1
|
Lu P, Huang H, Liu J, Cao Y, Hua Liu S, Yin J. Small Molecule Fluorescent Probes for Glutathione S-Transferase. Chembiochem 2025; 26:e202400994. [PMID: 39969044 DOI: 10.1002/cbic.202400994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/20/2025]
Abstract
Cytoplasmic glutathione S-transferase (GST) is a key enzyme in cellular detoxification, catalysing the nucleophilic attack of glutathione (GSH) with toxic electrophilic substrates to produce less harmful compounds, thus aiding cellular detoxification. Studies have shown that GST is closely associated with the development of resistance to chemotherapeutic drugs, pesticides, herbicides and antibiotics, and the development of drug resistance in organisms poses new challenges in areas such as environmental protection and tumour therapy. In order to clarify the mechanism of GST in the development of drug resistance and detect the content of GST more accurately, this paper summarized the mechanism of GST on the development of drug resistance in different organisms, the types and research progress of organic small molecule fluorescence probes for GST imaging detection are introduced.
Collapse
Affiliation(s)
- Pingping Lu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Huiting Huang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Jia Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yixuan Cao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Sheng Hua Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Jun Yin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
2
|
Wilson Q, Lin HH, Lin EY, Chen LJ, Sletten EM. Exploiting Flavylium Merocyanine Dyes for Intrinsic, Multiplexed Labeling of the Endoplasmic Reticulum. Anal Chem 2025; 97:5595-5604. [PMID: 40036748 PMCID: PMC11923946 DOI: 10.1021/acs.analchem.4c06185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/02/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Merocyanine dyes are a versatile class of donor-acceptor polymethine dyes that exhibit unique properties depending on their structural makeup and surrounding environment. Scaffolds that favor the cyanine state (i.e., narrow, red-shifted absorption and high fluorescence quantum yields) in biologically relevant settings are highly advantageous for multiplexed labeling experiments, but remain limited by their visible absorption. Herein, we synthesize a new class of far-red (650-700 nm) to near-infrared (NIR, 700-1000 nm) flavylium merocyanine dyes and demonstrate that, unlike conventional scaffolds, they favor the cyanine state with increasing solvent viscosity and hydrogen bond donation, rather than polarity. We leverage these advantageous properties for live cell labeling, where we observed intrinsic targeting to the endoplasmic reticulum (ER) and lipid droplets, and minimal crosstalk with commercial stains. We reveal that intrinsic ER labeling is achieved by the dipolarity in the cyanine state and lipophilicity (ClogP) of the merocyanine architecture, making this class of dyes a simple, red-shifted alternative to the more structurally complex ER stains currently available.
Collapse
Affiliation(s)
- Quintashia
D. Wilson
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Helen H. Lin
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Eric Y. Lin
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Lin-Jiun Chen
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Ellen M. Sletten
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Shrestha P, Patel NL, Kalen JD, Usama SM, Schnermann MJ. Tracking the Fate of Therapeutic Proteins Using Ratiometric Imaging of Responsive Shortwave Infrared Probes. J Am Chem Soc 2025; 147:8280-8288. [PMID: 40025700 DOI: 10.1021/jacs.4c15614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Monoclonal antibodies (mAbs) are essential agents for cancer treatment and diagnosis. Advanced optical imaging strategies have the potential to address specific questions regarding their complex in vivo life cycle. This study presents responsive shortwave infrared (SWIR) probes and an associated imaging scheme to assess mAb biodistribution, cellular uptake, and proteolysis. Specifically, we identify a Pegylated benzo-fused norcyanine derivative (Benz-NorCy7) that is activated in acidic environments and can be appended to mAbs without significant changes in optical properties. As a mAb conjugate, this agent shows high tumor specificity in a longitudinal imaging study in a murine model. To enable independent tracking of mAb uptake and lysosomal uptake and retention, a two-color ratiometric imaging strategy was employed using an "always-ON" heptamethine cyanine dye (λex = 785 nm) and the pH-responsive Benz-NorCy7 (λex = 890 nm). To assess proteolytic catabolism, we append a cleavable carbamate to Benz-NorCy7 to create turn-ON probes. These agents facilitate the comparison of two common peptide linkers and provide insights into their in vivo properties. Overall, these studies provide a strategy to assess the fate of protein-based therapeutics using optical imaging.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit L Patel
- Small Animal Imaging Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Joseph D Kalen
- Small Animal Imaging Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
4
|
Rizzo R, Capozza M, Conti L, Avalle L, Poli V, Terreno E. Novel FAP-Targeted Heptamethine Cyanines for NIRF Imaging Applications. Mol Pharm 2025; 22:1518-1528. [PMID: 39954291 PMCID: PMC11881144 DOI: 10.1021/acs.molpharmaceut.4c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Fibroblast activation protein (FAP) is a pan-cancer target that is useful for imaging, ideally all epithelial cancers. This work aimed to develop, characterize, and validate two novel FAP-targeted probes for optical imaging, both in vitro and in vivo. IRDye800CW and FNIRTag heptamethine cyanines were conjugated to the NH precursor of the well-known FAP inhibitor FAPI-46, which is widely employed in nuclear medicine. In addition to synthesis, the dyes were characterized in terms of physicochemical properties, biodistribution, and imaging performances in a breast cancer tumor model. FAPI-FNIRTag showed a stronger fluorescence and higher photostability compared to FAPI-IRDye800CW. Notably, both compounds exhibited strong tumor accumulation in TUBO breast cancer-bearing mice 24 h postadministration, suggesting potential for further investigation as fluorescence-guided surgery (FGS) agents.
Collapse
Affiliation(s)
- Rebecca Rizzo
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44/bis, Turin 10126, Italy
| | - Martina Capozza
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44/bis, Turin 10126, Italy
| | - Laura Conti
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44/bis, Turin 10126, Italy
| | - Lidia Avalle
- DISIT, University of Eastern Piedmont, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Valeria Poli
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Enzo Terreno
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44/bis, Turin 10126, Italy
| |
Collapse
|
5
|
Mobley E, Lin EY, Sletten EM. Chromenylium Star Polymers: Merging Water Solubility and Stealth Properties with Shortwave Infrared Emissive Fluorophores. ACS CENTRAL SCIENCE 2025; 11:208-218. [PMID: 40028351 PMCID: PMC11869135 DOI: 10.1021/acscentsci.4c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 03/05/2025]
Abstract
Fluorescence imaging in the shortwave infrared (SWIR) region has emerged as a vital tool for studying mammals. SWIR emissive polymethine dyes are well-suited to this endeavor; however, advancing in vivo imaging utility with these dyes is primarily limited by hydrophobicity and/or nonspecific protein association. Herein, we take a distinct approach to combine hydrophilicity and stealth behavior to construct bright, SWIR emissive chromenylium fluorophores by employing a well-defined poly(2-methyl-2-oxazoline) (POx) star polymer architecture, which we refer to as chromenylium stars, or "CStars." Of these polymer-shielded dyes, the variant containing five POx chains (CStar30) boasts particularly enhanced aqueous solubility and SWIR brightness, enabling high-resolution SWIR imaging in mice. The swift renal clearance and stealth behavior displayed in vivo also achieves improved noninvasive visualization of the lymphatic system. Further, CStar's orthogonal biodistribution to an FDA-approved dye, indocyanine green (ICG), facilitates excitation-multiplexed SWIR imaging in two colors to achieve simultaneous visualization of both fluid dynamics and protein dynamics in the same animal in real time at video-rate frame counts.
Collapse
Affiliation(s)
- Emily
B. Mobley
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Eric Y. Lin
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ellen M. Sletten
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Li X, Patel NL, Kalen J, Schnermann MJ. Benzyl Ammonium Carbamates Undergo Two-Step Linker Cleavage and Improve the Properties of Antibody Conjugates. Angew Chem Int Ed Engl 2025; 64:e202417651. [PMID: 39696914 PMCID: PMC11795738 DOI: 10.1002/anie.202417651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Indexed: 12/20/2024]
Abstract
Targeted payload delivery strategies, such as antibody-drug conjugates (ADCs), have emerged as important therapeutics. Although considerable efforts have been made in the areas of antibody engineering and labeling methodology, improving the overall physicochemical properties of the linker/payload combination remains an important challenge. Here we report an approach to create an intrinsically hydrophilic linker domain. We find that benzyl α-ammonium carbamates (BACs) undergo tandem 1,6-1,2-elimination to release secondary amines. Using a fluorogenic hemicyanine as a model payload component, we show that a zwitterionic BAC linker improves labeling efficiency and reduces antibody aggregation when compared to a commonly used para-amino benzyl (PAB) linker as well as a cationic BAC. Cellular and in vivo fluorescence imaging studies demonstrate that the model payload is specifically released in antigen-expressing cells and tumors. The therapeutic potential of the BAC linker strategy was assessed using an MMAE payload, a potent microtubule-disrupting agent frequently used for ADC applications. The BAC-MMAE combination enhances labeling efficiency and cellular toxicity when compared to the routinely used PAB-Val-Cit ADC analogue. Broadly, this strategy provides a general approach to mask payload hydrophobicity and improve the properties of targeted agents.
Collapse
Affiliation(s)
- Xiaoyi Li
- Chemical Biology LaboratoryCenter for Cancer ResearchNational Cancer InstituteFrederickMaryland21702USA
| | - Nimit L. Patel
- Small Animal Imaging ProgramFrederick National Laboratory for Cancer ResearchLeidos Biomedical Research Inc.FrederickMaryland21702USA
| | - Joseph Kalen
- Small Animal Imaging ProgramFrederick National Laboratory for Cancer ResearchLeidos Biomedical Research Inc.FrederickMaryland21702USA
| | - Martin J. Schnermann
- Chemical Biology LaboratoryCenter for Cancer ResearchNational Cancer InstituteFrederickMaryland21702USA
| |
Collapse
|
7
|
Mourot B, Jacquemin D, Siri O, Pascal S. Coupled Polymethine Dyes: Six Decades of Discoveries. CHEM REC 2024; 24:e202400183. [PMID: 39529436 DOI: 10.1002/tcr.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Indexed: 11/16/2024]
Abstract
This review provides a comprehensive examination of the applications of the seminal coupling principle introduced by Siegfried Dähne and Dieter Leupold in 1966. Their heuristic and groundbreaking work proposed that combining multiple polymethine subunits within a single chromophore enables orbital coupling, consequently narrowing the HOMO-LUMO gap, and yielding redshifted optical properties. These outcomes are particularly valuable for developing organic dyes tailored for visible-to-near-infrared applications. Despite their potential, coupled polymethines remain relatively underexplored, with most reported instances being serendipitous discoveries over the last six decades. In light of this, our review compiles and discusses the reported coupled polymethine structures, covering synthetic, spectroscopic, theoretical and applicative aspects, offering insights into the structure-property relationships of this unique class of dyes and perspectives for their future applications.
Collapse
Affiliation(s)
- Benjamin Mourot
- Aix-Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09, 13288, France
| | - Denis Jacquemin
- Nantes Université, CEISAM UMR 6230, CNRS, Nantes, F-44000, France
- Institut Universitaire de France (IUF), Paris, F-75005, France
| | - Olivier Siri
- Aix-Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09, 13288, France
| | - Simon Pascal
- Aix-Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09, 13288, France
- Nantes Université, CEISAM UMR 6230, CNRS, Nantes, F-44000, France
| |
Collapse
|
8
|
Yamazaki H, Sugawara R, Takayama Y. Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light. Front Bioeng Biotechnol 2024; 12:1324757. [PMID: 39465004 PMCID: PMC11502365 DOI: 10.3389/fbioe.2024.1324757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Gene expression is a fundamental process that regulates diverse biological activities across all life stages. Given its vital role, there is an urgent need to develop innovative methodologies to effectively control gene expression. Light-controlled gene expression is considered a favorable approach because of its ability to provide precise spatiotemporal control. However, current light-controlled technologies rely on photosensitive molecular tags, making their practical use challenging. In this study, we review current technologies for light-controlled gene expression and propose the development of label-free light-controlled technologies using mid-infrared (mid-IR) and terahertz light.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ryusei Sugawara
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yurito Takayama
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
9
|
Guo L, Yang M, Dong B, Lewman S, Van Horn A, Jia S. Engineering Central Substitutions in Heptamethine Dyes for Improved Fluorophore Performance. JACS AU 2024; 4:3007-3017. [PMID: 39211623 PMCID: PMC11350720 DOI: 10.1021/jacsau.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
As a major family of red-shifted fluorophores that operate beyond visible light, polymethine dyes are pivotal in light-based biological techniques. However, methods for tuning this kind of fluorophores by structural modification remain restricted to bottom-up synthesis and modification using coupling or nucleophilic substitutions. In this study, we introduce a two-step, late-stage functionalization process for heptamethine dyes. This process enables the substitution of the central chlorine atom in the commonly used 4'-chloro heptamethine scaffold with various aryl groups using aryllithium reagents. This method borrows the building block and designs from the xanthene dye community and offers a mild and convenient way for the diversification of heptamethine fluorophores. Notably, this efficient conversion allows for the synthesis of heptamethine-X, the heptamethine scaffold with two ortho-substituents on the 4'-aryl modification, which brings enhanced stability and reduced aggregation to the fluorophore. We showcase the utility of this method by a facile synthesis of a fluorogenic, membrane-localizing fluorophore that outperforms its commercial counterparts with a significantly higher brightness and contrast. Overall, this method establishes the synthetic similarities between polymethine and xanthene fluorophores and provides a versatile and feasible toolbox for future optimizing heptamethine fluorophores for their biological applications.
Collapse
Affiliation(s)
- Lei Guo
- Department
of Civil Engineering, University of Arkansas,
Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Meek Yang
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Bin Dong
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Seth Lewman
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Alex Van Horn
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Shang Jia
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
10
|
Dong Z, Song B, Ma H, Gao X, Zhang W, Yuan J. A strategy to enhance the water solubility of luminescent β-diketonate-Europium(III) complexes for time-gated luminescence bioassays. Talanta 2024; 274:126000. [PMID: 38608630 DOI: 10.1016/j.talanta.2024.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Luminescent β-diketonate-europium(III) complexes have been found a wide range of applications in time-gated luminescence (TGL) bioassays, but their poor water solubility is a main problem that limits their effective uses. In this work we propose a simple and general strategy to enhance the water solubility of luminescent β-diketonate-europium(III) complexes that permits facile synthesis and purification. By introducing the fluorinated carboxylic acid group into the structures of β-diketone ligands, two highly water-soluble and luminescent Eu3+ complexes, PBBHD-Eu3+ and CPBBHD-Eu3+, were designed and synthesized. An excellent solubility exceeding 20 mg/mL for PBBHD-Eu3+ was found in a pure aqueous buffer, while it also displayed strong and long-lived luminescence (quantum yield φ = 26%, lifetime τ = 0.49 ms). After the carboxyl groups of PBBHD-Eu3+ were activated, the PBBHD-Eu3+-labeled streptavidin-bovine serum albumin (SA-BSA) conjugate was prepared, and successfully used for the immunoassay of human α-fetoprotein (AFP) and the imaging of an environmental pathogen Giardia lamblia under TGL mode, which demonstrated the practicability of PBBHD-Eu3+ for highly sensitive TGL bioassays. The carboxyl groups of PBBHD can also be easily derivatized with other reactive chemical groups, which enables PBBHD-Eu3+ to meet diverse requirements of biolabeling technique, to provide new opportunities for developing functional europium(III) complex biolabels serving for TGL bioassays.
Collapse
Affiliation(s)
- Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Hua Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian, 116600, China.
| |
Collapse
|
11
|
Luo C, Chen Y, Gu J, Cai H, Lin H, Jin Z, Huang C. Activatable NIR Fluorescence Probe for Epinephrine Detection and Bioimaging Based on Anionic Heptamethine Cyanine. Anal Chem 2024; 96:9969-9974. [PMID: 38847356 DOI: 10.1021/acs.analchem.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Epinephrine (EP) is an essential catecholamine in the human body. Currently, most EP detection methods are not suitable for in vivo detection due to material limitations. An organic small molecule fluorescent probe based on a chemical cascade reaction for the detection of EP was designed. Anionic heptamethine cyanine dye was selected as a fluorescent dye because of its NIR fluorescence emission with excellent biocompatibility. The secondary amine of EP nucleophilically attacks the carbonate of the probe with its stronger nucleophilicity and further undergoes intramolecular nucleophilic cyclization to release the fluorophore. Other substances containing only primary amines or no β-OH lack reaction competitiveness due to their weaker nucleophilicity or inability to undergo further cyclization. The fluorescence recovery of the probe was linearly related to the EP concentration of 2-75 μmol/L. The detection limit was 0.4 μmol/L. The recovery rate was 94.78-111.32%. Finally, we successfully achieved bioimaging of EP in living cells and EP analogue in nematodes.
Collapse
Affiliation(s)
- Chen Luo
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Youjia Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jinxuan Gu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Huihui Cai
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Huijin Lin
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zhigang Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chaobiao Huang
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China
| |
Collapse
|
12
|
Martin A, Rivera-Fuentes P. Fluorogenic polymethine dyes by intramolecular cyclization. Curr Opin Chem Biol 2024; 80:102444. [PMID: 38520774 DOI: 10.1016/j.cbpa.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Fluorescence imaging plays a pivotal role in the study of biological processes, and cell-permeable fluorogenic dyes are crucial to visualize intracellular structures with high specificity. Polymethine dyes are vitally important fluorophores in single-molecule localization microscopy and in vivo imaging, but their use in live cells has been limited by high background fluorescence and low membrane permeability. In this review, we summarize recent advances in the development of fluorogenic polymethine dyes via intramolecular cyclization. Finally, we offer an outlook on the prospects of fluorogenic polymethine dyes for bioimaging.
Collapse
Affiliation(s)
- Annabell Martin
- Department of Chemistry, University of Zurich, Zurich, Switzerland; École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | | |
Collapse
|
13
|
Liu Y, Diao S, Ruan B, Zhou Y, Yu M, Dong G, Xu W, Ning L, Zhou W, Jiang Y, Xie C, Fan Q, Huang J. Molecular Engineering of Activatable NIR-II Hemicyanine Reporters for Early Diagnosis and Prognostic Assessment of Inflammatory Bowel Disease. ACS NANO 2024; 18:8437-8451. [PMID: 38501308 DOI: 10.1021/acsnano.3c13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Molecular imaging in the second near-infrared window (NIR-II) provides high-fidelity visualization of biopathological events in deep tissue. However, most NIR-II probes produce "always-on" output and demonstrate poor signal specificity toward biomarkers. Herein, we report a series of hemicyanine reporters (HBCs) with tunable emission to NIR-II window (715-1188 nm) and structurally amenable to constructing activatable probes. Such manipulation of emission wavelengths relies on rational molecular engineering by integrating benz[c,d]indolium, benzo[b]xanthonium, and thiophene moieties to a conventional hemicyanine skeleton. In particular, HBC4 and HBC5 possess bright and record long emission over 1050 nm, enabling improved tissue penetration depth and superior signal to background ratio for intestinal tract mapping than NIR-I fluorophore HC1. An activatable inflammatory reporter (AIR-PE) is further constructed for pH-triggered site-specific release in colon. Due to minimized background interference, oral gavage of AIR-PE allows clear delineation of irritated intestines and assessment of therapeutic responses in a mouse model of inflammatory bowel disease (IBD) through real-time NIRF-II imaging. Benefiting from its high fecal clearance efficiency (>90%), AIR-PE can also detect IBD and evaluate the effectiveness of colitis treatments via in vitro optical fecalysis, which outperforms typical clinical assays including fecal occult blood testing and histological examination. This study thus presents NIR-II molecular scaffolds that are not only applicable to developing versatile activatable probes for early diagnosis and prognostic monitoring of deeply seated diseases but also hold promise for future clinical translations.
Collapse
Affiliation(s)
- Yi Liu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanchao Diao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Bankang Ruan
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Ya Zhou
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengya Yu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoqi Dong
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiping Xu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wen Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yuyan Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94305, California, United States
| | - Chen Xie
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiaguo Huang
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
15
|
Gandioso A, Izquierdo-García E, Mesdom P, Arnoux P, Demeubayeva N, Burckel P, Saubaméa B, Bosch M, Frochot C, Marchán V, Gasser G. Ru(II)-Cyanine Complexes as Promising Photodynamic Photosensitizers for the Treatment of Hypoxic Tumours with Highly Penetrating 770 nm Near-Infrared Light. Chemistry 2023; 29:e202301742. [PMID: 37548580 DOI: 10.1002/chem.202301742] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
Light-activated treatments, such as photodynamic therapy (PDT), provide temporal and spatial control over a specific cytotoxic response by exploiting toxicity differences between irradiated and dark conditions. In this work, a novel strategy for developing near infrared (NIR)-activatable Ru(II) polypyridyl-based photosensitizers (PSs) was successfully developed through the incorporation of symmetric heptamethine cyanine dyes in the metal complex via a phenanthrimidazole ligand. Owing to their strong absorption in the NIR region, the PSs could be efficiently photoactivated with highly penetrating NIR light (770 nm), leading to high photocytotoxicities towards several cancer cell lines under both normoxic and hypoxic conditions. Notably, our lead PS (Ru-Cyn-1), which accumulated in the mitochondria, exhibited a good photocytotoxic activity under challenging low-oxygen concentration (2 % O2 ) upon NIR light irradiation conditions (770 nm), owing to a combination of type I and II PDT mechanisms. The fact that the PS Protoporphyrin IX (PpIX), the metabolite of the clinically approved 5-ALA PS, was found inactive under the same challenging conditions positions Ru-Cyn-1 complex as a promising PDT agent for the treatment of deep-seated hypoxic tumours.
Collapse
Affiliation(s)
- Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Eduardo Izquierdo-García
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Pierre Mesdom
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | | | | | - Pierre Burckel
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005, Paris, France
| | - Bruno Saubaméa
- Cellular and Molecular Imaging platform, US25 Inserm, UAR3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité, 75006, Paris, France
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Av. Diagonal, 643, Barcelona, 08028, Spain
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, 54000, Nancy, France
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
16
|
Toti KS, Campbell RG, Lee H, Salmaso V, Suresh RR, Gao ZG, Jacobson KA. Fluorescent A 2A and A 3 adenosine receptor antagonists as flow cytometry probes. Purinergic Signal 2023; 19:565-578. [PMID: 35687212 PMCID: PMC10539269 DOI: 10.1007/s11302-022-09873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022] Open
Abstract
Adenosine receptor (AR) ligands are being developed for metabolic, cardiovascular, neurological, and inflammatory diseases and cancer. The ease of drug discovery is contingent on the availability of pharmacological tools. Fluorescent antagonist ligands for the human A2A and A3ARs were synthesized using two validated pharmacophores, 1,3-dipropyl-8-phenylxanthine and triazolo[1,5-c]quinazolin-5-yl)amine, which were coupled to eight reporter fluorophores: AlexaFluor, JaneliaFluor (JF), cyanine, and near infrared (NIR) dyes. The conjugates were first screened using radioligand binding in HEK293 cells expressing one of the three AR subtypes. The highest affinities at A2AAR were Ki 144-316 nM for 10, 12, and 19, and at A3AR affinity of Ki 21.6 nM for 19. Specific binding of JF646 conjugate MRS7774 12 to the HEK293 cell surface A2AAR was imaged using confocal microscopy. Compound 19 MRS7535, a triazolo[1,5-c]quinazolin-5-yl)amine containing a Sulfo-Cy7 NIR dye, was suitable for A3AR characterization in whole cells by flow cytometry (Kd 11.8 nM), and its bitopic interaction mode with an A3AR homology model was predicted. Given its affinity and selectivity (11-fold vs. A2AAR, ~ 50-fold vs. A1AR and A2BAR) and a good specific-to-nonspecific binding ratio, 19 could be useful for live cell or potentially a diagnostic in vivo NIR imaging tool and/or therapy targeting the A3AR.
Collapse
Affiliation(s)
- Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, NIH, NIDDK, LBC, Bldg. 8A, Rm. B1A-19, Bethesda, MD, 20892-0810, USA
- Current Address: Chemistry Department, Emory University, 1093 Rollins Research Center, Atlanta, GA, 30322, USA
| | - Ryan G Campbell
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, NIH, NIDDK, LBC, Bldg. 8A, Rm. B1A-19, Bethesda, MD, 20892-0810, USA
| | - Hobin Lee
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, NIH, NIDDK, LBC, Bldg. 8A, Rm. B1A-19, Bethesda, MD, 20892-0810, USA
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, NIH, NIDDK, LBC, Bldg. 8A, Rm. B1A-19, Bethesda, MD, 20892-0810, USA
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, NIH, NIDDK, LBC, Bldg. 8A, Rm. B1A-19, Bethesda, MD, 20892-0810, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, NIH, NIDDK, LBC, Bldg. 8A, Rm. B1A-19, Bethesda, MD, 20892-0810, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, NIH, NIDDK, LBC, Bldg. 8A, Rm. B1A-19, Bethesda, MD, 20892-0810, USA.
| |
Collapse
|
17
|
Schnermann MJ, Lavis LD. Rejuvenating old fluorophores with new chemistry. Curr Opin Chem Biol 2023; 75:102335. [PMID: 37269674 PMCID: PMC10524207 DOI: 10.1016/j.cbpa.2023.102335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/05/2023]
Abstract
The field of organic chemistry began with 19th century scientists identifying and then expanding upon synthetic dye molecules for textiles. In the 20th century, dye chemistry continued with the aim of developing photographic sensitizers and laser dyes. Now, in the 21st century, the rapid evolution of biological imaging techniques provides a new driving force for dye chemistry. Of the extant collection of synthetic fluorescent dyes for biological imaging, two classes reign supreme: rhodamines and cyanines. Here, we provide an overview of recent examples where modern chemistry is used to build these old-but-venerable classes of optically responsive molecules. These new synthetic methods access new fluorophores, which then enable sophisticated imaging experiments leading to new biological insights.
Collapse
Affiliation(s)
- Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Building 376, Frederick, MD 20850, USA.
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA.
| |
Collapse
|
18
|
Li DH, Gamage RS, Oliver AG, Patel NL, Muhammad Usama S, Kalen JD, Schnermann MJ, Smith BD. Doubly Strapped Zwitterionic NIR-I and NIR-II Heptamethine Cyanine Dyes for Bioconjugation and Fluorescence Imaging. Angew Chem Int Ed Engl 2023; 62:e202305062. [PMID: 37163228 PMCID: PMC10330731 DOI: 10.1002/anie.202305062] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/11/2023]
Abstract
Heptamethine cyanine dyes enable deep tissue fluorescence imaging in the near infrared (NIR) window. Small molecule conjugates of the benchmark dye ZW800-1 have been tested in humans. However, long-term imaging protocols using ZW800-1 conjugates are limited by their instability, primarily because the chemically labile C4'-O-aryl linker is susceptible to cleavage by biological nucleophiles. Here, we report a modular synthetic method that produces novel doubly strapped zwitterionic heptamethine cyanine dyes, including a structural analogue of ZW800-1, with greatly enhanced dye stability. NIR-I and NIR-II versions of these doubly strapped dyes can be conjugated to proteins, including monoclonal antibodies, without causing undesired fluorophore degradation or dye stacking on the protein surface. The fluorescent antibody conjugates show excellent tumor-targeting specificity in a xenograft mouse tumor model. The enhanced stability provided by doubly strapped molecular design will enable new classes of in vivo NIR fluorescence imaging experiments with possible translation to humans.
Collapse
Affiliation(s)
- Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rananjaya S Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
19
|
Usama SM, Marker SC, Li DH, Caldwell DR, Stroet M, Patel NL, Tebo AG, Hernot S, Kalen JD, Schnermann M. Method To Diversify Cyanine Chromophore Functionality Enables Improved Biomolecule Tracking and Intracellular Imaging. J Am Chem Soc 2023. [PMID: 37367935 DOI: 10.1021/jacs.3c01765] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heptamethine indocyanines are invaluable probes for near-infrared (NIR) imaging. Despite broad use, there are only a few synthetic methods to assemble these molecules, and each has significant limitations. Here, we report the use of pyridinium benzoxazole (PyBox) salts as heptamethine indocyanine precursors. This method is high yielding, simple to implement, and provides access to previously unknown chromophore functionality. We applied this method to create molecules to address two outstanding objectives in NIR fluorescence imaging. First, we used an iterative approach to develop molecules for protein-targeted tumor imaging. When compared to common NIR fluorophores, the optimized probe increases the tumor specificity of monoclonal antibody (mAb) and nanobody conjugates. Second, we developed cyclizing heptamethine indocyanines with the goal of improving cellular uptake and fluorogenic properties. By modifying both the electrophilic and nucleophilic components, we demonstrate that the solvent sensitivity of the ring-open/ring-closed equilibrium can be modified over a wide range. We then show that a chloroalkane derivative of a compound with tuned cyclization properties undergoes particularly efficient no-wash live cell imaging using organelle-targeted HaloTag self-labeling proteins. Overall, the chemistry reported here broadens the scope of accessible chromophore functionality, and, in turn, enables the discovery of NIR probes with promising properties for advanced imaging applications.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sierra C Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dong-Hao Li
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marcus Stroet
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Alison G Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Sophie Hernot
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Martin Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
20
|
Hincapie R, Bhattacharya S, Keshavarz-Joud P, Chapman AP, Crooke SN, Finn MG. Preparation and Biological Properties of Oligonucleotide-Functionalized Virus-like Particles. Biomacromolecules 2023. [PMID: 37257068 DOI: 10.1021/acs.biomac.3c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Oligonucleotides are powerful molecules for programming function and assembly. When arrayed on nanoparticle scaffolds in high density, the resulting molecules, spherical nucleic acids (SNAs), become imbued with unique properties. We used the copper-catalyzed azide-alkyne cycloaddition to graft oligonucleotides on Qβ virus-like particles to see if such structures also gain SNA-like behavior. Copper-binding ligands were shown to promote the click reaction without degrading oligonucleotide substrates. Reactions were first optimized with a small-molecule fluorogenic reporter and were then applied to the more challenging synthesis of polyvalent protein nanoparticle-oligonucleotide conjugates. The resulting particles exhibited the enhanced cellular uptake and protection from nuclease-mediated oligonucleotide cleavage characteristic of SNAs, had similar residence time in the liver relative to unmodified particles, and were somewhat shielded from immune recognition, resulting in nearly 10-fold lower antibody titers relative to unmodified particles. Oligonucleotide-functionalized virus-like particles thus provide an interesting option for protein nanoparticle-mediated delivery of functional molecules.
Collapse
|
21
|
Usama SM, Caldwell DR, Shrestha P, Luciano MP, Patel NL, Kalen JD, Ivanic J, Schnermann MJ. Modified norcyanines enable ratiometric pH imaging beyond 1000 nm. Biosens Bioelectron 2022; 217:114610. [PMID: 36137483 PMCID: PMC9555292 DOI: 10.1016/j.bios.2022.114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023]
Abstract
Activatable fluorophores with emission beyond 1000 nm have the potential to enable high contrast imaging in complex in vivo settings. However, there are few scaffolds that can be applied to this challenge. Here we detail the synthesis and evaluation of benzo[c,d]indole-substituted norcyanines that enable pH responsive fluorescence imaging in the long wavelength (>1150 nm) range. A key component of our molecular design is the installation of a hydrophilic substituted quaternary amine in the central dihydropyridine ring system. A compound with a C4'-phenyl substituent, but not the C4'-protio homologue, exhibits absorbance maxima of 740 nm and 1130 nm in basic and acidic media, respectively, with evidence of J-aggregate-like properties. These two distinct absorbances enabled ratiometric imaging of probe internalization in a tumor model. Overall, these studies provide a new class of activatable long-wavelength responsive fluorophores with promising photophysical properties.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Pradeep Shrestha
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, 21702, United States
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, 21702, United States
| | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States.
| |
Collapse
|
22
|
Hernandez Vargas S, AghaAmiri S, Ghosh SC, Luciano MP, Borbon LC, Ear PH, Howe JR, Bailey-Lundberg JM, Simonek GD, Halperin DM, Tran Cao HS, Ikoma N, Schnermann MJ, Azhdarinia A. High-Contrast Detection of Somatostatin Receptor Subtype-2 for Fluorescence-Guided Surgery. Mol Pharm 2022; 19:4241-4253. [PMID: 36174110 PMCID: PMC9830638 DOI: 10.1021/acs.molpharmaceut.2c00583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dye design can influence the ability of fluorescently labeled imaging agents to generate tumor contrast and has become an area of significant interest in the field of fluorescence-guided surgery (FGS). Here, we show that the charge-balanced near-infrared fluorescent (NIRF) dye FNIR-Tag enhances the imaging properties of a fluorescently labeled somatostatin analogue. In vitro studies showed that the optimized fluorescent conjugate MMC(FNIR-Tag)-TOC bound primarily via somatostatin receptor subtype-2 (SSTR2), whereas its negatively charged counterpart with IRDye 800CW had higher off-target binding. NIRF imaging in cell line- and patient-derived xenograft models revealed markedly higher tumor contrast with MMC(FNIR-Tag)-TOC, which was attributed to increased tumor specificity. Ex vivo staining of surgical biospecimens from primary and metastatic tumors, as well as involved lymph nodes, demonstrated binding to human tumors. Finally, in an orthotopic tumor model, a simulated clinical workflow highlighted our unique ability to use standard preoperative nuclear imaging for selecting patients likely to benefit from SSTR2-targeted FGS. Our findings demonstrate the translational potential of MMC(FNIR-Tag)-TOC for intraoperative imaging and suggest broad utility for using FNIR-Tag in fluorescent probe development.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Solmaz AghaAmiri
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Sukhen C. Ghosh
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Michael P. Luciano
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland21702, United States
| | - Luis C. Borbon
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - Po Hien Ear
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - James R. Howe
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - Jennifer M. Bailey-Lundberg
- Department
of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas77030, United States
| | - Gregory D. Simonek
- Center
for Laboratory Animal Medicine and Care, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas77030, United States
| | - Daniel M. Halperin
- Department
of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United States
| | - Hop S. Tran Cao
- Department
of Surgical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United
States
| | - Naruhiko Ikoma
- Department
of Surgical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United
States
| | - Martin J. Schnermann
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland21702, United States
| | - Ali Azhdarinia
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States,
| |
Collapse
|
23
|
Thomas CN, Alfahad N, Capewell N, Cowley J, Hickman E, Fernandez A, Harrison N, Qureshi OS, Bennett N, Barnes NM, Dick AD, Chu CJ, Liu X, Denniston AK, Vendrell M, Hill LJ. Triazole-derivatized near-infrared cyanine dyes enable local functional fluorescent imaging of ocular inflammation. Biosens Bioelectron 2022; 216:114623. [PMID: 36029662 DOI: 10.1016/j.bios.2022.114623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Near-infrared (NIR) chemical fluorophores are promising tools for in-vivo imaging in real time but often succumb to rapid photodegradation. Indocyanine green (ICG) is the only NIR dye with regulatory approval for ocular imaging in humans; however, ICG, when employed for applications such as labelling immune cells, has limited sensitivity and does not allow precise detection of specific inflammatory events, for example leukocyte recruitment during uveitic flare-ups. We investigated the potential use of photostable novel triazole NIR cyanine (TNC) dyes for detecting and characterising activated T-cell activity within the eye. Three TNC dyes were evaluated for ocular cytotoxicity in-vitro using a MTT assay and optimised concentrations for intraocular detection within ex-vivo porcine eyes after topical application or intracameral injections of the dyes. TNC labelled T-cell tracking experiments and mechanistic studies were also performed in-vitro. TNC-1 and TNC-2 dyes exhibited greater fluorescence intensity than ICG at 10 μM, whereas TNC-3 was only detectable at 100 μM within the porcine eye. TNC dyes did not demonstrate any ocular cell toxicity at working concentrations of 10 μM. CD4+T-cells labelled with TNC-1 or TNC-2 were detected within the porcine eye, with TNC-1 being brighter than TNC-2. Detection of TNC-1 and TNC-2 into CD4+T-cells was prevented by prior incubation with dynole 34-2 (50 μM), suggesting active uptake of these dyes via dynamin-dependent processes. The present study provides evidence that TNC dyes are suitable to detect activated CD4+T-cells within the eye with potential as a diagnostic marker for ocular inflammatory diseases.
Collapse
Affiliation(s)
- Chloe N Thomas
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Nada Alfahad
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Nicholas Capewell
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Jamie Cowley
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Eleanor Hickman
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Antonio Fernandez
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia, Spain; Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Neale Harrison
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Omar S Qureshi
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Naomi Bennett
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Nicholas M Barnes
- Neuropharmacology Research Group, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Colin J Chu
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Xiaoxuan Liu
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Health Data Research UK, London, UK
| | - Alastair K Denniston
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Health Data Research UK, London, UK; Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Vendrell
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
24
|
Matikonda SS, McLaughlin R, Shrestha P, Lipshultz C, Schnermann MJ. Structure-Activity Relationships of Antibody-Drug Conjugates: A Systematic Review of Chemistry on the Trastuzumab Scaffold. Bioconjug Chem 2022; 33:1241-1253. [PMID: 35801843 DOI: 10.1021/acs.bioconjchem.2c00177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) are a rapidly growing class of cancer therapeutics that seek to overcome the low therapeutic index of conventional cytotoxic agents. However, realizing this goal has been a significant challenge. ADCs comprise several independently modifiable components, including the antibody, payload, linker, and bioconjugation method. Many approaches have been developed to improve the physical properties, potency, and selectivity of ADCs. The anti-HER-2 antibody trastuzumab, first approved in 1998, has emerged as an exceptional targeting agent for ADCs, as well as a broadly used platform for testing new technologies. The extensive work in this area enables the comparison of various linker strategies, payloads, drug-to-antibody ratios (DAR), and mode of attachment. In this review, these conjugates, ranging from the first clinically approved trastuzumab ADC, ado-trastuzumab emtansine (Kadcyla), to the latest variants are described with the goal of providing a broad overview, as well as enabling the comparison of existing and emerging conjugate technologies.
Collapse
Affiliation(s)
- Siddharth S Matikonda
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Ryan McLaughlin
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Pradeep Shrestha
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Carol Lipshultz
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| |
Collapse
|
25
|
Thapaliya ER, Usama SM, Patel NL, Feng Y, Kalen JD, St Croix B, Schnermann MJ. Cyanine Masking: A Strategy to Test Functional Group Effects on Antibody Conjugate Targeting. Bioconjug Chem 2022; 33:718-725. [PMID: 35389618 PMCID: PMC10506421 DOI: 10.1021/acs.bioconjchem.2c00083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conjugates of small molecules and antibodies are broadly employed diagnostic and therapeutic agents. Appending a small molecule to an antibody often significantly impacts the properties of the resulting conjugate. Here, we detail a systematic study investigating the effect of various functional groups on the properties of antibody-fluorophore conjugates. This was done through the preparation and analysis of a series of masked heptamethine cyanines (CyMasks)-bearing amides with varied functional groups. These were designed to exhibit a broad range of physical properties, and include hydrophobic (-NMe2), pegylated (NH-PEG-8 or NH-PEG-24), cationic (NH-(CH2)2NMe3+), anionic (NH-(CH2)2SO3-), and zwitterionic (N-(CH2)2NMe3+)-(CH2)3SO3-) variants. The CyMask series was appended to monoclonal antibodies (mAbs) and analyzed for the effects on tumor targeting, clearance, and non-specific organ uptake. Among the series, zwitterionic and pegylated dye conjugates had the highest tumor-to-background ratio (TBR) and a low liver-to-background ratio. By contrast, the cationic and zwitterionic probes had high tumor signal and high TBR, although the latter also exhibited an elevated liver-to-background ratio (LBR). Overall, these studies provide a strategy to test the functional group effects and suggest that zwitterionic substituents possess an optimal combination of high tumor signal, TBR, and low LBR. These results suggest an appealing strategy to mask hydrophobic payloads, with the potential to improve the properties of bioconjugates in vivo.
Collapse
Affiliation(s)
- Ek Raj Thapaliya
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute, NIH, Frederick, Maryland 21702, United States
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute, NIH, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
26
|
Usama SM, Marker SC, Hernandez Vargas S, AghaAmiri S, Ghosh SC, Ikoma N, Tran Cao HS, Schnermann MJ, Azhdarinia A. Targeted Dual-Modal PET/SPECT-NIR Imaging: From Building Blocks and Construction Strategies to Applications. Cancers (Basel) 2022; 14:1619. [PMID: 35406390 PMCID: PMC8996983 DOI: 10.3390/cancers14071619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular imaging is an emerging non-invasive method to qualitatively and quantitively visualize and characterize biological processes. Among the imaging modalities, PET/SPECT and near-infrared (NIR) imaging provide synergistic properties that result in deep tissue penetration and up to cell-level resolution. Dual-modal PET/SPECT-NIR agents are commonly combined with a targeting ligand (e.g., antibody or small molecule) to engage biomolecules overexpressed in cancer, thereby enabling selective multimodal visualization of primary and metastatic tumors. The use of such agents for (i) preoperative patient selection and surgical planning and (ii) intraoperative FGS could improve surgical workflow and patient outcomes. However, the development of targeted dual-modal agents is a chemical challenge and a topic of ongoing research. In this review, we define key design considerations of targeted dual-modal imaging from a topological perspective, list targeted dual-modal probes disclosed in the last decade, review recent progress in the field of NIR fluorescent probe development, and highlight future directions in this rapidly developing field.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Sierra C. Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Sukhen C. Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Hop S. Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| |
Collapse
|
27
|
Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat Methods 2022; 19:353-358. [PMID: 35228725 DOI: 10.1038/s41592-022-01394-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Recent progress has shown that using wavelengths between 1,000 and 2,000 nm, referred to as the shortwave-infrared or near-infrared (NIR)-II range, can enable high-resolution in vivo imaging at depths not possible with conventional optical wavelengths. However, few bioconjugatable probes of the type that have proven invaluable for multiplexed imaging in the visible and NIR range are available for imaging these wavelengths. Using rational design, we have generated persulfonated indocyanine dyes with absorbance maxima at 872 and 1,072 nm through catechol-ring and aryl-ring fusion, respectively, onto the nonamethine scaffold. Multiplexed two-color and three-color in vivo imaging using monoclonal antibody and dextran conjugates in several tumor models illustrate the benefits of concurrent labeling of the tumor and healthy surrounding tissue and lymphatics. These efforts are enabled by complementary advances in a custom-built NIR/shortwave-infrared imaging setup and software package for multicolor real-time imaging.
Collapse
|
28
|
Pengshung M, Cosco ED, Zhang Z, Sletten EM. Counterion Pairing Effects on a Flavylium Heptamethine Dye. Photochem Photobiol 2022; 98:303-310. [PMID: 34592003 PMCID: PMC8930425 DOI: 10.1111/php.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
Polymethine fluorophores have facilitated the advance of biological and material sciences, due to their advantageous photophysical properties. However, the need to maintain a monomeric state can severely limit the utility and processability of dyes. High concentrations of fluorophore can lead to aggregation and negate the beneficial photophysical properties of monomers. Another concern is "crossing the cyanine limit" in which delocalization within the polymethine scaffold is broken, producing the presence of an asymmetric state diminishing its photophysical behavior. Herein, we attempt to overcome these limitations by exploring anion exchange on a cationic flavylium heptamethine scaffold. By increasing the size and hydrophobicity of the anion, we can effectively tune the degree of ion pairing within the polymethine dye. Interestingly, we found that the effect of ion pairing on photophysical properties was subtle for the flavylium heptamethine scaffold in comparison to the more commonly used indolenine cyanine dye. Utilizing larger weakly coordinating anions enabled solubility of the flavylium heptamethine fluorophore in nonpolar solvents, which could otherwise not be achieved. Even with more subtle effects than classic cyanine dyes, anion exchange on flavylium polymethine dyes holds potential for further manipulation of the properties of these low energy dyes.
Collapse
Affiliation(s)
- Monica Pengshung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Emily D. Cosco
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Zhumin Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
29
|
Michie MS, Xu B, Sudlow G, Springer LE, Pham CT, Achilefu S. Side-chain modification of collagen-targeting peptide prevents dye aggregation for improved molecular imaging of arthritic joints. J Photochem Photobiol A Chem 2022; 424:113624. [PMID: 36406204 PMCID: PMC9673490 DOI: 10.1016/j.jphotochem.2021.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Near-infrared (NIR) dye-peptide conjugates are widely used for tissue-targeted molecular fluorescence imaging of pathophysiologic conditions. However, the significant contribution of both dye and peptide to the net mass of these bioconjugates implies that small changes in either component could alter their photophysical and biological properties. Here, we synthesized and conjugated a type I collagen targeted peptide, RRANAALKAGELYKCILY, to either a hydrophobic (LS1000) or hydrophilic (LS1006) NIR fluorescent dye. Spectroscopic analysis revealed rapid self-assembly of both LS1000 and LS1006 in aqueous media to form stable dimeric/H aggregates, regardless of the free dye's solubility in water. We discovered that replacing the cysteine residue in LS1000 and LS1006 with acetamidomethyl cysteine to afford LS1001 and LS1107, respectively, disrupted the peptide's self-assembly and activated the previously quenched dye's fluorescence in aqueous conditions. These results highlight the dominant role of the octadecapeptide, but not the dye molecules, in controlling the photophysical properties of these conjugates by likely sequestering or extruding the hydrophobic or hydrophilic dyes, respectively. Application of the compounds for imaging collagen-rich tissue in an animal model of inflammatory arthritis showed enhanced uptake of all four conjugates, which retained high collagen-binding affinity, in inflamed joints. Moreover, LS1001 and LS1107 improved the arthritic joint-to-background contrast, suggesting that reduced aggregation enhanced the clearance of these compounds from non-target tissues. Our results highlight a peptide-driven strategy to alter the aggregation states of molecular probes in aqueous solutions, irrespective of the water-solubilizing properties of the dye molecules. The interplay between the monomeric and aggregated forms of the conjugates using simple thiol-modifiers lends the peptide-driven approach to diverse applications, including the effective imaging of inflammatory arthritis joints.
Collapse
Affiliation(s)
- Megan S. Michie
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Baogang Xu
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gail Sudlow
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luke E. Springer
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christine T.N. Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
30
|
Caveat fluorophore: an insiders' guide to small-molecule fluorescent labels. Nat Methods 2022; 19:149-158. [PMID: 34949811 DOI: 10.1038/s41592-021-01338-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023]
Abstract
The last three decades have brought a revolution in fluorescence microscopy. The development of new microscopes, fluorescent labels and analysis techniques has pushed the frontiers of biological imaging forward, moving from fixed to live cells, from diffraction-limited to super-resolution imaging and from simple cell culture systems to experiments in vivo. The large and ever-evolving collection of tools can be daunting for biologists, who must invest substantial time and effort in adopting new technologies to answer their specific questions. This is particularly relevant when working with small-molecule fluorescent labels, where users must navigate the jargon, idiosyncrasies and caveats of chemistry. Here, we present an overview of chemical dyes used in biology and provide frank advice from a chemist's perspective.
Collapse
|
31
|
Ouyang J, Sun L, Zeng F, Wu S. Rational design of stable heptamethine cyanines and development of a biomarker-activatable probe for detecting acute lung/kidney injuries via NIR-II fluorescence imaging. Analyst 2022; 147:410-416. [DOI: 10.1039/d1an02183d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heptamethine cyanines exhibiting high photo- and chemostability have been developed. And an activatable probe was developed for H2O2 to visualize acute lung and kidney injuries via NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Juan Ouyang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
32
|
Usama SM, Marker SC, Caldwell DR, Patel NL, Feng Y, Kalen JD, St Croix B, Schnermann MJ. Targeted Fluorogenic Cyanine Carbamates Enable In Vivo Analysis of Antibody-Drug Conjugate Linker Chemistry. J Am Chem Soc 2021; 143:21667-21675. [PMID: 34928588 DOI: 10.1021/jacs.1c10482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibody-drug conjugates (ADCs) are a rapidly emerging therapeutic platform. The chemical linker between the antibody and the drug payload plays an essential role in the efficacy and tolerability of these agents. New methods that quantitatively assess the cleavage efficiency in complex tissue settings could provide valuable insights into the ADC design process. Here we report the development of a near-infrared (NIR) optical imaging approach that measures the site and extent of linker cleavage in mouse models. This approach is enabled by a superior variant of our recently devised cyanine carbamate (CyBam) platform. We identify a novel tertiary amine-containing norcyanine, the product of CyBam cleavage, that exhibits a dramatically increased cellular signal due to an improved cellular permeability and lysosomal accumulation. The resulting cyanine lysosome-targeting carbamates (CyLBams) are ∼50× brighter in cells, and we find this strategy is essential for high-contrast in vivo targeted imaging. Finally, we compare a panel of several common ADC linkers across two antibodies and tumor models. These studies indicate that cathepsin-cleavable linkers provide dramatically higher tumor activation relative to hindered or nonhindered disulfides, an observation that is only apparent with in vivo imaging. This strategy enables quantitative comparisons of cleavable linker chemistries in complex tissue settings with implications across the drug delivery landscape.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sierra C Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, Maryland 21702, United States
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
33
|
Eiring P, McLaughlin R, Matikonda SS, Han Z, Grabenhorst L, Helmerich DA, Meub M, Beliu G, Luciano M, Bandi V, Zijlstra N, Shi ZD, Tarasov SG, Swenson R, Tinnefeld P, Glembockyte V, Cordes T, Sauer M, Schnermann MJ. Targetable Conformationally Restricted Cyanines Enable Photon-Count-Limited Applications*. Angew Chem Int Ed Engl 2021; 60:26685-26693. [PMID: 34606673 PMCID: PMC8649030 DOI: 10.1002/anie.202109749] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Cyanine dyes are exceptionally useful probes for a range of fluorescence-based applications, but their photon output can be limited by trans-to-cis photoisomerization. We recently demonstrated that appending a ring system to the pentamethine cyanine ring system improves the quantum yield and extends the fluorescence lifetime. Here, we report an optimized synthesis of persulfonated variants that enable efficient labeling of nucleic acids and proteins. We demonstrate that a bifunctional sulfonated tertiary amide significantly improves the optical properties of the resulting bioconjugates. These new conformationally restricted cyanines are compared to the parent cyanine derivatives in a range of contexts. These include their use in the plasmonic hotspot of a DNA-nanoantenna, in single-molecule Förster-resonance energy transfer (FRET) applications, far-red fluorescence-lifetime imaging microscopy (FLIM), and single-molecule localization microscopy (SMLM). These efforts define contexts in which eliminating cyanine isomerization provides meaningful benefits to imaging performance.
Collapse
Affiliation(s)
- Patrick Eiring
- Department of Biotechnology and Biophysics Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ryan McLaughlin
- Laboratory of Chemical Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Siddharth S Matikonda
- Laboratory of Chemical Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Zhongying Han
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Lennart Grabenhorst
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Dominic A Helmerich
- Department of Biotechnology and Biophysics Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Michael Luciano
- Laboratory of Chemical Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Venu Bandi
- Laboratory of Chemical Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Niels Zijlstra
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD, 20850, USA
| | - Sergey G Tarasov
- Biophysics Resource in the Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Rolf Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD, 20850, USA
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin J Schnermann
- Laboratory of Chemical Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
34
|
Abstract
Near-infrared (NIR) emitting fluorophores are powerful tools for optical imaging. However, there are only a handful of broadly employed NIR-emitting scaffolds, and the synthetic methods to prepare these molecules are often problematic. Here, we describe a novel, three-step synthesis of chromene-containing hemicyanine probes exhibiting large Stokes shifts and NIR emissions. We develop a pH-activatable probe for visualizing lysosomal trafficking of mAb conjugates. These studies provide a concise approach to hemicyanines with promising properties.
Collapse
Affiliation(s)
- Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
35
|
Eiring P, McLaughlin R, Matikonda SS, Han Z, Grabenhorst L, Helmerich DA, Meub M, Beliu G, Luciano M, Bandi V, Zijlstra N, Shi Z, Tarasov SG, Swenson R, Tinnefeld P, Glembockyte V, Cordes T, Sauer M, Schnermann MJ. Targetable Conformationally Restricted Cyanines Enable Photon‐Count‐Limited Applications**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Patrick Eiring
- Department of Biotechnology and Biophysics Biocenter Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ryan McLaughlin
- Laboratory of Chemical Biology Center for Cancer Research National Cancer Institute Frederick MD 21702 USA
| | - Siddharth S. Matikonda
- Laboratory of Chemical Biology Center for Cancer Research National Cancer Institute Frederick MD 21702 USA
| | - Zhongying Han
- Physical and Synthetic Biology Faculty of Biology Ludwig-Maximilians-Universität München Großhadernerstr. 2–4 82152 Planegg-Martinsried Germany
| | - Lennart Grabenhorst
- Department of Chemistry and Center for NanoScience Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 München Germany
| | - Dominic A. Helmerich
- Department of Biotechnology and Biophysics Biocenter Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics Biocenter Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics Biocenter Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Luciano
- Laboratory of Chemical Biology Center for Cancer Research National Cancer Institute Frederick MD 21702 USA
| | - Venu Bandi
- Laboratory of Chemical Biology Center for Cancer Research National Cancer Institute Frederick MD 21702 USA
| | - Niels Zijlstra
- Physical and Synthetic Biology Faculty of Biology Ludwig-Maximilians-Universität München Großhadernerstr. 2–4 82152 Planegg-Martinsried Germany
| | - Zhen‐Dan Shi
- Chemistry and Synthesis Center National Heart, Lung, and Blood Institute NIH Rockville MD 20850 USA
| | - Sergey G. Tarasov
- Biophysics Resource in the Center for Structural Biology Center for Cancer Research National Cancer Institute Frederick MD 21702 USA
| | - Rolf Swenson
- Chemistry and Synthesis Center National Heart, Lung, and Blood Institute NIH Rockville MD 20850 USA
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 München Germany
| | - Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 München Germany
| | - Thorben Cordes
- Physical and Synthetic Biology Faculty of Biology Ludwig-Maximilians-Universität München Großhadernerstr. 2–4 82152 Planegg-Martinsried Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics Biocenter Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Martin J. Schnermann
- Laboratory of Chemical Biology Center for Cancer Research National Cancer Institute Frederick MD 21702 USA
| |
Collapse
|
36
|
Gamage R, Li DH, Schreiber CL, Smith BD. Comparison of cRGDfK Peptide Probes with Appended Shielded Heptamethine Cyanine Dye ( s775z) for Near Infrared Fluorescence Imaging of Cancer. ACS OMEGA 2021; 6:30130-30139. [PMID: 34778684 PMCID: PMC8582267 DOI: 10.1021/acsomega.1c04991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 05/14/2023]
Abstract
Previous work has shown that the sterically shielded near-infrared (NIR) fluorescent heptamethine cyanine dye, s775z, with a reactive carboxyl group produces fluorescent bioconjugates with an unsurpassed combination of high photostability and fluorescence brightness. This present contribution reports two new reactive homologues of s775z with either a maleimide group for reaction with a thiol or a strained alkyne group for reaction with an azide. Three cancer-targeting NIR fluorescent probes were synthesized, each with an appended cRGDfK peptide to provide selective affinity for integrin receptors that are overexpressed on the surface of many cancer cells including the A549 lung adenocarcinoma cells used in this study. A set of cancer cell microscopy and mouse tumor imaging experiments showed that all three probes were very effective at targeting cancer cells and tumors; however, the change in the linker structure produced a statistically significant difference in some aspects of the mouse biodistribution. The mouse studies included a mock surgical procedure that excised the subcutaneous tumors. A paired-agent fluorescence imaging experiment co-injected a binary mixture of targeted probe with 850 nm emission, an untargeted probe with 710 nm emission and determined the targeted probe's binding potential in the tumor tissue. A comparison of pixelated maps of binding potential for each excised tumor indicated a tumor-to-tumor variation of integrin expression levels, and a heterogeneous spatial distribution of integrin receptors within each tumor.
Collapse
Affiliation(s)
- Rananjaya
S. Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
37
|
Pharmacokinetics of Single Domain Antibodies and Conjugated Nanoparticles Using a Hybrid near Infrared Method. Int J Mol Sci 2021; 22:ijms22168695. [PMID: 34445399 PMCID: PMC8395466 DOI: 10.3390/ijms22168695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Iron oxide nanoparticles and single domain antibodies from camelids (VHHs) have been increasingly recognized for their potential uses for medical diagnosis and treatment. However, there have been relatively few detailed characterizations of their pharmacokinetics (PK). The aim of this study was to develop imaging methods and pharmacokinetic models to aid the future development of a novel family of brain MRI molecular contrast agents. An efficient near-infrared (NIR) imaging method was established to monitor VHH and VHH conjugated nanoparticle kinetics in mice using a hybrid approach: kinetics in blood were assessed by direct sampling, and kinetics in kidney, liver, and brain were assessed by serial in vivo NIR imaging. These studies were performed under "basal" circumstances in which the VHH constructs and VHH-conjugated nanoparticles do not substantially interact with targets nor cross the blood brain barrier. Using this approach, we constructed a five-compartment PK model that fits the data well for single VHHs, engineered VHH trimers, and iron oxide nanoparticles conjugated to VHH trimers. The establishment of the feasibility of these methods lays a foundation for future PK studies of candidate brain MRI molecular contrast agents.
Collapse
|
38
|
Matikonda S, Helmerich DA, Meub M, Beliu G, Kollmannsberger P, Greer A, Sauer M, Schnermann MJ. Defining the Basis of Cyanine Phototruncation Enables a New Approach to Single-Molecule Localization Microscopy. ACS CENTRAL SCIENCE 2021; 7:1144-1155. [PMID: 34345667 PMCID: PMC8323251 DOI: 10.1021/acscentsci.1c00483] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 05/13/2023]
Abstract
The light-promoted conversion of extensively used cyanine dyes to blue-shifted emissive products has been observed in various contexts. However, both the underlying mechanism and the species involved in this photoconversion reaction have remained elusive. Here we report that irradiation of heptamethine cyanines provides pentamethine cyanines, which, in turn, are photoconverted to trimethine cyanines. We detail an examination of the mechanism and substrate scope of this remarkable two-carbon phototruncation reaction. Supported by computational analysis, we propose that this reaction involves a singlet oxygen-initiated multistep sequence involving a key hydroperoxycyclobutanol intermediate. Building on this mechanistic framework, we identify conditions to improve the yield of photoconversion by over an order of magnitude. We then demonstrate that cyanine phototruncation can be applied to super-resolution single-molecule localization microscopy, leading to improved spatial resolution with shorter imaging times. We anticipate these insights will help transform a common, but previously mechanistically ill-defined, chemical transformation into a valuable optical tool.
Collapse
Affiliation(s)
- Siddharth
S. Matikonda
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dominic A. Helmerich
- Department
of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mara Meub
- Department
of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gerti Beliu
- Department
of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Philip Kollmannsberger
- Center
for Computational and Theoretical Biology, University of Würzburg, Campus Hubland Nord 32, 97074, Würzburg, Germany
| | - Alexander Greer
- Department
of Chemistry, Brooklyn College, City University
of New York, Brooklyn, New York, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United
States
- E-mail:
| | - Markus Sauer
- Department
of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- E-mail:
| | - Martin J. Schnermann
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- E-mail:
| |
Collapse
|
39
|
Abstract
Cysteine cathepsins are proteases critical in physiopathological processes and show potential as targets or biomarkers for diseases and medical conditions. The 11 members of the cathepsin family are redundant in some cases but remarkably independent of others, demanding the development of both pan-cathepsin targeting tools as well as probes that are selective for specific cathepsins with little off-target activity. This review addresses the diverse design strategies that have been employed to accomplish this tailored selectivity among cysteine cathepsin targets and the imaging modalities incorporated. The power of these diverse tools is contextualized by briefly highlighting the nature of a few prominent cysteine cathepsins, their involvement in select diseases, and the application of cathepsin imaging probes in research spanning basic biochemical studies to clinical applications.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| |
Collapse
|
40
|
Martino ML, Crooke SN, Manchester M, Finn MG. Single-Point Mutations in Qβ Virus-like Particles Change Binding to Cells. Biomacromolecules 2021; 22:3332-3341. [PMID: 34251176 DOI: 10.1021/acs.biomac.1c00443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Virus-like particles (VLPs) constitute large, polyvalent platforms onto which a wide variety of functional units can be grafted. Their use in biological settings often depends on their specific binding to cells or receptors of interest; this can be compromised by excessive nonspecific association with other cells. We found that lysine residues mediate such nonspecific interactions, presumably by virtue of protonation and interaction with anionic membrane lipid headgroups and/or complementary residues of cell surface proteins and polysaccharides. Chemical acylation of surface-exposed amines of the Qβ VLP led to a significant reduction in the association of particles with mammalian cells. Single-point mutations of particular lysine residues to either glutamine, glutamic acid, tryptophan, or phenylalanine were mostly well-tolerated and formed intact capsids, but the introduction of double and triple mutants was far less forgiving. Introduction of glutamic acid at position 13 (K13E) led to a dramatic increase in cellular binding, whereas removal of the lysine at position 46 (K46Q) led to an equally striking reduction. Several plasma membrane components were found to specifically interact with the Qβ capsid irrespective of surface charge. These results suggest that specific cellular interactions are engaged or obviated by such mutations and provide us with more "benign" particles to which can be added binding functionality for targeted delivery applications.
Collapse
Affiliation(s)
- Marisa L Martino
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Stephen N Crooke
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, United States
| | - M G Finn
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States.,School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Hernandez Vargas S, Lin C, Tran Cao HS, Ikoma N, AghaAmiri S, Ghosh SC, Uselmann AJ, Azhdarinia A. Receptor-Targeted Fluorescence-Guided Surgery With Low Molecular Weight Agents. Front Oncol 2021; 11:674083. [PMID: 34277418 PMCID: PMC8279813 DOI: 10.3389/fonc.2021.674083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer surgery remains the primary treatment option for most solid tumors and can be curative if all malignant cells are removed. Surgeons have historically relied on visual and tactile cues to maximize tumor resection, but clinical data suggest that relapse occurs partially due to incomplete cancer removal. As a result, the introduction of technologies that enhance the ability to visualize tumors in the operating room represents a pressing need. Such technologies have the potential to revolutionize the surgical standard-of-care by enabling real-time detection of surgical margins, subclinical residual disease, lymph node metastases and synchronous/metachronous tumors. Fluorescence-guided surgery (FGS) in the near-infrared (NIRF) spectrum has shown tremendous promise as an intraoperative imaging modality. An increasing number of clinical studies have demonstrated that tumor-selective FGS agents can improve the predictive value of fluorescence over non-targeted dyes. Whereas NIRF-labeled macromolecules (i.e., antibodies) spearheaded the widespread clinical translation of tumor-selective FGS drugs, peptides and small-molecules are emerging as valuable alternatives. Here, we first review the state-of-the-art of promising low molecular weight agents that are in clinical development for FGS; we then discuss the significance, application and constraints of emerging tumor-selective FGS technologies.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Therapeutics & Pharmacology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | | | - Hop S Tran Cao
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naruhiko Ikoma
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sukhen C Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Therapeutics & Pharmacology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
42
|
Luciano MP, Dingle I, Nourian S, Schnermann MJ. Preferential Light-Chain Labeling of Native Monoclonal Antibodies Improves the Properties of Fluorophore Conjugates. Tetrahedron Lett 2021; 75. [PMID: 34321699 DOI: 10.1016/j.tetlet.2021.153211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Site specific labeling methods have significant potential to enhance the properties of antibody conjugates. While studied extensively in the context of antibody-drug conjugates (ADCs), few studies have examined the impact of homogenous labeling on the properties of antibody-fluorophore conjugates (AFCs). We report the application of pentafluorophenyl (PFP) esters, which had previously been shown to be reasonably selective for K188 of the kappa light chain of human IGG antibodies, toward producing AFCs. We show that simple replacement of N-hydroxy succinimide (NHS) with PFP dramatically increases the light-chain specificity of near-infrared (NIR) AFCs. Comparing the properties of AFCs labeled using NHS and PFP-activated esters reveals that the latter exhibits reduced aggregation and improved brightness, both in vitro and in vivo. Overall, the use of PFP esters provides a remarkably simple approach to provide selectively labeled antibodies with improved properties.
Collapse
Affiliation(s)
- Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Ivan Dingle
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Saghar Nourian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| |
Collapse
|
43
|
Cosco ED, Arús BA, Spearman AL, Atallah TL, Lim I, Leland OS, Caram JR, Bischof TS, Bruns OT, Sletten EM. Bright Chromenylium Polymethine Dyes Enable Fast, Four-Color In Vivo Imaging with Shortwave Infrared Detection. J Am Chem Soc 2021; 143:6836-6846. [PMID: 33939921 DOI: 10.1021/jacs.0c11599] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Optical imaging within the shortwave infrared (SWIR, 1000-2000 nm) region of the electromagnetic spectrum has enabled high-resolution and high-contrast imaging in mice, non-invasively. Polymethine dyes, with their narrow absorption spectra and high absorption coefficients, are optimal probes for fast and multiplexed SWIR imaging. Here, we expand upon the multiplexing capabilities in SWIR imaging by obtaining brighter polymethine dyes with varied excitation wavelengths spaced throughout the near-infrared (700-1000 nm) region. Building on the flavylium polymethine dye scaffold, we explored derivatives with functional group substitution at the 2-position, deemed chromenylium polymethine dyes. The reported dyes have reduced nonradiative rates and enhanced emissive properties, enabling non-invasive imaging in mice in a single color at 300 fps and in three colors at 100 fps. Combined with polymethine dyes containing a red-shifted julolidine flavylium heterocycle and indocyanine green, distinct channels with well-separated excitation wavelengths provide non-invasive video-rate in vivo imaging in four colors.
Collapse
Affiliation(s)
- Emily D Cosco
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Bernardo A Arús
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Anthony L Spearman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Timothy L Atallah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Olivia S Leland
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Thomas S Bischof
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Oliver T Bruns
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,School of Medicine, Technical University Munich, D-80333 München, Germany
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
44
|
Schreiber CL, Zhai C, Smith BD. Structural Engineering of Fluorescent Self-Threaded Peptide Probes for Targeted Cell Imaging †. Photochem Photobiol 2021; 98:354-361. [PMID: 33934361 DOI: 10.1111/php.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
Squaraine figure-eight (SF8) molecules are a new class of deep-red fluorescent probes that are well suited for fluorescence cell microscopy due to their very high fluorescence brightness and excellent stability. Three homologous SF8 probes, with peptidyl loops that differ by very minor changes in the peptide sequence, were synthesized and assessed for probe uptake by cancer cells. One of probes included the RGD motif that is recognized by many classes of integrin receptors that reside on the surface of the cancer cells, and it permeated the cells by receptor-mediated endocytosis. In contrast, cell microscopy showed that there was negligible cell uptake of the two homologous SF8 probes indicating differences in probe targeting capability. The synthetic method allows for easy alteration of the peptide sequence; thus, it is straightforward to develop new classes of peptidyl SF8 probes with loop sequences that target other cancer biomarkers.
Collapse
Affiliation(s)
- Cynthia L Schreiber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
45
|
Not so innocent: Impact of fluorophore chemistry on the in vivo properties of bioconjugates. Curr Opin Chem Biol 2021; 63:38-45. [PMID: 33684856 DOI: 10.1016/j.cbpa.2021.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
The combination of targeting ligands and fluorescent dyes is a powerful strategy to observe cell types and tissues of interest. Conjugates of peptides, proteins, and, in particular, monoclonal antibodies (mAbs) exhibit excellent tumor targeting in various contexts. This approach has been translated to a clinical setting to provide real-time molecular insights during the surgical resection of solid tumors. A critical element of this approach is the generation of highly fluorescent bioconjugates that maintain the properties of the parent targeting ligand. A number of studies have found that fluorophores can dramatically impact the pharmacokinetic and tumor-targeting properties of the bioconjugates they are meant to only innocently observe. In this review, we summarize several examples of these effects and highlight strategies that have been used to mitigate them. These include the application of site-specific labeling chemistries, modulating label density, and altering the structure of the fluorescent probe itself. In particular, we point out the significant potential of fluorophores with hydrophilic but net-neutral structures. Overall, this review highlights recent progress in refining the in vivo properties of fluorescent bioconjugates, and we hope, will inform future efforts in this area.
Collapse
|
46
|
Schreiber CL, Li DH, Smith BD. High-Performance Near-Infrared Fluorescent Secondary Antibodies for Immunofluorescence. Anal Chem 2021; 93:3643-3651. [PMID: 33566567 PMCID: PMC8779000 DOI: 10.1021/acs.analchem.1c00276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A broad array of imaging and diagnostic technologies employs fluorophore-labeled antibodies for biomarker visualization, an experimental technique known as immunofluorescence. Significant performance advantages, such as higher signal-to-noise ratio, are gained if the appended fluorophore emits near-infrared (NIR) light with a wavelength >700 nm. However, the currently available NIR fluorophore antibody conjugates are known to exhibit significant limitations, including low chemical stability and photostability, weakened target specificity, and low fluorescence brightness. These fluorophore limitations are resolved by employing a NIR heptamethine cyanine dye named s775z whose chemical structure is very stable, charge-balanced, and sterically shielded. Using indirect immunofluorescence for imaging and visualization, a secondary IgG antibody labeled with s775z outperformed IgG analogues labeled with the commercially available NIR fluorophores, IRDye 800CW and DyLight800. Comparison experiments include three common techniques: immunocytochemistry, immunohistochemistry, and western blotting. Specifically, the secondary IgG labeled with s775z was 3-8 times brighter, 3-6 times more photostable, and still retained excellent target specificity when the degree of antibody labeling was high. The results demonstrate that antibodies labeled with s775z can emit total photon counts that are 1-2 orders of magnitude higher than those currently possible, and thus enable unsurpassed performance for NIR fluorescence imaging and diagnostics. They are especially well suited for analytical applications that require sensitive NIR fluorescence detection or use modern photon-intense methods that require high photostability.
Collapse
Affiliation(s)
- Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dong-Hao Li
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
47
|
Hernandez Vargas S, Lin C, Voss J, Ghosh SC, Halperin DM, AghaAmiri S, Cao HST, Ikoma N, Uselmann AJ, Azhdarinia A. Development of a drug-device combination for fluorescence-guided surgery in neuroendocrine tumors. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200129R. [PMID: 33300316 PMCID: PMC7725236 DOI: 10.1117/1.jbo.25.12.126002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/06/2020] [Indexed: 05/13/2023]
Abstract
SIGNIFICANCE The use of cancer-targeted contrast agents in fluorescence-guided surgery (FGS) has the potential to improve intraoperative visualization of tumors and surgical margins. However, evaluation of their translational potential is challenging. AIM We examined the utility of a somatostatin receptor subtype-2 (SSTR2)-targeted fluorescent agent in combination with a benchtop near-infrared fluorescence (NIRF) imaging system to visualize mouse xenografts under conditions that simulate the clinical FGS workflow for open surgical procedures. APPROACH The dual-labeled somatostatin analog, Ga67-MMC(IR800)-TOC, was injected into mice (n = 24) implanted with SSTR2-expressing tumors and imaged with the customized OnLume NIRF imaging system (Madison, Wisconsin). In vivo and ex vivo imaging were performed under ambient light. The optimal dose (0.2, 0.5, and 2 nmol) and imaging time point (3, 24, 48, and 72 h) were determined using contrast-to-noise ratio (CNR) as the image quality parameter. Video captures of tumor resections were obtained to provide an FGS readout that is representative of clinical utility. Finally, a log-transformed linear regression model was fitted to assess congruence between fluorescence readouts and the underlying drug distribution. RESULTS The drug-device combination provided high in vivo and ex vivo contrast (CNRs > 3, except lung at 3 h) at all time points with the optimal dose of 2 nmol. The optimal imaging time point was 24-h post-injection, where CNRs > 6.5 were achieved in tissues of interest (i.e., pancreas, small intestine, stomach, and lung). Intraoperative FGS showed excellent utility for examination of the tumor cavity pre- and post-resection. The relationship between fluorescence readouts and gamma counts was linear and strongly correlated (n = 334, R2 = 0.71; r = 0.84; P < 0.0001). CONCLUSION The innovative OnLume NIRF imaging system enhanced the evaluation of Ga67-MMC(IR800)-TOC in tumor models. These components comprise a promising drug-device combination for FGS in patients with SSTR2-expressing tumors.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | | | - Julie Voss
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Sukhen C. Ghosh
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Daniel M. Halperin
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, Houston, Texas, United States
| | - Solmaz AghaAmiri
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Hop S. Tran Cao
- The University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Division of Surgery, Houston, Texas, United States
| | - Naruhiko Ikoma
- The University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Division of Surgery, Houston, Texas, United States
| | | | - Ali Azhdarinia
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| |
Collapse
|
48
|
Black CE, Zhou E, DeAngelo CM, Asante I, Louie SG, Petasis NA, Humayun MS. Cyanine Nanocages Activated by Near-Infrared Light for the Targeted Treatment of Traumatic Brain Injury. Front Chem 2020; 8:769. [PMID: 33062635 PMCID: PMC7489144 DOI: 10.3389/fchem.2020.00769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and prevalent condition that affects large numbers of people across a range of ages. Individuals engaging in physical activities and victims of accidents are at a higher risk for TBI. There is a lack of available treatment specifically for TBI. Given the difficulty to determine its precise location in the brain, TBI remains difficult to fully diagnose or treat. Herein, we disclose a novel strategy for directing therapeutic agents to TBI sites, without the need to determine the precise location of the TBI activity in the brain. This novel approach is based on the use of a cyanine dye nanocage carrying Gabapentin, a known TBI therapeutic agent. Upon exposure of the cyanine nanocage to near-infrared light, the local release of Gabapentin is triggered, selectively at the TBI-affected site.
Collapse
Affiliation(s)
- Caroline E Black
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Eugene Zhou
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Caitlin M DeAngelo
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Isaac Asante
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Stan G Louie
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Nicos A Petasis
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States.,School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Mark S Humayun
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States.,Keck School of Medicine, Viterbi School of Engineering, and Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
49
|
AND-gate contrast agents for enhanced fluorescence-guided surgery. Nat Biomed Eng 2020; 5:264-277. [PMID: 32989286 PMCID: PMC7969380 DOI: 10.1038/s41551-020-00616-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
The surgical resection of tumours requires the precise location and definition of the margins between lesions and normal tissue. However, this is made difficult by irregular margin borders. Although molecularly targeted optical contrast agents can be used to define tumour margins during surgery in real time, the selectivity of the contrast agents is often limited by the target being expressed in both healthy and tumour tissues. Here, we show that AND-gate optical imaging probes requiring the processing of two substrates by multiple tumour-specific enzymes produce a fluorescent signal with significantly improved specificity and sensitivity to tumour tissue. We evaluated the performance of the probes in mouse models of mammary tumours and of metastatic lung cancer, and during fluorescence-guided robotic surgery. Imaging probes relying on multivariate activation to selectively target complex patterns of enzymatic activity should be useful in disease detection, treatment and monitoring.
Collapse
|
50
|
Štacková L, Muchová E, Russo M, Slavíček P, Štacko P, Klán P. Deciphering the Structure–Property Relations in Substituted Heptamethine Cyanines. J Org Chem 2020; 85:9776-9790. [DOI: 10.1021/acs.joc.0c01104] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lenka Štacková
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Marina Russo
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Peter Štacko
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|