1
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Varela SS, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. The Mycobacterium ulcerans toxin mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane to drive skin necrosis. eLife 2025; 12:RP86931. [PMID: 39913180 PMCID: PMC11801798 DOI: 10.7554/elife.86931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on human primary vascular endothelial cells in vitro. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo during M. ulcerans infection in the mouse model. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
- Louise Tzung-Harn Hsieh
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Belinda S Hall
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Jane Newcombe
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Tom A Mendum
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Sonia Santana Varela
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of CambridgeCambridgeUnited Kingdom
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of CambridgeCambridgeUnited Kingdom
| | - Wei Q Shi
- Department of Chemistry, Ball State UniversityMuncieUnited States
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic LaboratoryCollege StationUnited States
| | | | - Rachel E Simmonds
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| |
Collapse
|
2
|
Akolgo GA, Asiedu KB, Amewu RK. Exploring Mycolactone-The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential. Toxins (Basel) 2024; 16:528. [PMID: 39728786 PMCID: PMC11678992 DOI: 10.3390/toxins16120528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Mycolactone is a complex macrolide toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities. The review focuses on pioneering studies of Kishi which elaborate first-, second-, and third-generation approaches to the synthesis of mycolactones A/B. The three generations focused on the construction of the key intermediates required for the mycolactone synthesis. Synthesis of the first generation involves assignment of the relative and absolute stereochemistry of the mycolactones A and B. This was accomplished by employing a linear series of 17 chemical steps (1.3% overall yield) using the mycolactone core. The second generation significantly improved the first generation in three ways: (1) by optimizing the selection of protecting groups; (2) by removing needless protecting group adjustments; and (3) by enhancing the stereoselectivity and overall synthetic efficiency. Though the synthetic route to the mycolactone core was longer than the first generation, the overall yield was significantly higher (8.8%). The third-generation total synthesis was specifically aimed at an efficient, scalable, stereoselective, and shorter synthesis of mycolactone. The synthesis of the mycolactone core was achieved in 14 linear chemical steps with 19% overall yield. Furthermore, a modular synthetic approach where diverse analogues of mycolactone A/B were synthesized via a cascade of catalytic and/or asymmetric reactions as well as several Pd-catalyzed key steps coupled with hydroboration reactions were reviewed. In addition, the review discusses how mycolactone is employed in the diagnosis of Buruli ulcer with emphasis on detection methods of mass spectrometry, immunological assays, RNA aptamer techniques, and fluorescent-thin layer chromatography (f-TLC) methods as diagnostic tools. We examined studies of the structure-activity relationship (SAR) of various analogues of mycolactone. The paper highlights the multiple biological consequences associated with mycolactone such as skin ulceration, host immunomodulation, and analgesia. These effects are attributed to various proposed mechanisms of actions including Wiskott-Aldrich Syndrome protein (WASP)/neural Wiskott-Aldrich Syndrome protein (N-WASP) inhibition, Sec61 translocon inhibition, angiotensin II type 2 receptor (AT2R) inhibition, and inhibition of mTOR. The possible application of novel mycolactone analogues produced based on SAR investigations as therapeutic agents for the treatment of inflammatory disorders and inflammatory pain are discussed. Additionally, their therapeutic potential as anti-viral and anti-cancer agents have also been addressed.
Collapse
Affiliation(s)
| | - Kingsley Bampoe Asiedu
- Department of Neglected Tropical Diseases, World Health Organization, 1211 Geneva, Switzerland;
| | | |
Collapse
|
3
|
Blasdell KR, Ploeg RJ, Hobbs EC, Muhi S, Riddell SJ, Cunneen A, Kelly ML, Maynard K, Malcolm TR, Islam MT, Boyd V, Stinear TP, Pidot SJ, Athan E, O'Brien DP. Experimental infection of ringtail possums (Pseudocheirus peregrinus) with Mycobacterium ulcerans, the agent of Buruli ulcer. Sci Rep 2024; 14:25352. [PMID: 39455716 PMCID: PMC11511880 DOI: 10.1038/s41598-024-76857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Buruli ulcer (BU) is a necrotizing disease of skin and soft tissue caused by the bacterium Mycobacterium ulcerans (MU). In Australia, where the disease is emerging in new geographic areas and human case numbers are increasing, native possum species act as reservoir hosts. To better understand the life history of MU in one of its natural hosts, we conducted intra-dermal challenge of six wild caught, MU-naïve common ringtail possums (Pseudocheirus peregrinus). All six animals developed BU disease consistent with that observed in naturally infected ringtail possums. Time to ulceration varied between 49 and 77 days (mean = 61.8 days). Molecular evidence of systemic infection was detected in five animals and was supported by consistent histopathological findings in four animals. Pathological findings included random, multifocal, granulomatous hepatitis in four possums, one of which also had a mild, multifocal, interstitial granulomatous pneumonia. Acid-fast bacilli were only evident in inflammatory foci beyond the primary inoculation site in one possum. The ringtail possum model of MU infection is an important tool for the investigation of bacterial transmission dynamics, pathogenesis and immune response in a natural host. Data from this model may improve disease risk modelling and help identify intervention points to stop zoonotic transmission and disease spread.
Collapse
Affiliation(s)
- Kim R Blasdell
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia.
| | - Richard J Ploeg
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Emma C Hobbs
- Department of Veterinary Biosciences, University of Melbourne, Melbourne, Australia
| | - Stephen Muhi
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sarah J Riddell
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Alexandra Cunneen
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Michael L Kelly
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Kate Maynard
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Tess R Malcolm
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Md Tanjir Islam
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Victoria Boyd
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Timothy P Stinear
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sacha J Pidot
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Eugene Athan
- Department of Infectious Diseases, Barwon Health, Geelong, VIC, Australia
| | - Daniel P O'Brien
- Department of Infectious Diseases, Barwon Health, Geelong, VIC, Australia
| |
Collapse
|
4
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Santana-Varela S, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. Mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane: a new indirect mechanism driving tissue necrosis in Mycobacterium ulcerans infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.21.529382. [PMID: 36865118 PMCID: PMC9980099 DOI: 10.1101/2023.02.21.529382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically-evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on primary vascular endothelial cells in vitro and in vivo. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
| | - Belinda S Hall
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Jane Newcombe
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Tom A Mendum
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Sonia Santana-Varela
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, Texas, USA
| | | | - Rachel E Simmonds
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| |
Collapse
|
5
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
6
|
Muhi S, Osowicki J, O'Brien D, Johnson PDR, Pidot S, Doerflinger M, Marshall JL, Pellegrini M, McCarthy J, Stinear TP. A human model of Buruli ulcer: The case for controlled human infection and considerations for selecting a Mycobacterium ulcerans challenge strain. PLoS Negl Trop Dis 2023; 17:e0011394. [PMID: 37384606 DOI: 10.1371/journal.pntd.0011394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Critical knowledge gaps regarding infection with Mycobacterium ulcerans, the cause of Buruli ulcer (BU), have impeded development of new therapeutic approaches and vaccines for prevention of this neglected tropical disease. Here, we review the current understanding of host-pathogen interactions and correlates of immune protection to explore the case for establishing a controlled human infection model of M. ulcerans infection. We also summarise the overarching safety considerations and present a rationale for selecting a suitable challenge strain.
Collapse
Affiliation(s)
- Stephen Muhi
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Daniel O'Brien
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Barwon Health, Geelong, Victoria, Australia
| | - Paul D R Johnson
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Austin Health, Heidelberg, Victoria, Australia
| | - Sacha Pidot
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Julia L Marshall
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - James McCarthy
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Timothy P Stinear
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Ricci D, Demangel C. From Bacterial Toxin to Therapeutic Agent: The Unexpected Fate of Mycolactone. Toxins (Basel) 2023; 15:369. [PMID: 37368670 DOI: 10.3390/toxins15060369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
"Recognizing a surprising fact is the first step towards discovery." This famous quote from Louis Pasteur is particularly appropriate to describe what led us to study mycolactone, a lipid toxin produced by the human pathogen Mycobacterium ulcerans. M. ulcerans is the causative agent of Buruli ulcer, a neglected tropical disease manifesting as chronic, necrotic skin lesions with a "surprising" lack of inflammation and pain. Decades after its first description, mycolactone has become much more than a mycobacterial toxin. This uniquely potent inhibitor of the mammalian translocon (Sec61) helped reveal the central importance of Sec61 activity for immune cell functions, the spread of viral particles and, unexpectedly, the viability of certain cancer cells. We report in this review the main discoveries that marked our research into mycolactone, and the medical perspectives they opened up. The story of mycolactone is not over and the applications of Sec61 inhibition may go well beyond immunomodulation, viral infections, and oncology.
Collapse
Affiliation(s)
- Daniela Ricci
- Institut Pasteur, Université Paris Cité, Inserm U1224, Immunobiology and Therapy Unit, 75015 Paris, France
| | - Caroline Demangel
- Institut Pasteur, Université Paris Cité, Inserm U1224, Immunobiology and Therapy Unit, 75015 Paris, France
| |
Collapse
|
8
|
Manilal A, Tadesse D, Sabu KR. Buruli Ulcer and Medical Geo-Microbiology. Infect Drug Resist 2022; 15:6811-6814. [PMID: 36458199 PMCID: PMC9707318 DOI: 10.2147/idr.s388005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/18/2022] [Indexed: 09/29/2023] Open
Abstract
Buruli ulcer is a chronic debilitating infectious disease caused by the pathogen Mycobacterium ulcerans, which can be cured if diagnosed and treated in an early stage. However, advanced cases need antibiotic treatment followed by surgical interventions. In this context, an extremely effective and less expensive treatment modality can be developed by means of an extended topical application of certain selected natural clay minerals, most of the time containing illite-smectite having some iron content. There is a scope for developing the speciality, medical geo-microbiology, which is truly a multidisciplinary one, for finding a cure for the severe and advanced cases of BU.
Collapse
Affiliation(s)
- Aseer Manilal
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Dagimawie Tadesse
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | | |
Collapse
|
9
|
Kawashima A, Kiriya M, En J, Tanigawa K, Nakamura Y, Fujiwara Y, Luo Y, Maruyama K, Watanabe S, Goto M, Suzuki K. Genome-wide screening identified SEC61A1 as an essential factor for mycolactone-dependent apoptosis in human premonocytic THP-1 cells. PLoS Negl Trop Dis 2022; 16:e0010672. [PMID: 35939511 PMCID: PMC9387930 DOI: 10.1371/journal.pntd.0010672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/18/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Buruli ulcer is a chronic skin disease caused by a toxic lipid mycolactone produced by Mycobacterium ulcerans, which induces local skin tissue destruction and analgesia. However, the cytotoxicity pathway induced by mycolactone remains largely unknown. Here we investigated the mycolactone-induced cell death pathway by screening host factors using a genome-scale lenti-CRISPR mutagenesis assay in human premonocytic THP-1 cells. As a result, 884 genes were identified as candidates causing mycolactone-induced cell death, among which SEC61A1, the α-subunit of the Sec61 translocon complex, was the highest scoring. CRISPR/Cas9 genome editing of SEC61A1 in THP-1 cells suppressed mycolactone-induced endoplasmic reticulum stress, especially eIF2α phosphorylation, and caspase-dependent apoptosis. Although previous studies have reported that mycolactone targets SEC61A1 based on mutation screening and structural analysis in several cell lines, we have reconfirmed that SEC61A1 is a mycolactone target by genome-wide screening in THP-1 cells. These results shed light on the cytotoxicity of mycolactone and suggest that the inhibition of mycolactone activity or SEC61A1 downstream cascades will be a novel therapeutic modality to eliminate the harmful effects of mycolactone in addition to the 8-week antibiotic regimen of rifampicin and clarithromycin. Buruli ulcer is a chronic skin disease caused by the bacterium Mycobacterium ulcerans. The disease mainly affects children in West Africa, and the skin ulcers are induced by mycolactone, a toxin produced by the bacteria. The mycolactone diffuses through the skin, killing cells, creating irreversible ulceration, and weakening host immune defenses. However, the cytotoxic pathway induced by mycolactone remains largely unknown. We evaluated the mycolactone-induced cell death pathway by screening host factors using a genome-scale knockout assay in human premonocytic THP-1 cells. We identified 884 genes that are potentially involved in mycolactone-induced cell death, of which SEC61A1, the α-subunit of the Sec61 translocon complex, was the highest ranking. Knockout of SEC61A1 in THP-1 cells resulted in suppression of endoplasmic reticulum stress and caspase-dependent apoptosis induced by mycolactone. These results suggest that SEC61A1 is an essential mediator of mycolactone-induced cell death.
Collapse
Affiliation(s)
- Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Junichiro En
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Occupational Therapy, School of Health Science, International University of Health and Welfare, Narita, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Center for Promotion of Pharmaceutical Education & Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Keiji Maruyama
- Center for Promotion of Pharmaceutical Education & Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Shigekazu Watanabe
- Center for Promotion of Pharmaceutical Education & Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Masamichi Goto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
10
|
Strong E, Hart B, Wang J, Orozco MG, Lee S. Induced Synthesis of Mycolactone Restores the Pathogenesis of Mycobacterium ulcerans In Vitro and In Vivo. Front Immunol 2022; 13:750643. [PMID: 35401531 PMCID: PMC8988146 DOI: 10.3389/fimmu.2022.750643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), the third most common mycobacterial infection. Virulent M. ulcerans secretes mycolactone, a polyketide toxin. Most observations of M. ulcerans infection are described as an extracellular milieu in the form of a necrotic ulcer. While some evidence exists of an intracellular life cycle for M. ulcerans during infection, the exact role that mycolactone plays in this process is poorly understood. Many previous studies have relied upon the addition of purified mycolactone to cell-culture systems to study its role in M. ulcerans pathogenesis and host-response modulation. However, this sterile system drastically simplifies the M. ulcerans infection model and assumes that mycolactone is the only relevant virulence factor expressed by M. ulcerans. Here we show that the addition of purified mycolactone to macrophages during M. ulcerans infection overcomes the bacterial activation of the mechanistic target of rapamycin (mTOR) signaling pathway that plays a substantial role in regulating different cellular processes, including autophagy and apoptosis. To further study the role of mycolactone during M. ulcerans infection, we have developed an inducible mycolactone expression system. Utilizing the mycolactone-deficient Mul::Tn118 strain that contains a transposon insertion in the putative beta-ketoacyl transferase (mup045), we have successfully restored mycolactone production by expressing mup045 in a tetracycline-inducible vector system, which overcomes in-vitro growth defects associated with constitutive complementation. The inducible mycolactone-expressing bacteria resulted in the establishment of infection in a murine footpad model of BU similar to that observed during the infection with wild-type M. ulcerans. This mycolactone inducible system will allow for further analysis of the roles and functions of mycolactone during M. ulcerans infection.
Collapse
Affiliation(s)
- Emily Strong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Bryan Hart
- Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Jia Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Maria Gonzalez Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sunhee Lee
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Human Vaccine Institute, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
11
|
Hall BS, Hsieh LTH, Sacre S, Simmonds RE. The One That Got Away: How Macrophage-Derived IL-1β Escapes the Mycolactone-Dependent Sec61 Blockade in Buruli Ulcer. Front Immunol 2022; 12:788146. [PMID: 35154073 PMCID: PMC8826060 DOI: 10.3389/fimmu.2021.788146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Buruli ulcer (BU), caused by Mycobacterium ulcerans, is a devastating necrotizing skin disease. Key to its pathogenesis is mycolactone, the exotoxin virulence factor that is both immunosuppressive and cytotoxic. The discovery that the essential Sec61 translocon is the major cellular target of mycolactone explains much of the disease pathology, including the immune blockade. Sec61 inhibition leads to a loss in production of nearly all cytokines from monocytes, macrophages, dendritic cells and T cells, as well as antigen presentation pathway proteins and costimulatory molecules. However, there has long been evidence that the immune system is not completely incapable of responding to M. ulcerans infection. In particular, IL-1β was recently shown to be present in BU lesions, and to be induced from M. ulcerans-exposed macrophages in a mycolactone-dependent manner. This has important implications for our understanding of BU, showing that mycolactone can act as the "second signal" for IL-1β production without inhibiting the pathways of unconventional secretion it uses for cellular release. In this Perspective article, we validate and discuss this recent advance, which is entirely in-line with our understanding of mycolactone's inhibition of the Sec61 translocon. However, we also show that the IL-1 receptor, which uses the conventional secretory pathway, is sensitive to mycolactone blockade at Sec61. Hence, a more complete understanding of the mechanisms regulating IL-1β function in skin tissue, including the transient intra-macrophage stage of M. ulcerans infection, is urgently needed to uncover the double-edged sword of IL-1β in BU pathogenesis, treatment and wound healing.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Louise Tzung-Harn Hsieh
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Rachel E Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
12
|
Aberrant stromal tissue factor localisation and mycolactone-driven vascular dysfunction, exacerbated by IL-1β, are linked to fibrin formation in Buruli ulcer lesions. PLoS Pathog 2022; 18:e1010280. [PMID: 35100311 PMCID: PMC8846541 DOI: 10.1371/journal.ppat.1010280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/15/2022] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease caused by subcutaneous infection with Mycobacterium ulcerans and its exotoxin mycolactone. BU displays coagulative necrosis and widespread fibrin deposition in affected skin tissues. Despite this, the role of the vasculature in BU pathogenesis remains almost completely unexplored. We hypothesise that fibrin-driven ischemia can be an ‘indirect’ route to mycolactone-dependent tissue necrosis by a mechanism involving vascular dysfunction. Here, we tracked >900 vessels within contiguous tissue sections from eight BU patient biopsies. Our aim was to evaluate their vascular and coagulation biomarker phenotype and explore potential links to fibrin deposition. We also integrated this with our understanding of mycolactone’s mechanism of action at Sec61 and its impact on proteins involved in maintaining normal vascular function. Our findings showed that endothelial cell dysfunction is common in skin tissue adjacent to necrotic regions. There was little evidence of primary haemostasis, perhaps due to mycolactone-dependent depletion of endothelial von Willebrand factor. Instead, fibrin staining appeared to be linked to the extrinsic pathway activator, tissue factor (TF). There was significantly greater than expected fibrin staining around vessels that had TF staining within the stroma, and this correlated with the distance it extended from the vessel basement membrane. TF-induced fibrin deposition in these locations would require plasma proteins outside of vessels, therefore we investigated whether mycolactone could increase vascular permeability in vitro. This was indeed the case, and leakage was further exacerbated by IL-1β. Mycolactone caused the loss of endothelial adherens and tight junctions by the depletion of VE-cadherin, TIE-1, TIE-2 and JAM-C; all Sec61-dependent proteins. Taken together, our findings suggest that both vascular and lymphatic vessels in BU lesions become “leaky” during infection, due to the unique action of mycolactone, allowing TF-containing structures and plasma proteins into skin tissue, ultimately leading to local coagulopathy and tissue ischemia. To date, the debilitating skin disease Buruli ulcer remains a public health concern and financial burden in low or middle-income countries, especially in tropical regions. Late diagnosis is frequent in remote areas, perhaps due to the painlessness of the disease. Hence patients often present with large, destructive opened ulcers leading to delayed wound closure or even lifelong disability. The infectious agent produces a toxin called mycolactone that drives the disease. We previously found evidence that the vascular system is disrupted by mycolactone in these lesions, and now we have further explored potential explanations for these findings by looking at the expression of vascular markers in BU. In a detailed analysis of patient skin punch biopsies, we identified distinct expression patterns of certain proteins and found that tissue factor, which initiates the so-called extrinsic pathway of blood clotting, is particularly important. Mycolactone is able to disrupt the barrier function of the endothelium, further aggravating the diseased phenotype, which may explain how clotting factors access the tissue. Altogether, such localised hypercoagulation in Buruli ulcer skin lesions may contribute to the development of the lesion.
Collapse
|
13
|
Muhi S, Stinear TP. Systematic review of M. Bovis BCG and other candidate vaccines for Buruli ulcer prophylaxis. Vaccine 2021; 39:7238-7252. [PMID: 34119347 DOI: 10.1016/j.vaccine.2021.05.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 01/17/2023]
Abstract
Buruli ulcer, caused by Mycobacterium ulcerans, is a neglected tropical disease endemic to over 30 countries, with increasing incidence in temperate, coastal Victoria, Australia. Strategies to control transmission are urgently required. This study systematically reviews the literature to identify and describe candidate prophylactic Buruli ulcer vaccines. This review highlights that Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine is the only vaccine studied in randomised controlled trials and confirms its importance as a benchmark for comparison against putative vaccines in pre-clinical studies. Nevertheless, BCG alone is unable to offer long-term protection in humans. A number of experimental vaccines that exceed the protection provided by BCG in mice have emerged, particularly those utilising recombinant BCG expressing immunogenic M. ulcerans proteins. Although progress is promising, there remain key questions about the optimal approach to characterising the immunological correlates of protection in humans and strategies to investigate the safety and efficacy of such vaccines in humans.
Collapse
Affiliation(s)
- Stephen Muhi
- Victorian Infectious Diseases Service at the Royal Melbourne Hospital, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute at the University of Melbourne, Melbourne, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute at the University of Melbourne, Melbourne, Australia.
| |
Collapse
|
14
|
Overview: Mycolactone , the Macrolide Toxin of Mycobacterium ulcerans. Methods Mol Biol 2021. [PMID: 34643906 DOI: 10.1007/978-1-0716-1779-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The acquisition by a Mycobacterium marinum-like progenitor of a plasmid encoding enzymes for the biosynthesis of the highly potent macrolide toxin mycolactone has set off the evolution of M. ulcerans toward a new mycobacterial species. While the selective advantage of producing mycolactone for survival in environmental niche(s) of the pathogen is unclear, there is no doubt that the cytotoxic, immunomodulatory, and analgesic properties of mycolactone are key for the establishment and progression of M. ulcerans infections in the host. Improved procedures for the isolation, handling, and detection of the amphiphilic and light-sensitive toxin have facilitated studies to unravel molecular mechanisms of mycolactone action on host cells in vitro and on cellular and immune responses in animal models. The pivotal role of mycolactone in the pathology of Buruli ulcer and the fact that the toxin has not been associated with other pathogens make it an ideal target for therapeutics/vaccines aiming at mycolactone neutralization and for the development of assays for the diagnosis of the disease.
Collapse
|
15
|
Abstract
The successful isolation of mycolactone in a laboratory or from a clinical sample relies on proper handling and storage of the toxin. Mycolactone is a light-sensitive and an amphiphilic toxin produced by Mycobacterium ulcerans. The biochemistry of the toxin makes it unstable in aqueous matrices such as blood, which causes it to self-aggregate or present in complex with carrier molecules. This biochemistry also impacts the use of the toxin in vitro, in that it tends to aggregate and stick to substrates in an aqueous environment, which alters its physiological presentation and limits its availability in a sample. Glass materials (i.e., tubes, vials, syringes, plates) should be used when possible to avoid loss of mycolactone sticking to plastic surfaces. Dark containers such as amber vials or aluminum-foil wrapped tubes should be used to avoid photodegradation of the toxin upon exposure to light. Sample storage in organic solvents is ideal for mycolactone stability and recovery; however, this is not always amenable as multiple diagnostic assays might be performed on a single sample (such as PCR or ELISA). In these cases, samples can be stored in an aqueous solution containing a small amount of detergent to enhance recovery of the toxin, and in order to avoid aggregation. Therefore, the downstream manipulations should be carefully considered prior to sample collection and storage. Here we present considerations for the optimal handling and storage of mycolactone in order to obtain quality yield of the toxin for various research and diagnostic applications.
Collapse
|
16
|
Overview: Mycobacterium ulcerans Disease (Buruli Ulcer). Methods Mol Biol 2021. [PMID: 34643896 DOI: 10.1007/978-1-0716-1779-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Enhanced international research efforts since the establishment of the Global BU Initiative in 1998 by the WHO have helped to advance our understanding of the epidemiology, and pathogenesis of Mycobacterium ulcerans infections. Improved methods to cultivate the extremely slow-growing pathogen from BU lesions have laid the groundwork for a variety of studies using M. ulcerans isolates, including the analysis of the genome and proteome of the pathogen, as well as drug susceptibility testing and analyses of host-pathogen interactions in vitro and in animal models. The identification of specific, high-copy number target sequences in the genome of M. ulcerans has enabled the development of diagnostic tests and assays to detect the pathogen in the environment. Important research questions remain about the reservoir(s) of M. ulcerans in aquatic environments, factors leading to or promoting transmission to hosts, and host-pathogen interactions resulting in chronic infection versus spontaneous healing.
Collapse
|
17
|
Hall BS, Dos Santos SJ, Hsieh LTH, Manifava M, Ruf MT, Pluschke G, Ktistakis N, Simmonds RE. Inhibition of the SEC61 translocon by mycolactone induces a protective autophagic response controlled by EIF2S1-dependent translation that does not require ULK1 activity. Autophagy 2021; 18:841-859. [PMID: 34424124 PMCID: PMC9037441 DOI: 10.1080/15548627.2021.1961067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium ulcerans exotoxin, mycolactone, is responsible for the immunosuppression and tissue necrosis that characterizes Buruli ulcer. Mycolactone inhibits SEC61-dependent co-translational translocation of proteins into the endoplasmic reticulum and the resultant cytosolic translation triggers degradation of mislocalized proteins by the ubiquitin-proteasome system. Inhibition of SEC61 by mycolactone also activates multiple EIF2S1/eIF2α kinases in the integrated stress response (ISR). Here we show mycolactone increased canonical markers of selective macroautophagy/autophagy LC3B-II, ubiquitin and SQSTM1/p62 in diverse disease-relevant primary cells and cell lines. Increased formation of puncta positive for the early autophagy markers WIPI2, RB1CC1/FIP200 and ATG16L1 indicates increased initiation of autophagy. The mycolactone response was SEC61A1-dependent and involved a pathway that required RB1CC1 but not ULK. Deletion of Sqstm1 reduced cell survival in the presence of mycolactone, suggesting this response protects against the increased cytosolic protein burden caused by the toxin. However, reconstitution of baseline SQSTM1 expression in cells lacking all autophagy receptor proteins could not rescue viability. Translational regulation by EIF2S1 in the ISR plays a key role in the autophagic response to mycolactone. Mycolactone-dependent induction of SQSTM1 was reduced in eif2ak3−/-/perk−/- cells while the p-EIF2S1 antagonist ISRIB reversed the upregulation of SQSTM1 and reduced RB1CC1, WIPI2 and LC3B puncta formation. Increased SQSTM1 staining could be seen in Buruli ulcer patient skin biopsy samples, reinforcing genetic data that suggests autophagy is relevant to disease pathology. Since selective autophagy and the ISR are both implicated in neurodegeneration, cancer and inflammation, the pathway uncovered here may have a broad relevance to human disease. Abbreviations: ATF4: activating transcription factor 4; ATG: autophagy related; BAF: bafilomycin A1; ATG16L1: autophagy related 16 like 1; BU: Buruli ulcer; CQ: chloroquine; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; CALCOCO2: calcium binding and coiled-coil domain 2; DMSO: dimethyl sulfoxide; EIF2S1: eukaryotic translation initiation factor 2 subunit alpha; ER: endoplasmic reticulum; GFP: green fluorescent protein; HDMEC: human dermal microvascular endothelial cells; HFFF: human fetal foreskin fibroblasts; ISR: integrated stress response; ISRIB: integrated stress response inhibitor; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; Myco: mycolactone; NBR1: NBR1 autophagy cargo receptor; NFE2L2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PFA: paraformaldehyde; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1: RB1-inducible coiled coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase; UPS: ubiquitin-proteasome system; WIPI: WD repeat domain, phosphoinositide interacting; WT: wild type.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Scott J Dos Santos
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Louise Tzung-Harn Hsieh
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | - Marie-Thérèse Ruf
- Molecular Immunology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Medical Parasitology and Infection Biology Department, University of Basel, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Medical Parasitology and Infection Biology Department, University of Basel, Basel, Switzerland
| | | | - Rachel E Simmonds
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
18
|
Lenz KD, Klosterman KE, Mukundan H, Kubicek-Sutherland JZ. Macrolides: From Toxins to Therapeutics. Toxins (Basel) 2021; 13:347. [PMID: 34065929 PMCID: PMC8150546 DOI: 10.3390/toxins13050347] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022] Open
Abstract
Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act as biomimetic molecules to natural actin-binding proteins, affecting actin polymerization, while other toxins act on different cytoskeletal components. The disruption of natural cytoskeletal processes affects cell motility and cytokinesis, and can result in cellular death. While many macrolides are toxic in nature, others have been shown to display therapeutic properties. Indeed, some of the most well known antibiotic compounds, including erythromycin, are macrolides. In addition to antibiotic properties, macrolides have been shown to display antiviral, antiparasitic, antifungal, and immunosuppressive actions. Here, we review each functional class of macrolides for their common structures, mechanisms of action, pharmacology, and human cellular targets.
Collapse
Affiliation(s)
| | | | | | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (K.D.L.); (K.E.K.); (H.M.)
| |
Collapse
|
19
|
Beemelmanns C, Roman D, Sauer M. Applications of the Horner–Wadsworth–Emmons Olefination in Modern Natural Product Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1493-6331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractThe Horner–Wadsworth–Emmons (HWE) reaction is one of the most reliable olefination reaction and can be broadly applied in organic chemistry and natural product synthesis with excellent selectivity. Within the last few years HWE reaction conditions have been optimized and new reagents developed to overcome challenges in the total syntheses of natural products. This review highlights the application of HWE olefinations in total syntheses of structurally different natural products covering 2015 to 2020. Applied HWE reagents and reactions conditions are highlighted to support future synthetic approaches and serve as guideline to find the best HWE conditions for the most complicated natural products.1 Introduction and Historical Background2 Applications of HWE2.1 Cyclization by HWE Reactions2.2.1 Formation of Medium- to Larger-Sized Rings2.2.2 Formation of Small- to Medium-Sized Rings2.3 Synthesis of α,β-Unsaturated Carbonyl Groups2.4 Synthesis of Substituted C=C Bonds2.5 Late-Stage Modifications by HWE Reactions2.6 HWE Reactions on Solid Supports2.7 Synthesis of Poly-Conjugated C=C Bonds2.8 HWE-Mediated Coupling of Larger Building Blocks2.9 Miscellaneous3 Summary and Outlook
Collapse
|
20
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
21
|
Day CJ, Röltgen K, Pluschke G, Jennings MP. The cell surface protein MUL_3720 confers binding of the skin pathogen Mycobacterium ulcerans to sulfated glycans and keratin. PLoS Negl Trop Dis 2021; 15:e0009136. [PMID: 33630844 PMCID: PMC7906334 DOI: 10.1371/journal.pntd.0009136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of the chronic, necrotizing skin disease Buruli ulcer. Modes of transmission and molecular mechanisms involved in the establishment of M. ulcerans infections are poorly understood. Interactions with host glycans are often crucial in bacterial pathogenesis and the 22 kDa M. ulcerans protein MUL_3720 has a putative role in host cell attachment. It has a predicted N-terminal lectin domain and a C-terminal peptidoglycan-binding domain and is highly expressed on the surface of the bacilli. Here we report the glycan-binding repertoire of whole, fixed M. ulcerans bacteria and of purified, recombinant MUL_3720. On an array comprising 368 diverse biologically relevant glycan structures, M. ulcerans cells showed binding to 64 glycan structures, representing several distinct classes of glycans, including sulfated structures. MUL_3720 bound only to glycans containing sulfated galactose and GalNAc, such as glycans known to be associated with keratins isolated from human skin. Surface plasmon resonance studies demonstrated that both whole, fixed M. ulcerans cells and MUL_3720 show high affinity interactions with both glycans and human skin keratin extracts. This MUL_3720-mediated interaction with glycans associated with human skin keratin may contribute to the pathobiology of Buruli ulcer. Mycobacterium ulcerans causes a skin-based disease known as Buruli ulcer. How the bacteria are transmitted and what mechanisms they use to establish the infection of the skin is poorly understood. The only well characterized bacterial factor in Buruli ulcer pathogenesis is mycolactone, a toxin produced by the bacteria. Mycolactone causes apoptosis in human cells, leading to destruction of the skin around extracellular clusters of the mycobacteria. Human cells, like cells of all orders of life, are coated in complex sugar structures and these glycans are one of the major targets of bacteria and viruses for the interaction with host cells. Here we describe the glycan binding of whole Mycobacterium ulcerans cells and a mycobacterial protein, MUL_3720, thought to be involved in glycan binding. We show that both the bacterial cells and MUL_3720 bind to glycans known to be associated with human skin keratin and to skin keratin extracts. This binding of keratin extracts may explain initial bacterial attachment and clustering of the bacteria in the skin, ultimately leading to tissue destruction and ulceration caused by a cloud of secreted mycolactone at the site of infection.
Collapse
Affiliation(s)
- Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Katharina Röltgen
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (GP); (MPJ)
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- * E-mail: (GP); (MPJ)
| |
Collapse
|
22
|
Fevereiro J, Fraga AG, Capela C, Sopoh GE, Dossou A, Ayelo GA, Peixoto MJ, Cunha C, Carvalho A, Rodrigues F, Pedrosa J. Genetic variants in human BCL2L11 ( BIM) are associated with ulcerative forms of Buruli ulcer. Emerg Microbes Infect 2021; 10:223-225. [PMID: 33467983 PMCID: PMC7889264 DOI: 10.1080/22221751.2021.1878936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Buruli ulcer (BU) is a devastating skin mycobacterial infection characterized by extensive cell death, which was previously suggested to be mediated by Bcl2-like protein 11 (BIM, encoded by the BCL2L11 gene). We here report the association of genetic variants in BCL2L11 with ulcerative forms of the disease in a cohort of 618 Beninese individuals. Our results show that regulation of apoptosis in humans contributes to BU lesions associated with worse prognosis, prompting for further investigation on the implementation of novel methods for earlier identification of at-risk patients.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carlos Capela
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ghislain E Sopoh
- Centre de Dépistage et de Traitement de l'Ulcère de Buruli d'Allada, Ministry of Health, Allada, Bénin.,Institut Régional de Santé Publique, University of Abomey-Calavi, Ouidah, Bénin
| | - Ange Dossou
- Centre de Dépistage et de Traitement de l'Ulcère de Buruli d'Allada, Ministry of Health, Allada, Bénin
| | - Gilbert Adjimon Ayelo
- Centre de Dépistage et de Traitement de l'Ulcère de Buruli d'Allada, Ministry of Health, Allada, Bénin
| | - Maria João Peixoto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
23
|
Strong EJ, Lee S. Targeting Autophagy as a Strategy for Developing New Vaccines and Host-Directed Therapeutics Against Mycobacteria. Front Microbiol 2021; 11:614313. [PMID: 33519771 PMCID: PMC7840607 DOI: 10.3389/fmicb.2020.614313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Mycobacterial disease is an immense burden worldwide. This disease group includes tuberculosis, leprosy (Hansen's disease), Buruli Ulcer, and non-tuberculous mycobacterial (NTM) disease. The burden of NTM disease, both pulmonary and ulcerative, is drastically escalating globally, especially in developed countries such as America and Australia. Mycobacteria's ability to inhibit or evade the host immune system has contributed significantly to its continued prevalence. Pre-clinical studies have highlighted promising candidates that enhance endogenous pathways and/or limit destructive host responses. Autophagy is a cell-autonomous host defense mechanism by which intracytoplasmic cargos can be delivered and then destroyed in lysosomes. Previous studies have reported that autophagy-activating agents, small molecules, and autophagy-activating vaccines may be beneficial in restricting intracellular mycobacterial infection, even with multidrug-resistant strains. This review will examine how mycobacteria evade autophagy and discusses how autophagy could be exploited to design novel TB treatment strategies, such as host-directed therapeutics and vaccines, against Mycobacterium tuberculosis and NTMs.
Collapse
Affiliation(s)
| | - Sunhee Lee
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
24
|
Foulon M, Robbe-Saule M, Manry J, Esnault L, Boucaud Y, Alcaïs A, Malloci M, Fanton d’Andon M, Beauvais T, Labarriere N, Jeannin P, Abel L, Saint-André JP, Croué A, Delneste Y, Boneca IG, Marsollier L, Marion E. Mycolactone toxin induces an inflammatory response by targeting the IL-1β pathway: Mechanistic insight into Buruli ulcer pathophysiology. PLoS Pathog 2020; 16:e1009107. [PMID: 33338061 PMCID: PMC7748131 DOI: 10.1371/journal.ppat.1009107] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mycolactone, a lipid-like toxin, is the major virulence factor of Mycobacterium ulcerans, the etiological agent of Buruli ulcer. Its involvement in lesion development has been widely described in early stages of the disease, through its cytotoxic and immunosuppressive activities, but less is known about later stages. Here, we revisit the role of mycolactone in disease outcome and provide the first demonstration of the pro-inflammatory potential of this toxin. We found that the mycolactone-containing mycobacterial extracellular vesicles produced by M. ulcerans induced the production of IL-1β, a potent pro-inflammatory cytokine, in a TLR2-dependent manner, targeting NLRP3/1 inflammasomes. We show our data to be relevant in a physiological context. The in vivo injection of these mycolactone-containing vesicles induced a strong local inflammatory response and tissue damage, which were prevented by corticosteroids. Finally, several soluble pro-inflammatory factors, including IL-1β, were detected in infected tissues from mice and Buruli ulcer patients. Our results revisit Buruli ulcer pathophysiology by providing new insight, thus paving the way for the development of new therapeutic strategies taking the pro-inflammatory potential of mycolactone into account. Buruli ulcer is a neglected tropical disease occurring mainly in poor rural areas of West and Central Africa. This cutaneous disease is caused by Mycobacterium ulcerans, a bacterium belonging to the same family as M. tuberculosis and M. leprae. The skin lesions are caused by a cytotoxic toxin named mycolactone, also known to act as an immunosuppressor and an anti-inflammatory molecule. However, Buruli ulcer lesions are characterized by a chronic cutaneous inflammation with a recruitment of cellular immune cells trying to counteract M. ulcerans. Our work allows for a reconcilitation of previous observations. We found by in vitro experiment on macrophages that the mycolactone-containing mycobacterial extracellular vesicles produced by M. ulcerans induced the production of IL-1β, a potent pro-inflammatory molecule, while other pro-inflammatory soluble factors are inhibited. We also detected IL-1β protein in a mouse model of M. ulcerans infection as well as in biopsies of Buruli ulcer patients. The pro-inflammatory potential of mycolacone has to be taken into account to understand the full pathophysiology of Buruli ulcer.
Collapse
Affiliation(s)
- M. Foulon
- Université d’Angers, INSERM, CRCINA, Angers, France
| | | | - J. Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Université de Paris, Imagine Institute, France
| | - L. Esnault
- Université d’Angers, INSERM, CRCINA, Angers, France
| | - Y. Boucaud
- Université d’Angers, INSERM, CRCINA, Angers, France
| | - A. Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Université de Paris, Imagine Institute, France
| | - M. Malloci
- Plateforme MicroPiCell, SFR santé François Bonamy, Nantes, France
| | - M. Fanton d’Andon
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, INSERM, Équipe Avenir, Paris, France
| | - T. Beauvais
- Université de Nantes, INSERM, CRCINA, Nantes
| | | | - P. Jeannin
- Université d’Angers, INSERM, CRCINA, Angers, France
- Laboratoire d’Immunologie et Allergologie, CHU Angers, Angers, France
| | - L. Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Université de Paris, Imagine Institute, France
| | - J. P. Saint-André
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - A. Croué
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - Y. Delneste
- Université d’Angers, INSERM, CRCINA, Angers, France
- Laboratoire d’Immunologie et Allergologie, CHU Angers, Angers, France
| | - I. G. Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, INSERM, Équipe Avenir, Paris, France
| | | | - E. Marion
- Université d’Angers, INSERM, CRCINA, Angers, France
- * E-mail:
| |
Collapse
|
25
|
Förster B, Demangel C, Thye T. Mycolactone induces cell death by SETD1B-dependent degradation of glutathione. PLoS Negl Trop Dis 2020; 14:e0008709. [PMID: 33006969 PMCID: PMC7556509 DOI: 10.1371/journal.pntd.0008709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 10/14/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium ulcerans is a human pathogen that causes a necrotizing skin disease known as Buruli ulcer. Necrosis of infected skin is driven by bacterial production of mycolactone, a diffusible exotoxin targeting the host translocon (Sec61). By blocking Sec61, mycolactone prevents the transport of nascent secretory proteins into the endoplasmic reticulum of host cells. This triggers pro-apoptotic stress responses partially depending on activation of the ATF4 transcription factor. To gain further insight into the molecular pathways mediating the cytotoxic effects of mycolactone we conducted the first haploid genetic screen with the M. ulcerans toxin in KBM-7 cells. This approach allowed us to identify the histone methyltransferase SETD1B as a novel mediator of mycolactone-induced cell death. CRISPR/Cas9-based inactivation of SETD1B rendered cells resistant to lethal doses of the toxin, highlighting the critical importance of this gene’s expression. To understand how SETD1B contributes to mycolactone cytotoxicity, we compared the transcriptomes of wild-type (WT) and SETD1B knockout KBM-7 cells upon exposure to the toxin. While ATF4 effectors were upregulated by mycolactone in both WT and SETD1B knockout cells, mycolactone selectively induced the expression of pro-apoptotic genes in WT cells. Among those genes we identified CHAC1, which codes for a major glutathione (GSH)-degrading enzyme, and whose strong upregulation in mycolactone-treated WT cells correlated with a marked reduction in GSH protein level. Moreover, GSH supplementation conferred cells with substantial protection against the toxic effects of mycolactone. Our data thus identify SETD1B/CHAC1/GSH as a novel, epigenetic mechanism connecting Sec61 blockade with apoptotic cell death. They suggest that GSH-based treatments might have the capacity to limit skin necrosis in Buruli ulcer. The human pathogen Mycobacterium ulcerans causes a necrotizing skin disease known as Buruli ulcer. The major toxin of the mycobacteria, mycolactone, prevents the transport of secretory proteins into the endoplasmic reticulum, and thereby triggers a deadly stress response. We conducted the first haploid genetic screen to identify host factors with impact on mycolactone toxicity. This enabled us to identify the histone methyltransferase SETD1B as a novel mediator of mycolactone-induced cell death. RNA analyses of wild-type cells and resistant SETD1B knockout cells treated with mycolactone then showed a selective induction of genes implicated in programmed cell-death only in wild-type cells. This was accompanied by a marked reduction of the antioxidant glutathione, which might cause the mycolactone induced cell death.
Collapse
Affiliation(s)
- Birgit Förster
- Bernhard Nocht Institute for Tropical Medicine, Dept. Infectious Disease Epidemiology, Hamburg, Germany
| | - Caroline Demangel
- Immunobiology Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| | - Thorsten Thye
- Bernhard Nocht Institute for Tropical Medicine, Dept. Infectious Disease Epidemiology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Röltgen K, Pluschke G, Spencer JS, Brennan PJ, Avanzi C. The immunology of other mycobacteria: M. ulcerans, M. leprae. Semin Immunopathol 2020; 42:333-353. [PMID: 32100087 PMCID: PMC7224112 DOI: 10.1007/s00281-020-00790-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Mycobacterial pathogens can be categorized into three broad groups: Mycobacterium tuberculosis complex causing tuberculosis, M. leprae and M. lepromatosis causing leprosy, and atypical mycobacteria, or non-tuberculous mycobacteria (NTM), responsible for a wide range of diseases. Among the NTMs, M. ulcerans is responsible for the neglected tropical skin disease Buruli ulcer (BU). Most pathogenic mycobacteria, including M. leprae, evade effector mechanisms of the humoral immune system by hiding and replicating inside host cells and are furthermore excellent modulators of host immune responses. In contrast, M. ulcerans replicates predominantly extracellularly, sheltered from host immune responses through the cytotoxic and immunosuppressive effects of mycolactone, a macrolide produced by the bacteria. In the year 2018, 208,613 new cases of leprosy and 2713 new cases of BU were reported to WHO, figures which are notoriously skewed by vast underreporting of these diseases.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - John Stewart Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Patrick Joseph Brennan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Charlotte Avanzi
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
27
|
Warryn L, Dangy JP, Gersbach P, Gehringer M, Schäfer A, Ruf MT, Ruggli N, Altmann KH, Pluschke G. Development of an ELISA for the quantification of mycolactone, the cytotoxic macrolide toxin of Mycobacterium ulcerans. PLoS Negl Trop Dis 2020; 14:e0008357. [PMID: 32589646 PMCID: PMC7347236 DOI: 10.1371/journal.pntd.0008357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/09/2020] [Accepted: 05/04/2020] [Indexed: 01/04/2023] Open
Abstract
Mycolactones, macrolide cytotoxins, are key virulence factors of Mycobacterium ulcerans, the etiological agent of the chronic necrotizing skin disease Buruli ulcer. There is urgent need for a simple point-of-care laboratory test for Buruli ulcer and mycolactone represents a promising target for the development of an immunological assay. However, for a long time, all efforts to generate mycolactone-specific antibodies have failed. By using a protein conjugate of a truncated non-toxic synthetic mycolactone derivative, we recently described generation of a set of mycolactone-specific monoclonal antibodies. Using the first mycolactone-specific monoclonal antibodies that we have described before, we were able to develop an antigen competition assay that detects mycolactones. By the systematic selection of a capturing antibody and a reporter molecule, and the optimization of assay conditions, we developed an ELISA that detects common natural variants of mycolactone with a limit of detection in the low nanomolar range. The mycolactone-specific ELISA described here will be a very useful tool for research on the biology of this macrolide toxin. After conversion into a simple point-of-care test format, the competition assay may have great potential as laboratory assay for both the diagnosis of Buruli ulcer and for the monitoring of treatment efficacy.
Collapse
Affiliation(s)
- Louisa Warryn
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jean-Pierre Dangy
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Philipp Gersbach
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Matthias Gehringer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Anja Schäfer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Röltgen K, Pluschke G. Buruli ulcer: The Efficacy of Innate Immune Defense May Be a Key Determinant for the Outcome of Infection With Mycobacterium ulcerans. Front Microbiol 2020; 11:1018. [PMID: 32523571 PMCID: PMC7261859 DOI: 10.3389/fmicb.2020.01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Buruli ulcer (BU) is a neglected, tropical infectious disease of the skin and the subcutaneous tissue caused by Mycobacterium ulcerans. This pathogen has emerged as a new species from a common ancestor with Mycobacterium marinum by acquisition of the virulence plasmid pMUM. The plasmid encodes enzymes required for the synthesis of the macrolide toxin mycolactone, which has cytotoxic and immunosuppressive activities. In advanced BU lesions, extracellular clusters of M. ulcerans reside in necrotic subcutaneous tissue and are protected from infiltrating leukocytes by the cytotoxic activity of secreted mycolactone. Several lines of evidence indicate that elements of the innate immune system eliminate in many cases the initial inoculum before bacterial clusters can form and that therefore exposure to M. ulcerans leads only in a minority of individuals to the characteristic chronic necrotizing BU lesions. It is assumed that phagocytes play a key role in early host defense against M. ulcerans. Antibodies against bacterial surface structures seem to have less potential to enhance innate immunity than TH1 cell responses. Precise innate and adaptive immune effector mechanisms leading to protective immunity are however unclear, complicating the development of effective vaccines, the most desired solution to control BU. The tuberculosis vaccine Mycobacterium bovis Bacillus Calmette–Guérin (BCG) has limited short-term protective activity against BU. Whether this effect is due to the broad antigenic cross-reactivity between M. bovis and M. ulcerans or is at least partly mediated by a non-specific enhanced responsiveness of innate immune cells to secondary stimulation, recently described as “trained immunity” or “innate immune memory” is unknown but has major implications for vaccine design. Current vaccine research and development activities are focusing on recombinant BCG, subunit vaccines with selected M. ulcerans proteins, and the neutralization of mycolactone.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Dan VM, J S V, C J S, Sanawar R, Lekshmi A, Kumar RA, Santhosh Kumar TR, Marelli UK, Dastager SG, Pillai MR. Molecular Networking and Whole-Genome Analysis Aid Discovery of an Angucycline That Inactivates mTORC1/C2 and Induces Programmed Cell Death. ACS Chem Biol 2020; 15:780-788. [PMID: 32058690 DOI: 10.1021/acschembio.0c00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rediscovery of known compounds and time consumed in identification, especially high molecular weight compounds with complex structure, have let down interest in drug discovery. In this study, whole-genome analysis of microbe and Global Natural Products Social (GNPS) molecular networking helped in initial understanding of possible compounds produced by the microbe. Genome data revealed 10 biosythethic gene clusters that encode for secondary metabolites with anticancer potential. NMR analysis of the pure compound revealed the presence of a four-ringed benz[a]anthracene, thus confirming angucycline; molecular networking further confirmed production of this class of compounds. The type II polyketide synthase gene identified in the microbial genome was matched with the urdamycin cluster by BLAST analysis. This information led to ease in identification of urdamycin E and a novel natural derivative, urdamycin V, purified from Streptomyces sp. OA293. Urdamycin E (Urd E) induced apoptosis and autophagy in cancer cell lines. Urd E exerted anticancer action through inactivation of the mTOR complex by preventing phosphorylation at Ser 2448 and Ser 2481 of mTORC1 and mTORC2, respectively. Significant reduction in phosphorylation of the major downstream regulators of both mTORC1 (p70s6k and 4e-bp1) and mTORC2 (Akt) were observed, thus further confirming complete inhibition of the mTOR pathway. Urd E presents itself as a novel mTOR inhibitor that employs a novel mechanism in mTOR pathway inhibition.
Collapse
Affiliation(s)
- Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala, India
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala, India
| | - Vinodh J S
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala, India
- NCIM Resource Centre, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune, Maharashtra, India
| | - Sandesh C J
- Central NMR Facility, CSIR - National Chemical Laboratory, Pune, Maharashtra, India
| | - Rahul Sanawar
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala, India
| | - Asha Lekshmi
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala, India
| | - R. Ajay Kumar
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala, India
| | - T. R. Santhosh Kumar
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala, India
| | - Uday Kiran Marelli
- Central NMR Facility, CSIR - National Chemical Laboratory, Pune, Maharashtra, India
| | - Syed G. Dastager
- NCIM Resource Centre, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune, Maharashtra, India
| | - M. Radhakrishna Pillai
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala, India
| |
Collapse
|
30
|
Abstract
Natural products from microorganisms are important small molecules that play roles in various biological processes like cellular growth, motility, nutrient acquisition, stress response, biofilm formation, and defense. It is hypothesized that pathogens exploit these molecules to regulate virulence and persistence during infections. Here, we present selected examples of signaling natural products from human pathogenic bacteria that use these metabolites to gain a competitive advantage. Targeting these signaling systems provides novel strategies to antimicrobial treatments.
Collapse
Affiliation(s)
- Zhijuan Hu
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
31
|
Reynaert ML, Dupoiron D, Yeramian E, Marsollier L, Brodin P. Could Mycolactone Inspire New Potent Analgesics? Perspectives and Pitfalls. Toxins (Basel) 2019; 11:toxins11090516. [PMID: 31487908 PMCID: PMC6783859 DOI: 10.3390/toxins11090516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Pain currently represents the most common symptom for which medical attention is sought by patients. The available treatments have limited effectiveness and significant side-effects. In addition, most often, the duration of analgesia is short. Today, the handling of pain remains a major challenge. One promising alternative for the discovery of novel potent analgesics is to take inspiration from Mother Nature; in this context, the detailed investigation of the intriguing analgesia implemented in Buruli ulcer, an infectious disease caused by the bacterium Mycobacterium ulcerans and characterized by painless ulcerative lesions, seems particularly promising. More precisely, in this disease, the painless skin ulcers are caused by mycolactone, a polyketide lactone exotoxin. In fact, mycolactone exerts a wide range of effects on the host, besides being responsible for analgesia, as it has been shown notably to modulate the immune response or to provoke apoptosis. Several cellular mechanisms and different targets have been proposed to account for the analgesic effect of the toxin, such as nerve degeneration, the inhibition of inflammatory mediators and the activation of angiotensin II receptor 2. In this review, we discuss the current knowledge in the field, highlighting possible controversies. We first discuss the different pain-mimicking experimental models that were used to study the effect of mycolactone. We then detail the different variants of mycolactone that were used in such models. Overall, based on the results and the discussions, we conclude that the development of mycolactone-derived molecules can represent very promising perspectives for new analgesic drugs, which could be effective for specific pain indications.
Collapse
Affiliation(s)
- Marie-Line Reynaert
- France Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Denis Dupoiron
- Institut de Cancérologie de l'Ouest Paul Papin, 15 rue André Boquel-49055 Angers, France
| | - Edouard Yeramian
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Univ. Paris, F-75015 Paris, France
| | - Laurent Marsollier
- Equipe ATIP AVENIR, CRCINA, INSERM, Univ. Nantes, Univ. Angers, 4 rue Larrey, F-49933 Angers, France.
| | - Priscille Brodin
- France Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
32
|
|
33
|
Gehringer M, Mäder P, Gersbach P, Pfeiffer B, Scherr N, Dangy JP, Pluschke G, Altmann KH. Configurationally Stabilized Analogs of M. ulcerans Exotoxins Mycolactones A and B Reveal the Importance of Side Chain Geometry for Mycolactone Virulence. Org Lett 2019; 21:5853-5857. [PMID: 31295000 DOI: 10.1021/acs.orglett.9b01947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mycolactones A/B (1a/b) are exotoxins of Mycobacterium ulcerans that are the molecular cause of Buruli ulcer. 1a/b represent a rapidly equilibrating mixture of Z/E isomers about the C4'═C5' double bond of the C5-side chain. Here, we describe the syntheses of mycolactone analogs with configurationally stable C5-side chains (2a, E mimetic; 2b/c, Z mimetics). Based on the cytotoxicity of 2a-c, the Δ4',5'-trans isomer of mycolactones A/B (1b) appears to be the major virulence factor.
Collapse
Affiliation(s)
- Matthias Gehringer
- Swiss Federal Institute of Technology (ETH) Zürich , Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Vladimir-Prelog-Weg 4 , 8093 Zürich , Switzerland
| | - Patrick Mäder
- Swiss Federal Institute of Technology (ETH) Zürich , Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Vladimir-Prelog-Weg 4 , 8093 Zürich , Switzerland
| | - Philipp Gersbach
- Swiss Federal Institute of Technology (ETH) Zürich , Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Vladimir-Prelog-Weg 4 , 8093 Zürich , Switzerland
| | - Bernhard Pfeiffer
- Swiss Federal Institute of Technology (ETH) Zürich , Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Vladimir-Prelog-Weg 4 , 8093 Zürich , Switzerland
| | - Nicole Scherr
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , 4002 Basel , Switzerland
| | - Jean-Pierre Dangy
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , 4002 Basel , Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , 4002 Basel , Switzerland
| | - Karl-Heinz Altmann
- Swiss Federal Institute of Technology (ETH) Zürich , Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Vladimir-Prelog-Weg 4 , 8093 Zürich , Switzerland
| |
Collapse
|
34
|
Kubicek-Sutherland JZ, Vu DM, Anderson AS, Sanchez TC, Converse PJ, Martí-Arbona R, Nuermberger EL, Swanson BI, Mukundan H. Understanding the Significance of Biochemistry in the Storage, Handling, Purification, and Sampling of Amphiphilic Mycolactone. Toxins (Basel) 2019; 11:toxins11040202. [PMID: 30987300 PMCID: PMC6520765 DOI: 10.3390/toxins11040202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022] Open
Abstract
Mycolactone, the amphiphilic macrolide toxin secreted by Mycobacterium ulcerans, plays a significant role in the pathology and manifestations of Buruli ulcer (BU). Consequently, it follows that the toxin is a suitable target for the development of diagnostics and therapeutics for this disease. Yet, several challenges have deterred such development. For one, the lipophilic nature of the toxin makes it difficult to handle and store and contributes to variability associated with laboratory experimentation and purification yields. In this manuscript, we have attempted to incorporate our understanding of the lipophilicity of mycolactone in order to define the optimal methods for the storage, handling, and purification of this toxin. We present a systematic correlation of variability associated with measurement techniques (thin-layer chromatography (TLC), mass spectrometry (MS), and UV-Vis spectrometry), storage conditions, choice of solvents, as well as the impact of each of these on toxin function as assessed by cellular cytotoxicity. We also compared natural mycolactone extracted from bacterial culture with synthesized toxins in laboratory (solvents, buffers) and physiologically relevant (serum) matrices. Our results point to the greater stability of mycolactone in organic, as well as detergent-containing, solvents, regardless of the container material (plastic, glass, or silanized tubes). They also highlight the presence of toxin in samples that may be undetectable by any one technique, suggesting that each detection approach captures different configurations of the molecule with varying specificity and sensitivity. Most importantly, our results demonstrate for the very first time that amphiphilic mycolactone associates with host lipoproteins in serum, and that this association will likely impact our ability to study, diagnose, and treat Buruli ulcers in patients.
Collapse
Affiliation(s)
| | - Dung M Vu
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Aaron S Anderson
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Timothy C Sanchez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Paul J Converse
- Department of Medicine, Johns Hopkins University Center for Tuberculosis Research, Baltimore, MD 21218, USA.
| | | | - Eric L Nuermberger
- Department of Medicine, Johns Hopkins University Center for Tuberculosis Research, Baltimore, MD 21218, USA.
| | - Basil I Swanson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Harshini Mukundan
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
35
|
Abstract
The opportunistic pathogen Mycobacterium ulcerans, which is responsible for Buruli ulcer, synthesizes a series of plasmid-encoded macrolide exotoxins termed mycolactones. These toxins destabilize cell membranes and induce apoptosis-associated pleiotropic effects including tissue destruction, analgesic and anti-inflammatory effects. Despite its medical interest, M. ulcerans is primarily an environmental mycobacterium and the primary functions of mycolactones in the natural ecosystems are unknown. High throughput biochemical profiling findings suggested that M. ulcerans may interact with fungi. Here, we report that semi-purified and purified mycolactones significantly enhance spore germination of Scedosporium apiospermum, Fusarium equiseti and Mucor circinelloides; and that M. ulcerans mycolactones significantly attract colonies of M. circinelloides whereas no significant effect was observed on S. apiospermum and F. equiseti. These experimental results suggest that mycolactones exhibit a chemoattractant activity independent of their cytotoxicity. In natural ecosystems, M. ulcerans mycolactones may act as spore germination inducers and chemoattractants for some fungi, suggesting a novel role for this unique class of mycobacterial toxins in natural ecosystems.
Collapse
|
36
|
O’Brien DP, Murrie A, Meggyesy P, Priestley J, Rajcoomar A, Athan E. Spontaneous healing of Mycobacterium ulcerans disease in Australian patients. PLoS Negl Trop Dis 2019; 13:e0007178. [PMID: 30779807 PMCID: PMC6396929 DOI: 10.1371/journal.pntd.0007178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/01/2019] [Accepted: 01/22/2019] [Indexed: 11/23/2022] Open
Abstract
Background Mycobacterium ulcerans causes necrotising infections of skin and soft tissue mediated by the polyketide exotoxin mycolactone that causes cell apoptosis and immune suppression. It has been postulated that infection can be eradicated before the development of clinical lesions but spontaneous resolution of clinical lesions has been rarely described. Methodology/Principal findings We report a case series of five Australian patients who achieved healing of small M. ulcerans lesions without antibiotics or surgery. The median age of patients was 47 years (IQR 30–68 years) and all patients had small ulcerative lesions (median size 144mm2, IQR 121-324mm2). The median duration of symptoms prior to diagnosis was 90 days (IQR 90–100 days) and the median time to heal from diagnosis without treatment was 68 days (IQR 63–105 days). No patients recurred after a median follow-up of 16.6 months (IQR 16.6–17.9 months) from the development of symptoms and no patients suffered long-term disability from the disease. Conclusions We have shown that healing without specific treatment can occur for small ulcerated M. ulcerans lesions suggesting that in selected cases a robust immune response alone can cure lesions. Further research is required to determine what lesion and host factors are associated with spontaneous healing, and whether observation alone is an effective and safe form of management for selected small M. ulcerans lesions. Mycobacterium ulcerans causes a destructive infection of skin and soft tissue known as Buruli ulcer that when severe can lead to serious long-term deformity and disability. It is currently not well documented whether people with Mycobacterium ulcerans disease can cure themselves without treatment. In our study we describe five people with small ulcers who cured their disease without specific medical or surgical treatment. This suggests that a proportion of people can develop an immune response sufficient enough to eradicate the disease without the help of medical intervention. This is an important step, as recognition of this possibility provides important further insights into the human immune response against the disease. It also opens the possibility to further studies that may determine characteristics of the organism and hosts that favour spontaneous healing of lesions. This knowledge may in turn improve efforts to prevent and control the disease which are currently lacking.
Collapse
Affiliation(s)
- Daniel P. O’Brien
- Department of Infectious Diseases, Barwon Health, Geelong, Victoria, Australia
- Department of Medicine and Infectious Diseases, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| | - Adrian Murrie
- Sorrento Medical Centre, Sorrento, Victoria, Australia
| | | | | | | | - Eugene Athan
- Department of Infectious Diseases, Barwon Health, Geelong, Victoria, Australia
| |
Collapse
|
37
|
Scherr N, Bieri R, Thomas SS, Chauffour A, Kalia NP, Schneide P, Ruf MT, Lamelas A, Manimekalai MSS, Grüber G, Ishii N, Suzuki K, Tanner M, Moraski GC, Miller MJ, Witschel M, Jarlier V, Pluschke G, Pethe K. Targeting the Mycobacterium ulcerans cytochrome bc 1:aa 3 for the treatment of Buruli ulcer. Nat Commun 2018; 9:5370. [PMID: 30560872 PMCID: PMC6299076 DOI: 10.1038/s41467-018-07804-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a neglected tropical skin disease that is most commonly found in children from West and Central Africa. Despite the severity of the infection, therapeutic options are limited to antibiotics with severe side effects. Here, we show that M. ulcerans is susceptible to the anti-tubercular drug Q203 and related compounds targeting the respiratory cytochrome bc1:aa3. While the cytochrome bc1:aa3 is the primary terminal oxidase in Mycobacterium tuberculosis, the presence of an alternate bd-type terminal oxidase limits the bactericidal and sterilizing potency of Q203 against this bacterium. M. ulcerans strains found in Buruli ulcer patients from Africa and Australia lost all alternate terminal electron acceptors and rely exclusively on the cytochrome bc1:aa3 to respire. As a result, Q203 is bactericidal at low dose against M. ulcerans replicating in vitro and in mice, making the drug a promising candidate for Buruli ulcer treatment. Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU). Existing anti-tubercular drugs have been used to treat the condition with varying success. Here, the authors show that a clinical-stage drug candidate for tuberculosis, Q203, is effective at killing M. ulcerans and is a promising therapeutic candidate for BU.
Collapse
Affiliation(s)
- Nicole Scherr
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Raphael Bieri
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Sangeeta S Thomas
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore, 636921, Singapore
| | - Aurélie Chauffour
- CR7, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Team E13 (Bactériologie), Sorbonne Universités, UPMC Université Paris 06, Paris, 75005, France
| | - Nitin Pal Kalia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore, 636921, Singapore
| | | | - Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Araceli Lamelas
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland.,University of Basel, Basel, 4001, Switzerland.,Red de Estudios Moleculares, AvanzadosInstituto de Ecología A. C., Xalapa, 91000, Veracruz, Mexico
| | - Malathy S S Manimekalai
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Norihisa Ishii
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan
| | - Koichi Suzuki
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan.,Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, 173-8605, Japan
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Garrett C Moraski
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59715, USA
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | - Vincent Jarlier
- CR7, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Team E13 (Bactériologie), Sorbonne Universités, UPMC Université Paris 06, Paris, 75005, France.,CNR-MyRMA, Bactériologie Hygiène, Hôpitaux Universitaires Pitie Salpêtrière-Charles Foix, Paris, 75013, France
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland. .,University of Basel, Basel, 4001, Switzerland.
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore, 636921, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
38
|
Aboagye SY, Kpeli G, Tuffour J, Yeboah‐Manu D. Challenges associated with the treatment of Buruli ulcer. J Leukoc Biol 2018; 105:233-242. [PMID: 30168876 DOI: 10.1002/jlb.mr0318-128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/19/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Sammy Yaw Aboagye
- Noguchi Memorial Institute for Medical ResearchUniversity of Ghana Accra Ghana
| | - Grace Kpeli
- University of Allied Health Sciences Ho Ghana
| | | | - Dorothy Yeboah‐Manu
- Noguchi Memorial Institute for Medical ResearchUniversity of Ghana Accra Ghana
| |
Collapse
|
39
|
Demangel C, High S. Sec61 blockade by mycolactone: A central mechanism in Buruli ulcer disease. Biol Cell 2018; 110:237-248. [PMID: 30055020 DOI: 10.1111/boc.201800030] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022]
Abstract
Infection with Mycobacterium ulcerans results in a necrotising skin disease known as a Buruli ulcer, the pathology of which is directly linked to the bacterial production of the toxin mycolactone. Recent studies have identified the protein translocation machinery of the endoplasmic reticulum (ER) membrane as the primary cellular target of mycolactone, and shown that the toxin binds to the core subunit of the Sec61 complex. Mycolactone binding strongly inhibits the capacity of the Sec61 translocon to transport newly synthesised membrane and secretory proteins into and across the ER membrane. Since the ER acts as the entry point for the mammalian secretory pathway, and hence regulates initial access to the entire endomembrane system, mycolactone-treated cells have a reduced ability to produce a range of proteins including secretory cytokines and plasma membrane receptors. The global effect of this molecular blockade of protein translocation at the ER is that the host is unable to mount an effective immune response to the underlying mycobacterial infection. Prolonged exposure to mycolactone is normally cytotoxic, since it triggers stress responses activating the transcription factor ATF4 and ultimately inducing apoptosis.
Collapse
Affiliation(s)
- Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, Paris, France.,INSERM, U1221, Paris, France
| | - Stephen High
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
40
|
Yu X, Lin XJ, Wang S, Liu X, Li W, Kou BX, Chai M, Chen D, Liu X, Wang X. Antitumor Efficacy of Huqizhengxiao (HQZX) Decoction Based on Inhibition of Telomerase Activity in Nude Mice of Hepatocarcinoma Xenograft. Integr Cancer Ther 2018; 17:1216-1224. [PMID: 29978739 PMCID: PMC6247564 DOI: 10.1177/1534735418785999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: Huqizhengxiao (HQZX) decoction is a mixture of
traditional Chinese medicines comprising 10 herbs, with inhibitory effects on
hepatocarcinoma. The aim of the study is to observe the antitumor efficacy and
mechanism of HQZX decoction in nude mice with hepatocellular carcinoma
xenografts. Methods: HepG2-luc subcutaneous hepatocarcinoma was
established in nude mice. The mice were divided into 5 groups: control,
cinobufagin, HQZXS, HQZXM, and HQZXH with doses 13.52, 27.03, and 54.06 g/kg,
respectively. HQZX decoction was prepared for intraperitoneal intragastric
administration for 3 weeks. Tumor growth was measured with Vernier calipers and
in vivo imaging system. α-Fetoprotein (AFP) was determined by radioimmunoassay.
Tumor necrosis factor–α (TNF-α) was measured with enzyme-linked immunosorbent
assay (ELISA) assay. Telomerase activity was measured with polymerase chain
reaction–ELISA. Nuclear mitosis and necrosis were observed with
hematoxylin-eosin stain. Apoptotic proteins of caspase-3, Bcl-2, and Bax were
examined by Western blot. Signaling molecules of ERK, mTOR, and STAT3 were
measured with Luminex assay. Results: HQZX decoction showed good
inhibition of HepG2-luc xenografts. Compared with control group, the relative
tumor proliferation rate was less than 60% in the HQZXH and HQZXS. The tumor
inhibition rate of HQZXH group reached 52% ± 15%. Relative average optical
density values of the HQZXS and HQZXH groups decreased significantly. The
mitotic index in HQZXS, HQZXM, and HQZXH groups decreased greatly. Telomerase
activity of HQZXS was clearly reduced, and, the caspase-3 expression upregulated
in HQZXH group. Bcl-2 expression was downregulated in HQZXS and HQZXH. The
ratios of p-ERK/ERK and p-STAT3/STAT3 in HQZXS group were significantly
downregulated. Conclusion: HQZX decoction can clearly inhibit the
growth of hepatocellular carcinoma and induce tumor apoptosis. Its antitumor
mechanism may be related to reducing telomerase activity and regulating the
STAT3 and ERK signal pathway.
Collapse
Affiliation(s)
- XiaoXiao Yu
- 1 Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xue-Jun Lin
- 1 Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shuang Wang
- 1 Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China
| | - XiuHong Liu
- 1 Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China.,2 Beijing Institute of Hepatology, Beijing, People's Republic of China
| | - WeiHua Li
- 1 Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China.,2 Beijing Institute of Hepatology, Beijing, People's Republic of China
| | - Bu-Xin Kou
- 1 Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China.,2 Beijing Institute of Hepatology, Beijing, People's Republic of China
| | - MengYin Chai
- 1 Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China.,2 Beijing Institute of Hepatology, Beijing, People's Republic of China
| | - DeXi Chen
- 1 Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China.,2 Beijing Institute of Hepatology, Beijing, People's Republic of China
| | - XiaoNi Liu
- 1 Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China.,2 Beijing Institute of Hepatology, Beijing, People's Republic of China
| | - XiaoJun Wang
- 1 Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
41
|
Morel JD, Paatero AO, Wei J, Yewdell JW, Guenin-Macé L, Van Haver D, Impens F, Pietrosemoli N, Paavilainen VO, Demangel C. Proteomics Reveals Scope of Mycolactone-mediated Sec61 Blockade and Distinctive Stress Signature. Mol Cell Proteomics 2018; 17:1750-1765. [PMID: 29915147 DOI: 10.1074/mcp.ra118.000824] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 06/17/2018] [Indexed: 11/06/2022] Open
Abstract
Mycolactone is a bacteria-derived macrolide that blocks the biogenesis of a large array of secretory and integral transmembrane proteins (TMP) through potent inhibition of the Sec61 translocon. Here, we used quantitative proteomics to delineate the direct and indirect effects of mycolactone-mediated Sec61 blockade in living cells. In T lymphocytes, dendritic cells and sensory neurons, Sec61 substrates downregulated by mycolactone were in order of incidence: secretory proteins (with a signal peptide but no transmembrane domain), TMPs with a signal peptide (Type I) and TMPs without signal peptide and a cytosolic N terminus (Type II). TMPs without a signal peptide and the opposite N terminus topology (Type III) were refractory to mycolactone inhibition. This rule applied comparably to single- and multi-pass TMPs, and extended to exogenous viral proteins. Parallel to its broad-spectrum inhibition of Sec61-mediated protein translocation, mycolactone rapidly induced cytosolic chaperones Hsp70/Hsp90. Moreover, it activated an atypical endoplasmic reticulum stress response, differing from conventional unfolded protein response by the down-regulation of Bip. In addition to refining our mechanistic understanding of Sec61 inhibition by mycolactone, our findings thus reveal that Sec61 blockade induces proteostatic stress in the cytosol and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Jean-David Morel
- From the ‡Immunobiology of Infection Unit, Institut Pasteur, 75015 Paris, France.,§INSERM, U1221, 75005 Paris, France
| | - Anja O Paatero
- ¶Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Jiajie Wei
- ‖Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan W Yewdell
- ‖Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Laure Guenin-Macé
- From the ‡Immunobiology of Infection Unit, Institut Pasteur, 75015 Paris, France.,§INSERM, U1221, 75005 Paris, France
| | - Delphi Van Haver
- **VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium.,‡‡VIB Proteomics Core, 9000 Ghent, Belgium.,§§Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Francis Impens
- **VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium.,‡‡VIB Proteomics Core, 9000 Ghent, Belgium.,§§Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Natalia Pietrosemoli
- ¶¶Bioinformatics and Biostatistics Hub, Center of Bioinformatics, Biostatistics, and Integrative Biology, Institut Pasteur, Unité de Service et de Recherche 3756 Institut Pasteur CNRS, 75015 Paris, France
| | - Ville O Paavilainen
- ¶Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Caroline Demangel
- From the ‡Immunobiology of Infection Unit, Institut Pasteur, 75015 Paris, France; .,§INSERM, U1221, 75005 Paris, France
| |
Collapse
|
42
|
Saint-Auret S, Abdelkafi H, Le Nouen D, Guenin-Macé L, Demangel C, Bisseret P, Blanchard N. Modular total syntheses of mycolactone A/B and its [ 2H]-isotopologue. Org Biomol Chem 2018; 15:7518-7522. [PMID: 28871293 DOI: 10.1039/c7ob01943b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular total synthesis of mycolactone A/B, the exotoxin produced by Mycobacterium ulcerans, has been achieved through the orchestration of several Pd-catalyzed key steps. While this route leads to a mixture of the natural product and its C12 epimer (4 : 1 ratio), this was inconsequential from the biological activity standpoint. Compared to the previously reported routes, this synthetic blueprint allows the late-stage modification of the toxin, as exemplified by the preparation of [22,22,22-2H3]-mycolactone A/B.
Collapse
Affiliation(s)
- Sarah Saint-Auret
- Université de Strasbourg, CNRS, Laboratoire de Chimie Moléculaire UMR 7509, 67000 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Ogbechi J, Hall BS, Sbarrato T, Taunton J, Willis AE, Wek RC, Simmonds RE. Inhibition of Sec61-dependent translocation by mycolactone uncouples the integrated stress response from ER stress, driving cytotoxicity via translational activation of ATF4. Cell Death Dis 2018. [PMID: 29540678 PMCID: PMC5852046 DOI: 10.1038/s41419-018-0427-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mycolactone is the exotoxin virulence factor of Mycobacterium ulcerans that causes the neglected tropical disease Buruli ulcer. We recently showed it to be a broad spectrum inhibitor of Sec61-dependent co-translational translocation of proteins into the endoplasmic reticulum (ER). An outstanding question is the molecular pathway linking this to its known cytotoxicity. We have now used translational profiling to better understand the reprogramming that occurs in cells exposed to mycolactone. Gene ontology identified enrichment in genes involved in cellular response to stress, and apoptosis signalling among those showing enhanced translation. Validation of these results supports a mechanism by which mycolactone activates an integrated stress response meditated by phosphorylation of eIF2α via multiple kinases (PERK, GCN, PKR) without activation of the ER stress sensors IRE1 or ATF6. The response therefore uncouples the integrated stress response from ER stress, and features translational and transcriptional modes of genes expression that feature the key regulatory transcription factor ATF4. Emphasising the importance of this uncoupled response in cytotoxicity, downstream activation of this pathway is abolished in cells expressing mycolactone-resistant Sec61α variants. Using multiple genetic and biochemical approaches, we demonstrate that eIF2α phosphorylation is responsible for mycolactone-dependent translation attenuation, which initially protects cells from cell death. However, chronic activation without stress remediation enhances autophagy and apoptosis of cells by a pathway facilitated by ATF4 and CHOP. Our findings demonstrate that priming events at the ER can result in the sensing of stress within different cellular compartments.
Collapse
Affiliation(s)
- Joy Ogbechi
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Belinda S Hall
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Anne E Willis
- MRC Toxicology Unit, Lancaster Rd, Leicester, LE1 9HN, UK
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Rachel E Simmonds
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
44
|
Yotsu RR, Suzuki K, Simmonds RE, Bedimo R, Ablordey A, Yeboah-Manu D, Phillips R, Asiedu K. Buruli Ulcer: a Review of the Current Knowledge. CURRENT TROPICAL MEDICINE REPORTS 2018; 5:247-256. [PMID: 30460172 PMCID: PMC6223704 DOI: 10.1007/s40475-018-0166-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF THE REVIEW Buruli ulcer (BU) is a necrotizing and disabling cutaneous disease caused by Mycobacterium ulcerans, one of the skin-related neglected tropical diseases (skin NTDs). This article aims to review the current knowledge of this disease and challenges ahead. RECENT FINDINGS Around 60,000 cases of BU have been reported from over 33 countries between 2002 and 2017. Encouraging findings for development of point-of-care tests for BU are being made, and its treatment is currently in the transition period from rifampicin plus streptomycin (injection) to all-oral regimen. A major recent advance in our understanding of its pathogenesis has been agreement on the mechanism of action of the major virulence toxin mycolactone in host cells, targeting the Sec61 translocon during a major step in protein biogenesis. SUMMARY BU is distributed mainly in West Africa, but cases are also found in other parts of the world. We may be underestimating its true disease burden, due to the limited awareness of this disease. More awareness and more understanding of BU will surely contribute in enhancing our fight against this skin NTD.
Collapse
Affiliation(s)
- Rie R. Yotsu
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Dermatology, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Dermatology, National Suruga Sanatorium, Shizuoka, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Rachel E. Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, University of Surrey, Surrey, UK
| | - Roger Bedimo
- Department of Medicine, VA North Texas Healthcare System, Dallas, TX USA
- Division of Infectious Diseases, University of Texas Dallas Southwestern, Dallas, TX USA
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Dorothy Yeboah-Manu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Richard Phillips
- Kumansi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kingsley Asiedu
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
45
|
Bouam A, Ghigo E, Drancourt M. Intra-amoebal killing of Mycobacterium ulcerans by Acanthamoeba griffini: A co-culture model. Microb Pathog 2017; 114:1-7. [PMID: 29155010 DOI: 10.1016/j.micpath.2017.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
Abstract
Mycobacterium ulcerans, a decaying Mycobacterium marinum derivative is responsible for Buruli ulcer, a notifiable non-contagious disabling infection highly prevalent in some West African countries. Aquatic environments are suspected to host M. ulcerans, however, the exact reservoirs remain unknown. While M. marinum was found to resist amoebal microbicidal activities, this remains unknown for M. ulcerans. In this study M. ulcerans was co-cultured with the moderately halophile Acanthamoeba griffini at 30 °C to probe this tropical amoeba as a potential reservoir for M. ulcerans. In triplicate experiments, we observed engulfment of M. ulcerans by A. griffini trophozoites, followed by an unexpected significant difference of 98.4% (day 1), 99.5% (day 2), 99.5% (day 3) and 99.9% (day 7) between the number of intra-amoebal mycobacteria detected by PCR and the number of viable intra-amoebal mycobacteria measured by 10-week culture. Further encystment revealed only one Mycobacterium organism for 150 A. griffini cysts observed by electron microscopy and the culture of excysted amoebae remained sterile. In conclusion, these data install M. ulcerans as susceptible to A. griffini microbicidal activities rendering this amoeba species an unlikely host of M. ulcerans in natural environments.
Collapse
Affiliation(s)
- Amar Bouam
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Marseille 13005, France
| | - Eric Ghigo
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Marseille 13005, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Marseille 13005, France.
| |
Collapse
|
46
|
Isaac C, Mauborgne A, Grimaldi A, Ade K, Pohl M, Limatola C, Boucher Y, Demangel C, Guenin-Macé L. Mycolactone displays anti-inflammatory effects on the nervous system. PLoS Negl Trop Dis 2017; 11:e0006058. [PMID: 29149212 PMCID: PMC5693295 DOI: 10.1371/journal.pntd.0006058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mycolactone is a macrolide produced by the skin pathogen Mycobacterium ulcerans, with cytotoxic, analgesic and immunomodulatory properties. The latter were recently shown to result from mycolactone blocking the Sec61-dependent production of pro-inflammatory mediators by immune cells. Here we investigated whether mycolactone similarly affects the inflammatory responses of the nervous cell subsets involved in pain perception, transmission and maintenance. We also investigated the effects of mycolactone on the neuroinflammation that is associated with chronic pain in vivo. METHODOLOGY/ PRINCIPLE FINDINGS Sensory neurons, Schwann cells and microglia were isolated from mice for ex vivo assessment of mycolactone cytotoxicity and immunomodulatory activity by measuring the production of proalgesic cytokines and chemokines. In all cell types studied, prolonged (>48h) exposure to mycolactone induced significant cell death at concentrations >10 ng/ml. Within the first 24h treatment, nanomolar concentrations of mycolactone efficiently suppressed the cell production of pro-inflammatory mediators, without affecting their viability. Notably, mycolactone also prevented the pro-inflammatory polarization of cortical microglia. Since these cells critically contribute to neuroinflammation, we next tested if mycolactone impacts this pathogenic process in vivo. We used a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. Here, mycolactone was injected daily for 3 days in the spinal canal, to ensure its proper delivery to spinal cord. While this treatment failed to prevent injury-induced neuroinflammation, it decreased significantly the local production of inflammatory cytokines without inducing detectable cytotoxicity. CONCLUSION/ SIGNIFICANCE The present study provides in vitro and in vivo evidence that mycolactone suppresses the inflammatory responses of sensory neurons, Schwann cells and microglia, without affecting the cell viability. Together with previous studies using peripheral blood leukocytes, our work implies that mycolactone-mediated analgesia may, at least partially, be explained by its anti-inflammatory properties.
Collapse
Affiliation(s)
- Caroline Isaac
- Institut Pasteur, Unité d’Immunobiologie de l’Infection, Paris, France
- INSERM U1221, Paris, France
| | - Annie Mauborgne
- Centre de Psychiatrie et Neurosciences, Inserm U894, Paris, France
| | - Alfonso Grimaldi
- Pasteur Institute Rome, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Kemy Ade
- Institut Pasteur, Unité d’Immunobiologie de l’Infection, Paris, France
- INSERM U1221, Paris, France
| | - Michel Pohl
- Centre de Psychiatrie et Neurosciences, Inserm U894, Paris, France
| | - Cristina Limatola
- Pasteur Institute Rome, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Yves Boucher
- Centre de Psychiatrie et Neurosciences, Inserm U894, Paris, France
- Groupe Hospitalier Pitié Salpétrière, UFR Odontologie Université Paris Diderot, Paris, France
| | - Caroline Demangel
- Institut Pasteur, Unité d’Immunobiologie de l’Infection, Paris, France
- INSERM U1221, Paris, France
| | - Laure Guenin-Macé
- Institut Pasteur, Unité d’Immunobiologie de l’Infection, Paris, France
- INSERM U1221, Paris, France
- * E-mail:
| |
Collapse
|
47
|
Ruf MT, Steffen C, Bolz M, Schmid P, Pluschke G. Infiltrating leukocytes surround early Buruli ulcer lesions, but are unable to reach the mycolactone producing mycobacteria. Virulence 2017; 8:1918-1926. [PMID: 28873327 PMCID: PMC5810495 DOI: 10.1080/21505594.2017.1370530] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Marie-Thérèse Ruf
- a Swiss Tropical and Public Health Institute , Basel , Switzerland.,b University of Basel , Basel , Switzerland
| | - Christina Steffen
- c Department of Surgery , Cairns Hospital , Cairns , QLD , Australia
| | - Miriam Bolz
- a Swiss Tropical and Public Health Institute , Basel , Switzerland.,b University of Basel , Basel , Switzerland
| | - Peter Schmid
- a Swiss Tropical and Public Health Institute , Basel , Switzerland.,b University of Basel , Basel , Switzerland
| | - Gerd Pluschke
- a Swiss Tropical and Public Health Institute , Basel , Switzerland.,b University of Basel , Basel , Switzerland
| |
Collapse
|
48
|
Bibert S, Bratschi MW, Aboagye SY, Collinet E, Scherr N, Yeboah-Manu D, Beuret C, Pluschke G, Bochud PY. Susceptibility to Mycobacterium ulcerans Disease (Buruli ulcer) Is Associated with IFNG and iNOS Gene Polymorphisms. Front Microbiol 2017; 8:1903. [PMID: 29046669 PMCID: PMC5632961 DOI: 10.3389/fmicb.2017.01903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
Buruli ulcer (BU) is a chronic necrotizing disease of the skin and subcutaneous fat tissue. The causative agent, Mycobacterium ulcerans, produces mycolactone, a macrolide toxin, which causes apoptosis of mammalian cells. Only a small proportion of individuals exposed to M. ulcerans develop clinical disease, as surrounding macrophages may control the infection by bacterial killing at an early stage, while mycolactone concentration is still low. Otherwise, bacterial multiplication leads to in higher concentrations of mycolactone, with formation of necrotizing lesions that are no more accessible to immune cells. By typing a cohort of 96 Ghanaian BU patients and 384 endemic controls without BU, we show an association between BU and single nucleotide polymorphisms (SNPs) in iNOS (rs9282799) and IFNG (rs2069705). Both polymorphisms influence promoter activity in vitro. A previously reported SNP in SLC11A1 (NRAMP, rs17235409) tended to be associated with BU. Altogether, these data reflect the importance of IFNG signaling in early defense against M. ulcerans infection.
Collapse
Affiliation(s)
- Stéphanie Bibert
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Martin W Bratschi
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Samuel Y Aboagye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Emilie Collinet
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nicole Scherr
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christian Beuret
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Gerd Pluschke
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Gehringer M, Altmann KH. The chemistry and biology of mycolactones. Beilstein J Org Chem 2017; 13:1596-1660. [PMID: 28904608 PMCID: PMC5564285 DOI: 10.3762/bjoc.13.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Mycolactones are a group of macrolides excreted by the human pathogen Mycobacterium ulcerans, which exhibit cytotoxic, immunosuppressive and analgesic properties. As the virulence factor of M. ulcerans, mycolactones are central to the pathogenesis of the neglected disease Buruli ulcer, a chronic and debilitating medical condition characterized by necrotic skin ulcers. Due to their complex structure and fascinating biology, mycolactones have inspired various total synthesis endeavors and structure-activity relationship studies. Although this review intends to cover all synthesis efforts in the field, special emphasis is given to the comparison of conceptually different approaches and to the discussion of more recent contributions. Furthermore, a detailed discussion of molecular targets and structure-activity relationships is provided.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
50
|
A Bacterial Toxin with Analgesic Properties: Hyperpolarization of DRG Neurons by Mycolactone. Toxins (Basel) 2017; 9:toxins9070227. [PMID: 28718822 PMCID: PMC5535174 DOI: 10.3390/toxins9070227] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Mycolactone, a polyketide molecule produced by Mycobacterium ulcerans, is the etiological agent of Buruli ulcer. This lipid toxin is endowed with pleiotropic effects, presents cytotoxic effects at high doses, and notably plays a pivotal role in host response upon colonization by the bacillus. Most remarkably, mycolactone displays intriguing analgesic capabilities: the toxin suppresses or alleviates the pain of the skin lesions it inflicts. We demonstrated that the analgesic capability of mycolactone was not attributable to nerve damage, but instead resulted from the triggering of a cellular pathway targeting AT₂ receptors (angiotensin II type 2 receptors; AT₂R), and leading to potassium-dependent hyperpolarization. This demonstration paves the way to new nature-inspired analgesic protocols. In this direction, we assess here the hyperpolarizing properties of mycolactone on nociceptive neurons. We developed a dedicated medium-throughput assay based on membrane potential changes, and visualized by confocal microscopy of bis-oxonol-loaded Dorsal Root Ganglion (DRG) neurons. We demonstrate that mycolactone at non-cytotoxic doses triggers the hyperpolarization of DRG neurons through AT₂R, with this action being not affected by known ligands of AT₂R. This result points towards novel AT₂R-dependent signaling pathways in DRG neurons underlying the analgesic effect of mycolactone, with the perspective for the development of new types of nature-inspired analgesics.
Collapse
|