted procedure without the need to generate specialized materials make this method a promising tool for broad applications in SGP analysis.
Collapse
Affiliation(s)
- Miyang Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Xudong Shi
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| |
Collapse
|
12
|
Saraswat M, Mangalaparthi KK, Garapati K, Pandey A. TMT-Based Multiplexed Quantitation of N-Glycopeptides Reveals Glycoproteome Remodeling Induced by Oncogenic Mutations. ACS OMEGA 2022; 7:11023-11032. [PMID: 35415375 PMCID: PMC8991921 DOI: 10.1021/acsomega.1c06970] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Glycoproteomics, or the simultaneous characterization of glycans and their attached peptides, is increasingly being employed to generate catalogs of glycopeptides on a large scale. Nevertheless, quantitative glycoproteomics remains challenging even though isobaric tagging reagents such as tandem mass tags (TMT) are routinely used for quantitative proteomics. Here, we present a workflow that combines the enrichment or fractionation of TMT-labeled glycopeptides with size-exclusion chromatography (SEC) for an in-depth and quantitative analysis of the glycoproteome. We applied this workflow to study the cellular glycoproteome of an isogenic mammary epithelial cell system that recapitulated oncogenic mutations in the PIK3CA gene, which codes for the phosphatidylinositol-3-kinase catalytic subunit. As compared to the parental cells, cells with mutations in exon 9 (E545K) or exon 20 (H1047R) of the PIK3CA gene exhibited site-specific glycosylation alterations in 464 of the 1999 glycopeptides quantified. Our strategy led to the discovery of site-specific glycosylation changes in PIK3CA mutant cells in several important receptors, including cell adhesion proteins such as integrin β-6 and CD166. This study demonstrates that the SEC-based enrichment of glycopeptides is a simple and robust method with minimal sample processing that can easily be coupled with TMT-labeling for the global quantitation of glycopeptides.
Collapse
Affiliation(s)
- Mayank Saraswat
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
- Institute
of Bioinformatics, International
Technology Park, Bangalore, Karnataka 560066, India
- Manipal
Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Kiran Kumar Mangalaparthi
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
| | - Kishore Garapati
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
- Institute
of Bioinformatics, International
Technology Park, Bangalore, Karnataka 560066, India
- Manipal
Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
- Center
for Molecular Medicine, National Institute
of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka 560029, India
| | - Akhilesh Pandey
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
- Institute
of Bioinformatics, International
Technology Park, Bangalore, Karnataka 560066, India
- Manipal
Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
- Center
for Molecular Medicine, National Institute
of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka 560029, India
- Center
for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
13
|
van Houtum EJH, Büll C, Cornelissen LAM, Adema GJ. Siglec Signaling in the Tumor Microenvironment. Front Immunol 2021; 12:790317. [PMID: 34966391 PMCID: PMC8710542 DOI: 10.3389/fimmu.2021.790317] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors that recognize sialoglycans - sialic acid containing glycans that are abundantly present on cell membranes. Siglecs are expressed on most immune cells and can modulate their activity and function. The majority of Siglecs contains immune inhibitory motifs comparable to the immune checkpoint receptor PD-1. In the tumor microenvironment (TME), signaling through the Siglec-sialoglycan axis appears to be enhanced through multiple mechanisms favoring tumor immune evasion similar to the PD-1/PD-L1 signaling pathway. Siglec expression on tumor-infiltrating immune cells appears increased in the immune suppressive microenvironment. At the same time, enhanced Siglec ligand expression has been reported for several tumor types as a result of aberrant glycosylation, glycan modifications, and the increased expression of sialoglycans on proteins and lipids. Siglec signaling has been identified as important regulator of anti-tumor immunity in the TME, but the key factors contributing to Siglec activation by tumor-associated sialoglycans are diverse and poorly defined. Among others, Siglec activation and signaling are co-determined by their expression levels, cell surface distribution, and their binding preferences for cis- and trans-ligands in the TME. Siglec binding preference are co-determined by the nature of the proteins/lipids to which the sialoglycans are attached and the multivalency of the interaction. Here, we review the current understanding and emerging conditions and factors involved in Siglec signaling in the TME and identify current knowledge gaps that exist in the field.
Collapse
Affiliation(s)
- Eline J. H. van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Büll
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lenneke A. M. Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
14
|
Chiu KY, Wang Q, Gunawardena HP, Held M, Faik A, Chen H. Desalting Paper Spay Mass Spectrometry (DPS-MS) for Rapid Detection of Glycans and Glycoconjugates. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 469:116688. [PMID: 35386843 PMCID: PMC8981528 DOI: 10.1016/j.ijms.2021.116688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The detection of glycans and glycoconjugates has gained increasing attention in biological fields. Traditional mass spectrometry (MS)-based methods for glycoconjugate analysis are challenged with poor intensity when dealing with complex biological samples. We developed a desalting paper spray mass spectrometry (DPS-MS) strategy to overcome the issue of signal suppression of carbohydrates in salted buffer. Glycans and glycoconjugates (i.e., glycopeptides, nucleotide sugars, etc.) in non-volatile buffer (e.g., Tris buffer) can be loaded on the paper substrate from which buffers can be removed by washing with ACN/H2O (90/10 v/v) solution. Glycans or glycoconjugates can then be eluted and spray ionized by adding ACN/H2O/formic acid (FA) (10/90/1 v/v/v) solvent and applying a high voltage (HV) to the paper substrate. This work also showed that DPS-MS is applicable for direct detection of intact glycopeptides and nucleotide sugars as well as determination of glycosylation profiling of antibody, such as NIST monoclonal antibody IgG (NISTmAb). NISTmAb was deglycosylated with PNGase F to release N-linked oligosaccharides. Twenty-six N-linked oligosaccharides were detected by DPS-MS within a 5-minute timeframe without the need for further enrichment or derivatization. This work demonstrates that DPS-MS allows fast and sensitive detection of glycans/oligosaccharides and glycosylated species in complex matrices and has great potential in bioanalysis.
Collapse
Affiliation(s)
- Kai-Yuan Chiu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| | - Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA, 19477
| | - Michael Held
- Deparment of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio USA, 45701
| | - Ahmed Faik
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio USA, 45701
- Department of Environmental and Plant Biology, Ohio University, Athens Ohio, USA, 45701
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| |
Collapse
|
15
|
Scherpenzeel M, Conte F, Büll C, Ashikov A, Hermans E, Willems A, Tol W, Kragt E, Noga M, Moret EE, Heise T, Langereis JD, Rossing E, Zimmermann M, Rubio-Gozalbo ME, de Jonge MI, Adema GJ, Zamboni N, Boltje T, Lefeber DJ. Dynamic tracing of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs. Glycobiology 2021; 32:239-250. [PMID: 34939087 PMCID: PMC8966471 DOI: 10.1093/glycob/cwab106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/14/2022] Open
Abstract
Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair ultrahigh performance liquid chromatography–triple quadrupole mass spectrometry mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc)-labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 h. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.
Collapse
Affiliation(s)
- Monique Scherpenzeel
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,GlycoMScan B.V., Kloosterstraat 9, RE0329, 5349 AB Oss, The Netherlands
| | - Federica Conte
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Christian Büll
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Angel Ashikov
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Esther Hermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Anke Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Walinka Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Else Kragt
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Marek Noga
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Ed E Moret
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Torben Heise
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Emiel Rossing
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | | | - M Estela Rubio-Gozalbo
- Department of Clinical Genetics, department of Pediatrics, Maastricht University Medical Centre, Universiteitssingel 50, P.O. Box 616, box 16, 6200 MD, Maastricht, The Netherlands
| | - Marien I de Jonge
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Thomas Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Wolf J, Dong C, O'Day EM. Metabolite Biomarkers of Response (BoRs): Towards a fingerprint for the evolution of metastatic breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:8-18. [PMID: 34419530 DOI: 10.1016/j.pbiomolbio.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Breast cancer is the most common cancer in women worldwide and despite improved treatment strategies, it persists as the second leading cause of death of women globally. Overall prognosis drops drastically once the cancer has metastasized, which is also associated with resistance to therapy. The evolution from a localized breast cancer to metastatic disease is complex and multifactorial. Metabolic reprogramming is a pre-requisite for this transition. In this graphical review, we provide an overview of altered metabolic pathways observed in metastatic breast cancer (mBC) and detail how metabolite biomarkers could serve as a novel class of precision medicine tools to improve the diagnosis, monitoring, and treatment of mBC.
Collapse
Affiliation(s)
| | - Chen Dong
- Olaris, Inc, Waltham, MA, 02451, USA
| | | |
Collapse
|
17
|
Fuehrer J, Pichler KM, Fischer A, Giurea A, Weinmann D, Altmann F, Windhager R, Gabius H, Toegel S. N-Glycan profiling of chondrocytes and fibroblast-like synoviocytes: Towards functional glycomics in osteoarthritis. Proteomics Clin Appl 2021; 15:e2000057. [PMID: 33580901 PMCID: PMC8548877 DOI: 10.1002/prca.202000057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE N-Glycan profiling provides an indicator of the cellular potential for functional pairing with tissue lectins. Following the discovery of galectin expression by chondrocytes as a factor in osteoarthritis pathobiology, mapping of N-glycans upon their phenotypic dedifferentiation in culture and in fibroblast-like synoviocytes is a step to better understand glycobiological contributions to disease progression. EXPERIMENTAL DESIGN The profiles of cellular N-glycans of human osteoarthritic chondrocytes and fibroblast-like synoviocytes were characterized by mass spectrometry. RT-qPCR experiments determined mRNA levels of 16 glycosyltransferases. Responsiveness of cells to galectins was quantified by measuring the mRNA level for interleukin-1β. RESULTS The shift of chondrocytes to a fibroblastic phenotype (dedifferentiation) is associated with changes in N-glycosylation. The N-glycan profile of chondrocytes at passage 4 reflects characteristics of synoviocytes. Galectins-1 and -3 enhance expression of interleukin-1β mRNA in both cell types, most pronounced in primary culture. Presence of interleukin-1β leads to changes in sialylation in synoviocytes that favor galectin binding. CONCLUSIONS AND CLINICAL RELEVANCE N-Glycosylation reflects phenotypic changes of osteoarthritic cells in vitro. Like chondrocytes, fibroblast-like synoviocytes express N-glycans that are suited to bind galectins, and these proteins serve as inducers of pro-inflammatory markers in these cells. Synoviocytes can thus contribute to disease progression in osteoarthritis in situ.
Collapse
Affiliation(s)
- Johannes Fuehrer
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Katharina M. Pichler
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Anita Fischer
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Arthritis and RehabilitationViennaAustria
| | - Alexander Giurea
- Department of Orthopedics and Trauma SurgeryDivision of OrthopedicsMedical University of ViennaViennaAustria
| | - Daniela Weinmann
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Friedrich Altmann
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Department of Orthopedics and Trauma SurgeryDivision of OrthopedicsMedical University of ViennaViennaAustria
| | - Hans‐Joachim Gabius
- Faculty of Veterinary MedicineInstitute of Physiological ChemistryLudwig‐Maximilians University MunichMunichGermany
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Arthritis and RehabilitationViennaAustria
| |
Collapse
|
18
|
Lee DH, Kang SH, Choi DS, Ko M, Choi E, Ahn H, Min H, Oh SJ, Lee MS, Park Y, Jin HS. Genome wide CRISPR screening reveals a role for sialylation in the tumorigenesis and chemoresistance of acute myeloid leukemia cells. Cancer Lett 2021; 510:37-47. [PMID: 33872695 DOI: 10.1016/j.canlet.2021.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Aberrant activation of cytokine and growth factor signal transduction pathways confers enhanced survival and proliferation properties to acute myeloid leukemia (AML) cells. However, the mechanisms underlying the deregulation of signaling pathways in leukemia cells are unclear. To identify genes capable of independently supporting cytokine-independent growth, we employed a genome-wide CRISPR/Cas9-mediated loss-of-function screen in GM-CSF-dependent human AML TF-1 cells. More than 182 genes (p < 0.01) were found to suppress the cytokine-independent growth of TF-1 cells. Among the top hits, genes encoding key factors involved in sialylation biosynthesis were identified; these included CMAS, SLC35A1, NANS, and GNE. Knockout of either CMAS or SLC35A1 enabled cytokine-independent proliferation and survival of AML cells. Furthermore, NSG (NOD/SCID/IL2Rγ-/-) mice injected with CMAS or SLC35A1-knockout TF-1 cells exhibited a shorter survival than mice injected with wild-type cells. Mechanistically, abrogation of sialylation biosynthesis in TF-1 cells induced a strong activation of ERK signaling, which sensitized cells to MEK inhibitors but conferred resistance to JAK inhibitors. Further, the surface level of α2,3-linked sialic acids was negatively correlated with the sensitivity of AML cell lines to MEK/ERK inhibitors. We also found that sialylation modulated the expression and stability of the CSF2 receptor. Together, these results demonstrate a novel role of sialylation in regulating oncogenic transformation and drug resistance development in leukemia. We propose that altered sialylation could serve as a biomarker for targeted anti-leukemic therapy.
Collapse
Affiliation(s)
- Dong-Hee Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong-Ho Kang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Da-Som Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minkyung Ko
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Eunji Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyejin Ahn
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Soo Jin Oh
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Myeong Sup Lee
- Laboratory of Molecular Immunology and Medicine, Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Yoon Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
19
|
Läubli H, Kawanishi K, George Vazhappilly C, Matar R, Merheb M, Sarwar Siddiqui S. Tools to study and target the Siglec-sialic acid axis in cancer. FEBS J 2020; 288:6206-6225. [PMID: 33251699 DOI: 10.1111/febs.15647] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
Siglecs are widely expressed on leucocytes and bind to ubiquitously presented glycans containing sialic acids (sialoglycans). Most Siglecs carry an immunoreceptor tyrosine-based inhibition motif (ITIM) and elicit an inhibitory intracellular signal upon ligand binding. A few Siglec receptors can, however, recruit immunoreceptor tyrosine-based activation motif (ITAM)-containing factors, which activate cells. The role of hypersialylation (the enhanced expression of sialoglycans) has recently been explored in cancer progression. Mechanistic studies have shown that hypersialylation on cancer cells can engage inhibitory Siglecs on the surface of immune cells and induce immunosuppression. These recent studies strongly suggest that the Siglec-sialic acid axis can act as a potential target for cancer immunotherapy. Moreover, the use of new tools and techniques is facilitating these studies. In this review, we summarise techniques used to study Siglecs, including different mouse models, monoclonal antibodies, Siglec fusion proteins, and sialoglycan arrays. Furthermore, we discuss the recent major developments in the study of Siglecs in cancer immunosuppression, tools, and techniques used in targeting the Siglec-sialic acid axis and the possibility of clinical intervention.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, and Medical Oncology, Department of Internal Medicine, University Hospital Basel, Switzerland
| | - Kunio Kawanishi
- Kidney and Vascular Pathology, University of Tsukuba, Ibaraki, Japan
| | | | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | | |
Collapse
|
20
|
Progress in research into the role of abnormal glycosylation modification in tumor immunity. Immunol Lett 2020; 229:8-17. [PMID: 33186635 DOI: 10.1016/j.imlet.2020.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/25/2020] [Accepted: 11/07/2020] [Indexed: 12/22/2022]
Abstract
In abnormal glycosylation, molecules of glucose or other carbohydrates in living organisms are inappropriately attached to proteins, which causes protein denaturation. Abnormal glycosylation modification is known to directly or indirectly affect the tumor escape process, but very few studies have been performed on whether protein glycosylation changes the structure and function of immune cells and immune molecules and thereby regulates the occurrence and development of tumor escape. Therefore, this article summarizes the effect of the immune system on tumor escape in association with the abnormal glycosylation process from an immunological perspective.
Collapse
|
21
|
Campesato LF, Weng CH, Merghoub T. Innate immune checkpoints for cancer immunotherapy: expanding the scope of non T cell targets. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1031. [PMID: 32953831 PMCID: PMC7475486 DOI: 10.21037/atm-20-1816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Luis F Campesato
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chien-Huan Weng
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
22
|
van de Wall S, Santegoets KC, van Houtum EJ, Büll C, Adema GJ. Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment. Trends Immunol 2020; 41:274-285. [DOI: 10.1016/j.it.2020.02.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
|
23
|
Advances in molecular mechanisms of drugs affecting abnormal glycosylation and metastasis of breast cancer. Pharmacol Res 2020; 155:104738. [PMID: 32151681 DOI: 10.1016/j.phrs.2020.104738] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
Abstract
Breast cancer remains the leading cause of cancer-related death among women worldwide, and its incidence is also increasing. High recurrence rate and metastasis rate are the key causes of poor prognosis and death. It is suggested that abnormal glycosylation plays an important role in the growth, invasion, metastasis and resistance to therapy of breast cancer cells. Meanwhile, it can be used as the biomarkers for the early detection and prognosis of breast cancer and the potential attractive targets for drug treatment. However, only a few attentions have been paid to the molecular mechanism of abnormal glycosylation in the epithelial-mesenchymal transition (EMT) of breast cancer cells and the related intervention of drugs. This manuscript thus investigated the relationship between abnormal glycosylation, the EMT, and breast cancer metastasis. Then, the process of abnormal glycosylation, the classification and their molecular regulatory mechanisms of breast cancer were analyzed in detail. Last, potential drugs are introduced in different categories, which are expected to reverse or intervene the abnormal glycosylation of breast cancer. This review is conducive to an in-depth understanding of the metastasis and drug resistance of breast cancer cells, which will provide new ideas for the clinical regulation of glycosylation and related drug treatments in breast cancer.
Collapse
|
24
|
Moons SJ, Adema GJ, Derks MT, Boltje TJ, Büll C. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology 2020; 29:433-445. [PMID: 30913290 DOI: 10.1093/glycob/cwz026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sialic acids cap the glycans of cell surface glycoproteins and glycolipids. They are involved in a multitude of biological processes and aberrant sialic acid expression is associated with several pathologies. Sialic acids modulate the characteristics and functions of glycoproteins and regulate cell-cell as well as cell-extracellular matrix interactions. Pathogens such as influenza virus use sialic acids to infect host cells and cancer cells exploit sialic acids to escape from the host's immune system. The introduction of unnatural sialic acids with different functionalities into surface glycans enables the study of the broad biological functions of these sugars and presents a therapeutic option to intervene with pathological processes involving sialic acids. Multiple chemically modified sialic acid analogs can be directly utilized by cells for sialoglycan synthesis. Alternatively, analogs of the natural sialic acid precursor sugar N-Acetylmannosamine (ManNAc) can be introduced into the sialic acid biosynthesis pathway resulting in the intracellular conversion into the corresponding sialic acid analog. Both, ManNAc and sialic acid analogs, have been employed successfully for a large variety of glycoengineering applications such as glycan imaging, targeting toxins to tumor cells, inhibiting pathogen binding, or altering immune cell activity. However, there are significant differences between ManNAc and sialic acid analogs with respect to their chemical modification potential and cellular metabolism that should be considered in sialic acid glycoengineering experiments.
Collapse
Affiliation(s)
- Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Max Tgm Derks
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| |
Collapse
|
25
|
O'Day EM, Idos GE, Hill C, Chen JW, Wagner G. Cytidine monophosphate N-acetylneuraminic acid synthetase enhances invasion of human triple-negative breast cancer cells. Onco Targets Ther 2018; 11:6827-6838. [PMID: 30349315 PMCID: PMC6188205 DOI: 10.2147/ott.s177639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Cancer cells have altered bioenergetics, which contributes to their ability to proliferate, survive in unusual microenvironments, and invade other tissues. Changes in glucose metabolism can have pleomorphic effects on tumor cells. Methods To investigate potential mechanisms responsible for the increased malignancy associated with altered glucose metabolism, we used an unbiased nuclear magnetic resonance spectroscopy screening method to identify glucose metabolites differentially produced in a highly malignant human triple-negative breast cancer (TNBC) cell line (BPLER) and a less malignant isogenic TNBC cell line (HMLER). Results N-acetylneuraminic acid (Neu5Ac), the predominant sialic acid derivative in mammalian cells, which forms the terminal sugar on mucinous cell surface glycoproteins, was the major glucose metabolite that differed. Neu5Ac was ~7-fold more abundant in BPLER than HMLER. Loss of Neu5Ac by enzymatic removal or siRNA knockdown of cytidine monophosphate N-acetylneuraminic acid synthetase (CMAS), which activates cellular sialic acids for glycoprotein conjugation, had no significant effect on cell proliferation, but decreased the ability of BPLER to invade through a basement membrane. Conversely, overexpressing CMAS in HMLER increased invasivity. TNBCs in The Cancer Genome Atlas also had significantly more CMAS copy number variations and higher mRNA expression than non-TNBC, which have a better prognosis. CMAS knockdown in BPLER ex vivo blocked xenograft formation in mice. Conclusion Neu5Ac is selectively highly enriched in aggressive TNBC, and CMAS, the enzyme required for sialylation, may play an important role in TNBC tumor formation and invasivity.
Collapse
Affiliation(s)
- Elizabeth M O'Day
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA, .,Olaris Therapeutics, Cambridge, MA 02138, USA
| | - Greg E Idos
- Division of Gastroenterology and Liver Disease, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | | | - Joan W Chen
- Rancho Biosciences, San Diego, CA 92127, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA,
| |
Collapse
|
26
|
Rodrigues E, Macauley MS. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers (Basel) 2018; 10:cancers10060207. [PMID: 29912148 PMCID: PMC6025361 DOI: 10.3390/cancers10060207] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Cell surface glycosylation is dynamic and often changes in response to cellular differentiation under physiological or pathophysiological conditions. Altered glycosylation on cancers cells is gaining attention due its wide-spread occurrence across a variety of cancer types and recent studies that have documented functional roles for aberrant glycosylation in driving cancer progression at various stages. One change in glycosylation that can correlate with cancer stage and disease prognosis is hypersialylation. Increased levels of sialic acid are pervasive in cancer and a growing body of evidence demonstrates how hypersialylation is advantageous to cancer cells, particularly from the perspective of modulating immune cell responses. Sialic acid-binding receptors, such as Siglecs and Selectins, are well-positioned to be exploited by cancer hypersialylation. Evidence is also mounting that Siglecs modulate key immune cell types in the tumor microenvironment, particularly those responsible for maintaining the appropriate inflammatory environment. From these studies have come new and innovative ways to block the effects of hypersialylation by directly reducing sialic acid on cancer cells or blocking interactions between sialic acid and Siglecs or Selectins. Here we review recent works examining how cancer cells become hypersialylated, how hypersialylation benefits cancer cells and tumors, and proposed therapies to abrogate hypersialylation of cancer.
Collapse
Affiliation(s)
- Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
27
|
Teoh ST, Ogrodzinski MP, Ross C, Hunter KW, Lunt SY. Sialic Acid Metabolism: A Key Player in Breast Cancer Metastasis Revealed by Metabolomics. Front Oncol 2018; 8:174. [PMID: 29892572 PMCID: PMC5985449 DOI: 10.3389/fonc.2018.00174] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 11/13/2022] Open
Abstract
Metastatic breast cancer is currently incurable. It has recently emerged that different metabolic pathways support metastatic breast cancer. To further uncover metabolic pathways enabling breast cancer metastasis, we investigated metabolic differences in mouse tumors of differing metastatic propensities using mass spectrometry-based metabolomics. We found that sialic acid metabolism is upregulated in highly metastatic breast tumors. Knocking out a key gene in sialic acid metabolism, Cmas, inhibits synthesis of the activated form of sialic acid, cytidine monophosphate-sialic acid and decreases the formation of lung metastases in vivo. Thus, the sialic acid pathway may be a new target against metastatic breast cancer.
Collapse
Affiliation(s)
- Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Martin P Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.,Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Christina Ross
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kent W Hunter
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
28
|
Patel A, Tiwari S, Jha PK. Density functional theory based probe of the affinity interaction of saccharide ligands with extra-cellular sialic acid residues. J Biomol Struct Dyn 2018; 37:1545-1554. [PMID: 29624120 DOI: 10.1080/07391102.2018.1461690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changes in glycosylation pattern leads to malignant transformations among the cells. In combination with upregulated actions of sialyltransferases, it ultimately leads to differential expression of sialic acid (SA) at cell surface. Given its negative charge and localization to extracellular domain, SA has been exploited for the development of targeted theranostics using approaches, such as, cationization and appending recognition saccharides on carrier surface. In this study, we have performed quantum mechanical calculations based on density functional theory (DFT) to study the interaction of saccharides with extracellular SA. Gradient-corrected DFT with the three parameter function (B3) was utilized for the calculation of Lee-Yang-Parr (LYP) correlation function. Atomic charge, vibrational frequencies and energy of the optimized structures were calculated through B3LYP. Our calculations demonstrate a stronger galactose-sialic acid interaction at tumour-relevant low pH and hyperthermic condition. These results support the application of pH responsive delivery vehicles and targeted hyperthermic chemotherapy for eradicating solid tumour deposits. These studies, conducted a priori, can guide the formulation scientists over appropriate choice of ligands and their applications in the design of 'smart' theranostic tools.
Collapse
Key Words
- AChE, Acetylcholine Esterase
- ASDase, aspartate semialdehyde dehydrogenase
- B3LYP, Becke 3-Parameter Lee, Yang and Parr
- BACE1, Beta-secretase 1
- BSSE, basis set superposition error
- CK2, casein kinase 2
- CMAS, cytidine monophosphate N-acetylneuraminic acid synthase
- DFT, density functional theory
- EcPLA, Echis carinatus Phospholipase A
- FF, fukui function
- GSK3β, glycogen synthase kinase 3β
- Gal, galactose
- HLG, HOMO-LUMO gap
- HOMO, highest occupied molecular orbital
- LUMO, lowest unoccupied molecular orbital
- MEP, molecular electrostatic potential
- Man, mannose
- NBO, natural bond orbital
- NC, nanocarriers.
- PBA, phenylboronic acid
- SA, sialic acid
- cancer
- density functional theory
- hypersialylation
- recognition saccharides
- targeted theranostics
Collapse
Affiliation(s)
- Anjali Patel
- a Department of Physics, Faculty of Science , The Maharaja Sayajirao University of Baroda , Vadodara - 390 002 , India
| | - Sanjay Tiwari
- b Maliba Pharmacy College , UKA Tarsadia University, Gopal-Vidyanagar Campus , Surat , 394350 , India
| | - Prafulla K Jha
- a Department of Physics, Faculty of Science , The Maharaja Sayajirao University of Baroda , Vadodara - 390 002 , India
| |
Collapse
|
29
|
Chin-Hun Kuo J, Gandhi JG, Zia RN, Paszek MJ. Physical biology of the cancer cell glycocalyx. NATURE PHYSICS 2018; 14:658-669. [PMID: 33859716 PMCID: PMC8046174 DOI: 10.1038/s41567-018-0186-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The glycocalyx coating the outside of most cells is a polymer meshwork comprising proteins and complex sugar chains called glycans. From a physical perspective, the glycocalyx has long been considered a simple 'slime' that protects cells from mechanical disruption or against pathogen interactions, but the great complexity of the structure argues for the evolution of more advanced functionality: the glycocalyx serves as the complex physical environment within which cell-surface receptors reside and operate. Recent studies have demonstrated that the glycocalyx can exert thermodynamic and kinetic control over cell signalling by serving as the local medium within which receptors diffuse, assemble and function. The composition and structure of the glycocalyx change markedly with changes in cell state, including transformation. Notably, cancer-specific changes fuel the synthesis of monomeric building blocks and machinery for production of long-chain polymers that alter the physical and chemical structure of the glycocalyx. In this Review, we discuss these changes and their physical consequences on receptor function and emergent cell behaviours.
Collapse
Affiliation(s)
- Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Jay G. Gandhi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Roseanna N. Zia
- Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Matthew J. Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Field of Biophysics, Cornell University, Ithaca, NY, USA
- Correspondence should be addressed to M.J.P.
| |
Collapse
|
30
|
Anderson KE, To M, Olzmann JA, Nomura DK. Chemoproteomics-Enabled Covalent Ligand Screening Reveals a Thioredoxin-Caspase 3 Interaction Disruptor That Impairs Breast Cancer Pathogenicity. ACS Chem Biol 2017; 12:2522-2528. [PMID: 28892616 PMCID: PMC6205226 DOI: 10.1021/acschembio.7b00711] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Covalent ligand discovery is a promising strategy to develop small-molecule effectors against therapeutic targets. Recent studies have shown that dichlorotriazines are promising reactive scaffolds that preferentially react with lysines. Here, we have synthesized a series of dichlorotriazine-based covalent ligands and have screened this library to reveal small molecules that impair triple-negative breast cancer cell survival. Upon identifying a lead hit from this screen KEA1-97, we used activity-based protein profiling (ABPP)-based chemoproteomic platforms to identify that this compound targets lysine 72 of thioredoxin-a site previously shown to be important in protein interactions with caspase 3 to inhibit caspase 3 activity and suppress apoptosis. We show that KEA1-97 disrupts the interaction of thioredoxin with caspase 3, activates caspases, and induces apoptosis without affecting thioredoxin activity. Moreover, KEA1-97 impairs in vivo breast tumor xenograft growth. Our study showcases how the screening of covalent ligands can be coupled with ABPP platforms to identify unique anticancer lead and target pairs.
Collapse
Affiliation(s)
- Kimberly E Anderson
- Departments of Chemistry, Molecular and Cell Biology, and ‡Nutritional Sciences and Toxicology, University of California, Berkeley , Berkeley, California 94720, United States
| | - Milton To
- Departments of Chemistry, Molecular and Cell Biology, and ‡Nutritional Sciences and Toxicology, University of California, Berkeley , Berkeley, California 94720, United States
| | - James A Olzmann
- Departments of Chemistry, Molecular and Cell Biology, and ‡Nutritional Sciences and Toxicology, University of California, Berkeley , Berkeley, California 94720, United States
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and ‡Nutritional Sciences and Toxicology, University of California, Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
31
|
Abeln M, Borst KM, Cajic S, Thiesler H, Kats E, Albers I, Kuhn M, Kaever V, Rapp E, Münster-Kühnel A, Weinhold B. Sialylation Is Dispensable for Early Murine Embryonic Development in Vitro. Chembiochem 2017; 18:1305-1316. [PMID: 28374933 PMCID: PMC5502888 DOI: 10.1002/cbic.201700083] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 12/19/2022]
Abstract
The negatively charged nonulose sialic acid (Sia) is essential for murine development in vivo. In order to elucidate the impact of sialylation on differentiation processes in the absence of maternal influences, we generated mouse embryonic stem cell (mESC) lines that lack CMP‐Sia synthetase (CMAS) and thereby the ability to activate Sia to CMP‐Sia. Loss of CMAS activity resulted in an asialo cell surface accompanied by an increase in glycoconjugates with terminal galactosyl and oligo‐LacNAc residues, as well as intracellular accumulation of free Sia. Remarkably, these changes did not impact intracellular metabolites or the morphology and transcriptome of pluripotent mESC lines. Moreover, the capacity of Cmas−/− mESCs for undirected differentiation into embryoid bodies, germ layer formation and even the generation of beating cardiomyocytes provides first and conclusive evidence that pluripotency and differentiation of mESC in vitro can proceed in the absence of (poly)sialoglycans.
Collapse
Affiliation(s)
- Markus Abeln
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Kristina M Borst
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Elina Kats
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Iris Albers
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Maike Kuhn
- TWINCORE Centre for Experimental and Clinical Infection Research GmbH, A joint venture between Hannover Medical School, Feodor-Lynen-Strasse 7, 30625, Hannover, Germany.,Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany.,glyXera GmbH, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Anja Münster-Kühnel
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Birgit Weinhold
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
32
|
Serine hydroxymethyl transferase 1 stimulates pro-oncogenic cytokine expression through sialic acid to promote ovarian cancer tumor growth and progression. Oncogene 2017; 36:4014-4024. [PMID: 28288142 PMCID: PMC5509519 DOI: 10.1038/onc.2017.37] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
High-grade serous (HGS) ovarian cancer accounts for 90% of all ovarian cancer-related deaths. However, factors that drive HGS ovarian cancer tumor growth have not been fully elucidated. In particular, comprehensive analysis of the metabolic requirements of ovarian cancer tumor growth has not been performed. By analyzing The Cancer Genome Atlas mRNA expression data for HGS ovarian cancer patient samples, we observed that six enzymes of the folic acid metabolic pathway were overexpressed in HGS ovarian cancer samples compared with normal ovary samples. Systematic knockdown of all six genes using short hairpin RNAs (shRNAs) and follow-up functional studies demonstrated that serine hydroxymethyl transferase 1 (SHMT1) was necessary for ovarian cancer tumor growth and cell migration in culture and tumor formation in mice. SHMT1 promoter analysis identified transcription factor Wilms tumor 1 (WT1) binding sites, and WT1 knockdown resulted in reduced SHMT1 transcription in ovarian cancer cells. Unbiased large-scale metabolomic analysis and transcriptome-wide mRNA expression profiling identified reduced levels of several metabolites of the amino sugar and nucleotide sugar metabolic pathways, including sialic acid N-acetylneuraminic acid (Neu5Ac), and downregulation of pro-oncogenic cytokines interleukin-6 and 8 (IL-6 and IL-8) as unexpected outcomes of SHMT1 loss. Overexpression of either IL-6 or IL-8 partially rescued SHMT1 loss-induced tumor growth inhibition and migration. Supplementation of culture medium with Neu5Ac stimulated expression of IL-6 and IL-8 and rescued the tumor growth and migratory phenotypes of ovarian cancer cells expressing SHMT1 shRNAs. In agreement with the ovarian tumor-promoting role of Neu5Ac, treatment with Neu5Ac-targeting glycomimetic P-3Fax-Neu5Ac blocked ovarian cancer growth and migration. Collectively, these results demonstrate that SHMT1 controls the expression of pro-oncogenic inflammatory cytokines by regulating sialic acid Neu5Ac to promote ovarian cancer tumor growth and migration. Thus, targeting of SHMT1 and Neu5Ac represents a precision therapy opportunity for effective HGS ovarian cancer treatment.
Collapse
|