1
|
Davis LJ, Krunić A, Alexander KL, Khin M, Wood JS, Earp C, Rangel-Grimaldo M, Eustáquio AS, Burdette JE, Williamson RT, Oberlies NH, Orjala J. Menominin A and B: Cytotoxic Cyclodepsipeptides from the Freshwater Sponge-Associated Cyanobacterium Nostoc sp. UIC 10607. JOURNAL OF NATURAL PRODUCTS 2025; 88:732-746. [PMID: 39977243 PMCID: PMC11952978 DOI: 10.1021/acs.jnatprod.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Menominin A (1) and B (2), two cyclodepsipeptides containing a 3,8-dihydroxy-2-methyltetradecanoic acid residue, were isolated from the freshwater sponge-associated cyanobacterium, Nostoc sp. UIC 10607, using bioactivity-guided and spectroscopic approaches. The planar structures of 1 and 2 were established using HRESIMS and one- and two-dimensional NMR experiments. Comparative genomic analysis revealed unique differences in the putative menominin biosynthetic gene cluster compared to that of the closely related cyanobacterial cyclic lipodepsipeptide, hapalosin, assisting in structure elucidation and highlighting the structural diversity of this class of compounds. Configuration assignments were determined using a combination of J-based configuration analysis, chiral HPLC, modified Mosher's ester analysis, and DFT calculations. Menominin A and B demonstrate antiproliferative bioactivity against the high-grade serous ovarian cancer cell line OVCAR3 (IC50 = 3.1 (1) and 2.4 μM (2)). Menominin A and B are the first reported secondary metabolites from a freshwater sponge-associated cyanobacterium, underscoring the potential of freshwater sponges as a microbial culture source in natural product discovery.
Collapse
Affiliation(s)
- Lydia J. Davis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Aleksej Krunić
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Kelsey L. Alexander
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Manead Khin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Jared S. Wood
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Cody Earp
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, North Carolina 27412, United States
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, North Carolina 27412, United States
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - R. Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, North Carolina 27412, United States
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Weiss MB, Borges RM, Sullivan P, Domingues JPB, da Silva FHS, Trindade VGS, Luo S, Orjala J, Crnkovic CM. Chemical diversity of cyanobacterial natural products. Nat Prod Rep 2025; 42:6-49. [PMID: 39540765 PMCID: PMC11948988 DOI: 10.1039/d4np00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Covering: 2010 to 2023Cyanobacterial natural products are a diverse group of molecules with promising biotechnological applications. This review examines the chemical diversity of 995 cyanobacterial metabolites reported from 2010 to 2023. A computational analysis using similarity networking was applied to visualize the chemical space and to compare the diversity of cyanobacterial metabolites among taxonomic orders and environmental sources. Key examples are highlighted, detailing their sources, biological activities, and discovery processes.
Collapse
Affiliation(s)
- Márcio B Weiss
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Ricardo M Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Peter Sullivan
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123, Saarbrücken, Germany
| | - João P B Domingues
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Francisco H S da Silva
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Victória G S Trindade
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, 60612, Chicago, IL, USA
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Baunach M, Guljamow A, Miguel-Gordo M, Dittmann E. Harnessing the potential: advances in cyanobacterial natural product research and biotechnology. Nat Prod Rep 2024; 41:347-369. [PMID: 38088806 DOI: 10.1039/d3np00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Covering: 2000 to 2023Cyanobacteria produce a variety of bioactive natural products that can pose a threat to humans and animals as environmental toxins, but also have potential for or inspire pharmaceutical use. As oxygenic phototrophs, cyanobacteria furthermore hold great promise for sustainable biotechnology. Yet, the necessary tools for exploiting their biotechnological potential have so far been established only for a few model strains of cyanobacteria, while large untapped biosynthetic resources are hidden in slow-growing cyanobacterial genera that are difficult to access by genetic techniques. In recent years, several approaches have been developed to circumvent the bottlenecks in cyanobacterial natural product research. Here, we summarize current progress that has been made in unlocking or characterizing cryptic metabolic pathways using integrated omics techniques, orphan gene cluster activation, use of genetic approaches in original producers, heterologous expression and chemo-enzymatic techniques. We are mainly highlighting genomic mining concepts and strategies towards high-titer production of cyanobacterial natural products from the last 10 years and discuss the need for further research developments in this field.
Collapse
Affiliation(s)
- Martin Baunach
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
- University of Bonn, Institute of Pharmaceutical Biology, Nußallee 6, 53115 Bonn, Germany
| | - Arthur Guljamow
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - María Miguel-Gordo
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - Elke Dittmann
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| |
Collapse
|
4
|
Bustos-Diaz ED, Cruz-Perez A, Garfias-Gallegos D, D'Agostino PM, Gehringer MM, Cibrian-Jaramillo A, Barona-Gomez F. Phylometagenomics of cycad coralloid roots reveals shared symbiotic signals. Microb Genom 2024; 10:001207. [PMID: 38451250 PMCID: PMC10999742 DOI: 10.1099/mgen.0.001207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Cycads are known to host symbiotic cyanobacteria, including Nostocales species, as well as other sympatric bacterial taxa within their specialized coralloid roots. Yet, it is unknown if these bacteria share a phylogenetic origin and/or common genomic functions that allow them to engage in facultative symbiosis with cycad roots. To address this, we obtained metagenomic sequences from 39 coralloid roots sampled from diverse cycad species and origins in Australia and Mexico. Culture-independent shotgun metagenomic sequencing was used to validate sub-community co-cultures as an efficient approach for functional and taxonomic analysis. Our metanalysis shows a host-independent microbiome core consisting of seven bacterial orders with high species diversity within the identified taxa. Moreover, we recovered 43 cyanobacterial metagenome-assembled genomes, and in addition to Nostoc spp., symbiotic cyanobacteria of the genus Aulosira were identified for the first time. Using this robust dataset, we used phylometagenomic analysis to reveal three monophyletic cyanobiont clades, two host-generalist and one cycad-specific that includes Aulosira spp. Although the symbiotic clades have independently arisen, they are enriched in certain functional genes, such as those related to secondary metabolism. Furthermore, the taxonomic composition of associated sympatric bacterial taxa remained constant. Our research quadruples the number of cycad cyanobiont genomes and provides a robust framework to decipher cyanobacterial symbioses, with the potential of improving our understanding of symbiotic communities. This study lays a solid foundation to harness cyanobionts for agriculture and bioprospection, and assist in conservation of critically endangered cycads.
Collapse
Affiliation(s)
- Edder D. Bustos-Diaz
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Netherlands, 2333 BE, Leiden
| | - Arely Cruz-Perez
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Diego Garfias-Gallegos
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Paul M. D'Agostino
- Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Michelle M. Gehringer
- Department of Microbiology, University of Kaiserslautern-Landau (RPTU), 67663 Kaiserslautern, Germany
| | - Angelica Cibrian-Jaramillo
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Naturalis Biodiversity Center, Leiden 2333 CR, Netherlands
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Netherlands, 2333 BE, Leiden
| |
Collapse
|
5
|
Glasser NR, Cui D, Risser DD, Okafor CD, Balskus EP. Accelerating the discovery of alkyl halide-derived natural products using halide depletion. Nat Chem 2024; 16:173-182. [PMID: 38216751 PMCID: PMC10849952 DOI: 10.1038/s41557-023-01390-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/30/2023] [Indexed: 01/14/2024]
Abstract
Even in the genomic era, microbial natural product discovery workflows can be laborious and limited in their ability to target molecules with specific structural features. Here we leverage an understanding of biosynthesis to develop a workflow that targets the discovery of alkyl halide-derived natural products by depleting halide anions, a key biosynthetic substrate for enzymatic halogenation, from microbial growth media. By comparing the metabolomes of bacterial cultures grown in halide-replete and deficient media, we rapidly discovered the nostochlorosides, the products of an orphan halogenase-encoding gene cluster from Nostoc punctiforme ATCC 29133. We further found that these products, a family of unusual chlorinated glycolipids featuring the rare sugar gulose, are polymerized via an unprecedented enzymatic etherification reaction. Together, our results highlight the power of leveraging an understanding of biosynthetic logic to streamline natural product discovery.
Collapse
Affiliation(s)
- Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Douglas D Risser
- Department of Biology, University of the Pacific, Stockton, CA, USA
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
D'Agostino PM. Highlights of biosynthetic enzymes and natural products from symbiotic cyanobacteria. Nat Prod Rep 2023; 40:1701-1717. [PMID: 37233731 DOI: 10.1039/d3np00011g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Covering: up to 2023Cyanobacteria have long been known for their intriguing repertoire of natural product scaffolds, which are often distinct from other phyla. Cyanobacteria are ecologically significant organisms that form a myriad of different symbioses including with sponges and ascidians in the marine environment or with plants and fungi, in the form of lichens, in terrestrial environments. Whilst there have been several high-profile discoveries of symbiotic cyanobacterial natural products, genomic data is scarce and discovery efforts have remained limited. However, the rise of (meta-)genomic sequencing has improved these efforts, emphasized by a steep increase in publications in recent years. This highlight focuses on selected examples of symbiotic cyanobacterial-derived natural products and their biosyntheses to link chemistry with corresponding biosynthetic logic. Further highlighted are remaining gaps in knowledge for the formation of characteristic structural motifs. It is anticipated that the continued rise of (meta-)genomic next-generation sequencing of symbiontic cyanobacterial systems will lead to many exciting discoveries in the future.
Collapse
Affiliation(s)
- Paul M D'Agostino
- Technical University of Dresden, Chair of Technical Biochemistry, Bergstraβe 66, 01069 Dresden, Germany.
| |
Collapse
|
7
|
Kukil K, Englund E, Crang N, Hudson EP, Lindberg P. Laboratory evolution of Synechocystis sp. PCC 6803 for phenylpropanoid production. Metab Eng 2023; 79:27-37. [PMID: 37392984 DOI: 10.1016/j.ymben.2023.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Cyanobacteria are promising as a biotechnological platform for production of various industrially relevant compounds, including aromatic amino acids and their derivatives, phenylpropanoids. In this study, we have generated phenylalanine resistant mutant strains (PRMs) of the unicellular cyanobacterium Synechocystis sp. PCC 6803, by laboratory evolution under the selective pressure of phenylalanine, which inhibits the growth of wild type Synechocystis. The new strains of Synechocystis were tested for their ability to secrete phenylalanine in the growth medium during cultivation in shake flasks as well as in a high-density cultivation (HDC) system. All PRM strains secreted phenylalanine into the culture medium, with one of the mutants, PRM8, demonstrating the highest specific production of 24.9 ± 7 mg L-1·OD750-1 or 610 ± 196 mg L-1 phenylalanine after four days of growth in HDC. We further overexpressed phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) in the mutant strains in order to determine the potential of PRMs for production of trans-cinnamic acid (tCA) and para-coumaric acid (pCou), the first intermediates of the plant phenylpropanoid pathway. Productivities of these compounds were found to be lower in the PRMs compared to respective control strains, except for PRM8 under HDC conditions. The PRM8 background strain in combination with PAL or TAL expression demonstrated a specific production of 52.7 ± 15 mg L-1·OD750-1tCA and 47.1 ± 7 mg L-1·OD750-1pCou, respectively, with a volumetric titer reaching above 1 g L-1 for both products after four days of HDC cultivation. The genomes of PRMs were sequenced in order to identify which mutations caused the phenotype. Interestingly, all of the PRMs contained at least one mutation in their ccmA gene, which encodes DAHP synthase, the first enzyme of the pathway for aromatic amino acids biosynthesis. Altogether, we demonstrate that the combination of laboratory-evolved mutants and targeted metabolic engineering can be a powerful tool in cyanobacterial strain development.
Collapse
Affiliation(s)
- Kateryna Kukil
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden
| | - Elias Englund
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Nick Crang
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden.
| |
Collapse
|
8
|
Abstract
Graspetides are a class of RiPPs (ribosomally synthesized and post-translationally modified peptides) defined by the presence of ester or amide side chain-side chain linkages resulting in peptide macrocycles. The graspetide name comes from the ATP-grasp enzymes that install the side chain-side chain linkages. This review covers the early, activity-based isolation of the first graspetides, marinostatins and microviridins, as well as the key genomics-driven experiments that established graspetide as RiPPs. The mechanism and structure of graspetide-associated ATP-grasp enzymes is discussed. Genome mining methods to discover new graspetides as well as the analytical techniques used to determine the linkages in graspetides are described. Extant knowledge on the bioactivity of graspetides as protease inhibitors is reviewed. Further chemical modifications to graspetides as well graspetide engineering studies are also described. We conclude with several suggestions about future directions of graspetide research.
Collapse
Affiliation(s)
- Brian Choi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
9
|
Freitas S, Castelo-Branco R, Wenzel-Storjohann A, Vasconcelos VM, Tasdemir D, Leão PN. Structure and Biosynthesis of Desmamides A-C, Lipoglycopeptides from the Endophytic Cyanobacterium Desmonostoc muscorum LEGE 12446. JOURNAL OF NATURAL PRODUCTS 2022; 85:1704-1714. [PMID: 35793792 PMCID: PMC9315949 DOI: 10.1021/acs.jnatprod.2c00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Certain cyanobacteria of the secondary metabolite-rich order Nostocales can establish permanent symbioses with a large number of cycads, by accumulating in their coralloid roots and shifting their metabolism to dinitrogen fixation. Here, we report the discovery of two new lipoglycopeptides, desmamides A (1) and B (2), together with their aglycone desmamide C (3), from the nostocalean cyanobacterium Desmonostoc muscorum LEGE 12446 isolated from a cycad (Cycas revoluta) coralloid root. The chemical structures of the compounds were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The desmamides are decapeptides featuring O-glycosylation of tyrosine (in 1 and 2) and an unusual 3,5-dihydroxy-2-methyldecanoic acid residue. The biosynthesis of the desmamides was studied by substrate incubation experiments and bioinformatics. We describe herein the dsm biosynthetic gene cluster and propose it to be associated with desmamide production. The discovery of this class of very abundant (>1.5% d.w.) bacterial lipoglycopeptides paves the way for exploration of their potential role in root endosymbiosis.
Collapse
Affiliation(s)
- Sara Freitas
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department
of Biology, Faculty of Sciences, University
of Porto Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Raquel Castelo-Branco
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Arlette Wenzel-Storjohann
- GEOMAR
Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz
Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106 Kiel, Germany
| | - Vitor M. Vasconcelos
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department
of Biology, Faculty of Sciences, University
of Porto Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Deniz Tasdemir
- GEOMAR
Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz
Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106 Kiel, Germany
- Kiel
University, Christian-Albrechts-Platz
4, 24118 Kiel, Germany
| | - Pedro N. Leão
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
10
|
Krumbholz J, Ishida K, Baunach M, Teikari JE, Rose MM, Sasso S, Hertweck C, Dittmann E. Deciphering Chemical Mediators Regulating Specialized Metabolism in a Symbiotic Cyanobacterium. Angew Chem Int Ed Engl 2022; 61:e202204545. [PMID: 35403785 PMCID: PMC9324945 DOI: 10.1002/anie.202204545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/11/2022]
Abstract
Genomes of cyanobacteria feature a variety of cryptic biosynthetic pathways for complex natural products, but the peculiarities limiting the discovery and exploitation of the metabolic dark matter are not well understood. Here we describe the discovery of two cell density-dependent chemical mediators, nostoclide and nostovalerolactone, in the symbiotic model strain Nostoc punctiforme, and demonstrate their pronounced impact on the regulation of specialized metabolism. Through transcriptional, bioinformatic and labeling studies we assigned two adjacent biosynthetic gene clusters to the biosynthesis of the two polyketide mediators. Our findings provide insight into the orchestration of specialized metabolite production and give lessons for the genomic mining and high-titer production of cyanobacterial bioactive compounds.
Collapse
Affiliation(s)
- Julia Krumbholz
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Keishi Ishida
- Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll InstituteBeutenbergstr. 11a07745JenaGermany
| | - Martin Baunach
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Jonna E. Teikari
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Magdalena M. Rose
- Institute for BiologyDepartment of Plant PhysiologyLeipzig UniversityJohannisallee 21–2304103LeipzigGermany
| | - Severin Sasso
- Institute for BiologyDepartment of Plant PhysiologyLeipzig UniversityJohannisallee 21–2304103LeipzigGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll InstituteBeutenbergstr. 11a07745JenaGermany
- Institute of MicrobiologyFaculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| | - Elke Dittmann
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| |
Collapse
|
11
|
Krumbholz J, Ishida K, Baunach M, Teikari JE, Rose MM, Sasso S, Hertweck C, Dittmann E. Entschlüsselung chemischer Mediatoren zur Regulierung des spezialisierten Stoffwechsels in einem symbiotischen Cyanobakterium. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Julia Krumbholz
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Keishi Ishida
- Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie Hans Knöll Institute Beutenbergstr. 11a 07745 Jena Deutschland
| | - Martin Baunach
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Jonna E. Teikari
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Magdalena M. Rose
- Institut für Biologie AG Pflanzenphysiologie Universität Leipzig Johannisallee 21–23 04103 Leipzig Deutschland
| | - Severin Sasso
- Institut für Biologie AG Pflanzenphysiologie Universität Leipzig Johannisallee 21–23 04103 Leipzig Deutschland
| | - Christian Hertweck
- Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie Hans Knöll Institute Beutenbergstr. 11a 07745 Jena Deutschland
- Institut für Mikrobiologie Fakultät für Biowissenschaften Friedrich-Schiller-Universität Jena 07743 Jena Deutschland
| | - Elke Dittmann
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| |
Collapse
|
12
|
Davis LJ, Maldonado AC, Khin M, Krunic A, Burdette JE, Orjala J. Aulosirazoles B and C from the Cyanobacterium Nostoc sp. UIC 10771: Analogues of an Isothiazolonaphthoquinone Scaffold that Activate Nuclear Transcription Factor FOXO3a in Ovarian Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2022; 85:540-546. [PMID: 35100504 PMCID: PMC8957594 DOI: 10.1021/acs.jnatprod.1c01030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The known solid-tumor-selective cytotoxin aulosirazole (1) was identified from bioactive extracts from the culture medium of the cyanobacterium Nostoc sp. UIC 10771. Here, we demonstrate that 1 induces the nuclear accumulation of FOXO3a in OVCAR3 using both Western blot analysis and immunofluorescence confocal microscopy. We also report the discovery of two additional analogues, aulosirazoles B (2) and C (3). Structures for compounds 2 and 3 were determined using HR-ESI-LC-MS/MS and 1D and 2D NMR experiments. Aulosirazoles B (2) and C (3) represent the first natural analogues of the FOXO-activating compound aulosirazole (1) and are the second and third isothiazole-containing metabolites reported from this phylum.
Collapse
Affiliation(s)
- Lydia J Davis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Amanda C Maldonado
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Manead Khin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
13
|
Hubrich F, Bösch NM, Chepkirui C, Morinaka BI, Rust M, Gugger M, Robinson SL, Vagstad AL, Piel J. Ribosomally derived lipopeptides containing distinct fatty acyl moieties. Proc Natl Acad Sci U S A 2022; 119:e2113120119. [PMID: 35027450 PMCID: PMC8784127 DOI: 10.1073/pnas.2113120119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Lipopeptides represent a large group of microbial natural products that include important antibacterial and antifungal drugs and some of the most-powerful known biosurfactants. The vast majority of lipopeptides comprise cyclic peptide backbones N-terminally equipped with various fatty acyl moieties. The known compounds of this type are biosynthesized by nonribosomal peptide synthetases, giant enzyme complexes that assemble their products in a non-gene-encoded manner. Here, we report the genome-guided discovery of ribosomally derived, fatty-acylated lipopeptides, termed selidamides. Heterologous reconstitution of three pathways, two from cyanobacteria and one from an arctic, ocean-derived alphaproteobacterium, allowed structural characterization of the probable natural products and suggest that selidamides are widespread over various bacterial phyla. The identified representatives feature cyclic peptide moieties and fatty acyl units attached to (hydroxy)ornithine or lysine side chains by maturases of the GCN5-related N-acetyltransferase superfamily. In contrast to nonribosomal lipopeptides that are usually produced as congener mixtures, the three selidamides are selectively fatty acylated with C10, C12, or C16 fatty acids, respectively. These results highlight the ability of ribosomal pathways to emulate products with diverse, nonribosomal-like features and add to the biocatalytic toolbox for peptide drug improvement and targeted discovery.
Collapse
Affiliation(s)
- Florian Hubrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Nina M Bösch
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Brandon I Morinaka
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Department of Pharmacy, National University of Singapore, 117543 Singapore, Singapore
| | - Michael Rust
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Muriel Gugger
- Collection of Cyanobacteria, Institut Pasteur, 75724 Paris, France
| | - Serina L Robinson
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland;
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland;
| |
Collapse
|
14
|
Teikari J, Baunach M, Dittmann E. Cyanobacterial Genome Sequencing, Annotation, and Bioinformatics. Methods Mol Biol 2022; 2489:269-287. [PMID: 35524055 DOI: 10.1007/978-1-0716-2273-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are collectively a globally important monophyletic phylum of bacteria. They have attracted a lot of attention, not only because they are rich sources of natural bioactive products, including toxic substances, but also because they play an important role in global nitrogen and carbon cycles, and are capable of maintaining versatile environmental niche adaptations. A vast number of cyanobacterial genomes have become available due to fast development of sequencing technologies, but effort is still needed to comprehensively understand the molecular basis of their diversity. Here, we introduce a basic pipeline for the cyanobacterial genome sequencing project that can be employed to complete the whole cyanobacterial genome. The pipeline includes DNA extraction from the cyanobacterial culture of interest, hybrid genome sequencing, and genome assembly and annotation. At the end of the chapter, we briefly introduce genome mining tools and one successful genome mining example from our laboratory. This chapter provides general guidance regarding the sequencing project and thus includes several references for alternative methods and tools so that the reader can easily modify the pipeline according to the needs of the laboratory.
Collapse
Affiliation(s)
- Jonna Teikari
- Environmental Soil Science, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland.
- University of Potsdam, Potsdam, Germany.
| | - Martin Baunach
- University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam, Germany
| | - Elke Dittmann
- University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam, Germany
| |
Collapse
|
15
|
Kaweewan I, Nakagawa H, Kodani S. Heterologous expression of a cryptic gene cluster from Marinomonas fungiae affords a novel tricyclic peptide marinomonasin. Appl Microbiol Biotechnol 2021; 105:7241-7250. [PMID: 34480236 DOI: 10.1007/s00253-021-11545-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
The ω-ester-containing peptides (OEPs) are a group of ribosomally synthesized and post-translationally modified peptides (RiPPs). The biosynthetic gene clusters of ω-ester-containing peptides commonly include ATP-grasp ligase coding genes and are distributed over the genomes of a wide variety of bacteria. A new biosynthetic gene cluster of ω-ester-containing peptides was found in the genome sequence of the marine proteobacterium Marinomonas fungiae. Heterologous production of a new tricyclic peptide named marinomonasin was accomplished using the biosynthetic gene cluster in Escherichia coli expression host strain BL21(DE3). By ESI-MS and NMR experiments, the structure of marinomonasin was determined to be a tricyclic peptide 18 amino acids in length with one ester and two isopeptide bonds in the molecule. The bridging patterns of the three intramolecular bonds were determined by the interpretation of HMBC and NOESY data. The bridging pattern of marinomonasin was unprecedented in the ω-ester-containing peptide group. The results indicated that the ATP-grasp ligase for the production of marinomonasin was a novel enzyme possessing bifunctional activity to form one ester and two isopeptide bonds. KEY POINTS: • New tricyclic peptide marinomonasin was heterologously produced in Escherichia coli. • Marinomonasin contained one ester and two isopeptide bonds in the molecule. • The bridging pattern of intramolecular bonds was novel.
Collapse
Affiliation(s)
- Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hiroyuki Nakagawa
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan.,Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Shinya Kodani
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan. .,Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka, Japan. .,College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
16
|
Anabaenopeptins: What We Know So Far. Toxins (Basel) 2021; 13:toxins13080522. [PMID: 34437393 PMCID: PMC8402340 DOI: 10.3390/toxins13080522] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are microorganisms with photosynthetic mechanisms capable of colonizing several distinct environments worldwide. They can produce a vast spectrum of bioactive compounds with different properties, resulting in an improved adaptative capacity. Their richness in secondary metabolites is related to their unique and diverse metabolic apparatus, such as Non-Ribosomal Peptide Synthetases (NRPSs). One important class of peptides produced by the non-ribosomal pathway is anabaenopeptins. These cyclic hexapeptides demonstrated inhibitory activity towards phosphatases and proteases, which could be related to their toxicity and adaptiveness against zooplankters and crustaceans. Thus, this review aims to identify key features related to anabaenopeptins, including the diversity of their structure, occurrence, the biosynthetic steps for their production, ecological roles, and biotechnological applications.
Collapse
|
17
|
Uzunov B, Stefanova K, Radkova M, Descy JP, Gärtner G, Stoyneva-Gärtner M. First Report on Microcystis as a Potential Microviridin Producer in Bulgarian Waterbodies. Toxins (Basel) 2021; 13:toxins13070448. [PMID: 34203459 PMCID: PMC8310014 DOI: 10.3390/toxins13070448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
Bulgaria, situated on the Balkan Peninsula, is rich in small and shallow, natural and man-made non-lotic waterbodies, which are threatened by blooms of Cyanoprokaryota/Cyanobacteria. Although cyanotoxins in Bulgarian surface waters are receiving increased attention, there is no information on microviridins and their producers. This paper presents results from a phytoplankton study, conducted in August 2019 in three lakes (Durankulak, Vaya, Uzungeren) and five reservoirs (Duvanli, Mandra, Poroy, Sinyata Reka, Zhrebchevo) in which a molecular-genetic analysis (PCR based on the precursor mdnA gene and subsequent translation to amino acid alignments), combined with conventional light microscopy and an HPLC analysis of marker pigments, were applied for the identification of potential microviridin producers. The results provide evidence that ten strains of the genus Microcystis, and of its most widespread species M. aeruginosa in particular, are potentially toxigenic in respect to microviridins. The mdnA sequences were obtained from all studied waterbodies and their translation to amino-acid alignments revealed the presence of five microviridin variants (types B/C, Izancya, CBJ55500.1 (Microcystis 199), and MC19, as well as a variant, which was very close to type A). This study adds to the general understanding of the microviridin occurrence, producers, and sequence diversity.
Collapse
Affiliation(s)
- Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria
- Correspondence: (B.U.); (M.S.-G.)
| | - Katerina Stefanova
- AgroBioInstitute, Bulgarian Agricultural Academy, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria; (K.S.); (M.R.)
| | - Mariana Radkova
- AgroBioInstitute, Bulgarian Agricultural Academy, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria; (K.S.); (M.R.)
| | - Jean-Pierre Descy
- Unité d’Océanographie Chimique, Université de Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Georg Gärtner
- Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria;
| | - Maya Stoyneva-Gärtner
- Department of Botany, Faculty of Biology, Sofia University, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria
- Correspondence: (B.U.); (M.S.-G.)
| |
Collapse
|
18
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
19
|
Jungblut AD, Raymond F, Dion MB, Moineau S, Mohit V, Nguyen GQ, Déraspe M, Francovic-Fontaine É, Lovejoy C, Culley AI, Corbeil J, Vincent WF. Genomic diversity and CRISPR-Cas systems in the cyanobacterium Nostoc in the High Arctic. Environ Microbiol 2021; 23:2955-2968. [PMID: 33760341 DOI: 10.1111/1462-2920.15481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
Nostoc (Nostocales, Cyanobacteria) has a global distribution in the Polar Regions. However, the genomic diversity of Nostoc is little known and there are no genomes available for polar Nostoc. Here we carried out the first genomic analysis of the Nostoc commune morphotype with a recent sample from the High Arctic and a herbarium specimen collected during the British Arctic Expedition (1875-76). Comparisons of the polar genomes with 26 present-day non-polar members of the Nostocales family highlighted that there are pronounced genetic variations among Nostoc strains and species. Osmoprotection and other stress genes were found in all Nostoc strains, but the two Arctic strains had markedly higher numbers of biosynthetic gene clusters for uncharacterised non-ribosomal peptide synthetases, suggesting a high diversity of secondary metabolites. Since viral-host interactions contribute to microbial diversity, we analysed the CRISPR-Cas systems in the Arctic and two temperate Nostoc species. There were a large number of unique repeat-spacer arrays in each genome, indicating diverse histories of viral attack. All Nostoc strains had a subtype I-D system, but the polar specimens also showed evidence of a subtype I-B system that has not been previously reported in cyanobacteria, suggesting diverse cyanobacteria-virus interactions in the Arctic.
Collapse
Affiliation(s)
- Anne D Jungblut
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Frédéric Raymond
- Department of Molecular Medicine and Big Data Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.,School of Nutrition and Institute on Nutrition and Functional Foods, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Moïra B Dion
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Groupe de Recherche en Écologie Buccale, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Groupe de Recherche en Écologie Buccale, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Vani Mohit
- Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Takuvik Joint International Laboratory and Institute of Integrative Biology and Systems, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de Biologie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Guillaume Quang Nguyen
- School of Nutrition and Institute on Nutrition and Functional Foods, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Maxime Déraspe
- Department of Molecular Medicine and Big Data Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Élina Francovic-Fontaine
- Department of Molecular Medicine and Big Data Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Connie Lovejoy
- Takuvik Joint International Laboratory and Institute of Integrative Biology and Systems, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de Biologie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Québec-Océan, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Alexander I Culley
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Groupe de Recherche en Écologie Buccale, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Takuvik Joint International Laboratory and Institute of Integrative Biology and Systems, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Jacques Corbeil
- Department of Molecular Medicine and Big Data Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Warwick F Vincent
- Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Takuvik Joint International Laboratory and Institute of Integrative Biology and Systems, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de Biologie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
20
|
Satjarak A, Graham LE, Piotrowski MJ, Trest MT, Wilcox LW, Cook ME, Knack JJ, Arancibia-Avila P. Shotgun metagenomics and microscopy indicate diverse cyanophytes, other bacteria, and microeukaryotes in the epimicrobiota of a northern Chilean wetland Nostoc (Cyanobacteria). JOURNAL OF PHYCOLOGY 2021; 57:39-50. [PMID: 33070358 DOI: 10.1111/jpy.13084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/01/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Prokaryotic Nostoc, one of the world's most conspicuous and widespread algal genera (similar to eukaryotic algae, plants, and animals) is known to support a microbiome that influences host ecological roles. Past taxonomic characterizations of surface microbiota (epimicrobiota) of free-living Nostoc sampled from freshwater systems employed 16S rRNA genes, typically amplicons. We compared taxa identified from 16S, 18S, 23S, and 28S rRNA gene sequences filtered from shotgun metagenomic sequence and used microscopy to illuminate epimicrobiota diversity for Nostoc sampled from a wetland in the northern Chilean Altiplano. Phylogenetic analysis and rRNA gene sequence abundance estimates indicated that the host was related to Nostoc punctiforme PCC 73102. Epimicrobiota were inferred to include 18 epicyanobacterial genera or uncultured taxa, six epieukaryotic algal genera, and 66 anoxygenic bacterial genera, all having average genomic coverage ≥90X. The epicyanobacteria Geitlerinemia, Oscillatoria, Phormidium, and an uncultured taxon were detected only by 16S rRNA gene; Gloeobacter and Pseudanabaena were detected using 16S and 23S; and Phormididesmis, Neosynechococcus, Symphothece, Aphanizomenon, Nodularia, Spirulina, Nodosilinea, Synechococcus, Cyanobium, and Anabaena (the latter corroborated by microscopy), plus two uncultured cyanobacterial taxa (JSC12, O77) were detected only by 23S rRNA gene sequences. Three chlamydomonad and two heterotrophic stramenopiles genera were inferred from 18S; the streptophyte green alga Chaetosphaeridium globosum was detected by microscopy and 28S rRNA genes, but not 18S rRNA genes. Overall, >60% of epimicrobial taxa were detected by markers other than 16S rRNA genes. Some algal taxa observed microscopically were not detected from sequence data. Results indicate that multiple taxonomic markers derived from metagenomic sequence data and microscopy increase epimicrobiota detection.
Collapse
Affiliation(s)
- Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 103330, Thailand
| | - Linda E Graham
- Department of Botany, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | | | - Marie T Trest
- Department of Botany, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Lee W Wilcox
- Department of Botany, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Martha E Cook
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, USA
| | - Jennifer J Knack
- Department of Biology, University of Minnesota, Duluth, Minnesota, 55812, USA
| | | |
Collapse
|
21
|
Mustila H, Kugler A, Stensjö K. Isobutene production in Synechocystis sp. PCC 6803 by introducing α-ketoisocaproate dioxygenase from Rattus norvegicus. Metab Eng Commun 2021; 12:e00163. [PMID: 33552898 PMCID: PMC7856465 DOI: 10.1016/j.mec.2021.e00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria can be utilized as a platform for direct phototrophic conversion of CO2 to produce several types of carbon-neutral biofuels. One promising compound to be produced photobiologically in cyanobacteria is isobutene. As a volatile compound, isobutene will quickly escape the cells without building up to toxic levels in growth medium or get caught in the membranes. Unlike liquid biofuels, gaseous isobutene may be collected from the headspace and thus avoid the costly extraction of a chemical from culture medium or from cells. Here we investigate a putative synthetic pathway for isobutene production suitable for a photoautotrophic host. First, we expressed α-ketoisocaproate dioxygenase from Rattus norvegicus (RnKICD) in Escherichia coli. We discovered isobutene formation with the purified RnKICD with the rate of 104.6 ± 9 ng (mg protein)-1 min-1 using α-ketoisocaproate as a substrate. We further demonstrate isobutene production in the cyanobacterium Synechocystis sp. PCC 6803 by introducing the RnKICD enzyme. Synechocystis strain heterologously expressing the RnKICD produced 91 ng l−1 OD750−1 h−1. Thus, we demonstrate a novel sustainable platform for cyanobacterial production of an important building block chemical, isobutene. These results indicate that RnKICD can be used to further optimize the synthetic isobutene pathway by protein and metabolic engineering efforts. Photosynthetic isobutene production is demonstrated in a cyanobacterium. A Synechocystis strain capable of continuous direct conversion of CO2 to isobutene. α-ketoisocaproate dioxygenase from R. norvegicus (RnKICD) is determined to form isobutene. RnKICD can convert α-ketoisocaproate to isobutene both in vitro and in vivo.
Collapse
Affiliation(s)
- Henna Mustila
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| |
Collapse
|
22
|
Current Knowledge on Microviridin from Cyanobacteria. Mar Drugs 2021; 19:md19010017. [PMID: 33406599 PMCID: PMC7823629 DOI: 10.3390/md19010017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites with a vast biotechnological potential. These compounds have intrigued the scientific community due their uniqueness and diversity, which is guaranteed by a rich enzymatic apparatus. The ribosomally synthesized and post-translationally modified peptides (RiPPs) are among the most promising metabolite groups derived from cyanobacteria. They are interested in numerous biological and ecological processes, many of which are entirely unknown. Microviridins are among the most recognized class of ribosomal peptides formed by cyanobacteria. These oligopeptides are potent inhibitors of protease; thus, they can be used for drug development and the control of mosquitoes. They also play a key ecological role in the defense of cyanobacteria against microcrustaceans. The purpose of this review is to systematically identify the key characteristics of microviridins, including its chemical structure and biosynthesis, as well as its biotechnological and ecological significance.
Collapse
|
23
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
24
|
Buijs Y, Isbrandt T, Zhang SD, Larsen TO, Gram L. The Antibiotic Andrimid Produced by Vibrio coralliilyticus Increases Expression of Biosynthetic Gene Clusters and Antibiotic Production in Photobacterium galatheae. Front Microbiol 2020; 11:622055. [PMID: 33424823 PMCID: PMC7793655 DOI: 10.3389/fmicb.2020.622055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
The development and spread of multidrug resistant pathogens have reinforced the urgency to find novel natural products with antibiotic activity. In bacteria, orphan biosynthetic gene clusters (BGCs) far outnumber the BGCs for which chemistry is known, possibly because they are transcriptionally silent under laboratory conditions. A strategy to trigger the production of this biosynthetic potential is to challenge the microorganism with low concentrations of antibiotics, and by using a Burkholderia genetic reporter strain (Seyedsayamdost, Proc Natl Acad Sci 111:7266-7271), we found BGC unsilencing activity for the antimicrobial andrimid, produced by the marine bacterium Vibrio coralliilyticus. Next, we challenged another marine Vibrionaceae, Photobacterium galatheae, carrier of seven orphan BGCs with sub-inhibitory concentrations of andrimid. A combined approach of transcriptional and chemical measurements of andrimid-treated P. galatheae cultures revealed a 10-fold upregulation of an orphan BGC and, amongst others, a 1.6-2.2-fold upregulation of the gene encoding the core enzyme for biosynthesis of holomycin. Also, addition of andrimid caused an increase, based on UV-Vis peak area, of 4-fold in production of the antibiotic holomycin. Transcriptional measurements of stress response related genes in P. galatheae showed a co-occurrence of increased transcript levels of rpoS (general stress response) and andrimid induced holomycin overproduction, while in trimethoprim treated cultures attenuation of holomycin production coincided with a transcriptional increase of recA (SOS stress response). This study shows that using antimicrobial compounds as activators of secondary metabolism can be a useful strategy in eliciting biosynthetic gene clusters and facilitate natural product discovery. Potentially, such interactions could also have ecological relevant implications.
Collapse
Affiliation(s)
| | | | | | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
25
|
Taton A, Ecker A, Diaz B, Moss NA, Anderson B, Reher R, Leão TF, Simkovsky R, Dorrestein PC, Gerwick L, Gerwick WH, Golden JW. Heterologous Expression of Cryptomaldamide in a Cyanobacterial Host. ACS Synth Biol 2020; 9:3364-3376. [PMID: 33180461 DOI: 10.1021/acssynbio.0c00431] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous marine cyanobacteria make a variety of bioactive molecules that are produced by polyketide synthases, nonribosomal peptide synthetases, and hybrid pathways that are encoded by large biosynthetic gene clusters. These cyanobacterial natural products represent potential drug leads; however, thorough pharmacological investigations have been impeded by the limited quantity of compound that is typically available from the native organisms. Additionally, investigations of the biosynthetic gene clusters and enzymatic pathways have been difficult due to the inability to conduct genetic manipulations in the native producers. Here we report a set of genetic tools for the heterologous expression of biosynthetic gene clusters in the cyanobacteria Synechococcus elongatus PCC 7942 and Anabaena (Nostoc) PCC 7120. To facilitate the transfer of gene clusters in both strains, we engineered a strain of Anabaena that contains S. elongatus homologous sequences for chromosomal recombination at a neutral site and devised a CRISPR-based strategy to efficiently obtain segregated double recombinant clones of Anabaena. These genetic tools were used to express the large 28.7 kb cryptomaldamide biosynthetic gene cluster from the marine cyanobacterium Moorena (Moorea) producens JHB in both model strains. S. elongatus did not produce cryptomaldamide; however, high-titer production of cryptomaldamide was obtained in Anabaena. The methods developed in this study will facilitate the heterologous expression of biosynthetic gene clusters isolated from marine cyanobacteria and complex metagenomic samples.
Collapse
|
26
|
Unno K, Kodani S. Heterologous expression of cryptic biosynthetic gene cluster from Streptomyces prunicolor yields novel bicyclic peptide prunipeptin. Microbiol Res 2020; 244:126669. [PMID: 33360751 DOI: 10.1016/j.micres.2020.126669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/02/2020] [Accepted: 12/06/2020] [Indexed: 11/18/2022]
Abstract
Recently, ω-ester-containing peptides (OEPs) were indicated to be a class of ribosomally synthesized and post-translationally modified peptides. Based on genome mining, new biosynthetic gene cluster of OEPs was found in the genome sequence of actinobacterium Streptomyces prunicolor. The biosynthetic gene cluster contained just two genes including precursor peptide (pruA) and ATP-grasp ligase (pruB) coding genes. Heterologous co-expression of the two genes was accomplished using expression vector pET-41a(+) in Escherichia coli. As a result, new OEP named prunipeptin was produced by this system. By site-directed mutagenesis experiment, a variant peptide prunipeptin 15HW was obtained. The bridging pattern of prunipeptin 15HW was determined by combination of chemical cleavage and MS experiments. Prunipeptin 15HW possessed bicyclic structure with an ester bond and an isopeptide bond. The ATP-grasp ligase PruB was indicated to catalyze the two different intramolecular bonds.
Collapse
Affiliation(s)
- Kohta Unno
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan; College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
27
|
Arias DB, Gomez Pinto KA, Cooper KK, Summers ML. Transcriptomic analysis of cyanobacterial alkane overproduction reveals stress-related genes and inhibitors of lipid droplet formation. Microb Genom 2020; 6. [PMID: 32941127 PMCID: PMC7660261 DOI: 10.1099/mgen.0.000432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cyanobacterium Nostoc punctiforme can form lipid droplets (LDs), internal inclusions containing triacylglycerols, carotenoids and alkanes. LDs are enriched for a 17 carbon-long alkane in N. punctiforme, and it has been shown that the overexpression of the aar and ado genes results in increased LD and alkane production. To identify transcriptional adaptations associated with increased alkane production, we performed comparative transcriptomic analysis of an alkane overproduction strain. RNA-seq data identified a large number of highly upregulated genes in the overproduction strain, including genes potentially involved in rRNA processing, mycosporine-glycine production and synthesis of non-ribosomal peptides, including nostopeptolide A. Other genes encoding helical carotenoid proteins, stress-induced proteins and those for microviridin synthesis were also upregulated. Construction of N. punctiforme strains with several upregulated genes or operons on multi-copy plasmids resulted in reduced alkane accumulation, indicating possible negative regulators of alkane production. A strain containing four genes for microviridin biosynthesis completely lost the ability to synthesize LDs. This strain exhibited wild-type growth and lag phase recovery under standard conditions, and slightly faster growth under high light. The transcriptional changes associated with increased alkane production identified in this work will provide the basis for future experiments designed to use cyanobacteria as a production platform for biofuel or high-value hydrophobic products.
Collapse
Affiliation(s)
- Daisy B. Arias
- California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330, USA
| | - Kevin A. Gomez Pinto
- California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330, USA
| | - Kerry K. Cooper
- University of Arizona, 1117 E. Lowell St, Tucson, AZ 85721, USA
| | - Michael L. Summers
- California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330, USA
- *Correspondence: Michael L. Summers,
| |
Collapse
|
28
|
Núñez-Montero K, Quezada-Solís D, Khalil ZG, Capon RJ, Andreote FD, Barrientos L. Genomic and Metabolomic Analysis of Antarctic Bacteria Revealed Culture and Elicitation Conditions for the Production of Antimicrobial Compounds. Biomolecules 2020; 10:E673. [PMID: 32349314 PMCID: PMC7277857 DOI: 10.3390/biom10050673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
Concern about finding new antibiotics against drug-resistant pathogens is increasing every year. Antarctic bacteria have been proposed as an unexplored source of bioactive metabolites; however, most biosynthetic gene clusters (BGCs) producing secondary metabolites remain silent under common culture conditions. Our work aimed to characterize elicitation conditions for the production of antibacterial secondary metabolites from 34 Antarctic bacterial strains based on MS/MS metabolomics and genome mining approaches. Bacterial strains were cultivated under different nutrient and elicitation conditions, including the addition of lipopolysaccharide (LPS), sodium nitroprusside (SNP), and coculture. Metabolomes were obtained by HPLC-QTOF-MS/MS and analyzed through molecular networking. Antibacterial activity was determined, and seven strains were selected for genome sequencing and analysis. Biosynthesis pathways were activated by all the elicitation treatments, which varies among strains and dependents of culture media. Increased antibacterial activity was observed for a few strains and addition of LPS was related with inhibition of Gram-negative pathogens. Antibiotic BGCs were found for all selected strains and the expressions of putative actinomycin, carotenoids, and bacillibactin were characterized by comparison of genomic and metabolomic data. This work established the use of promising new elicitors for bioprospection of Antarctic bacteria and highlights the importance of new "-omics" comparative approaches for drug discovery.
Collapse
Affiliation(s)
- Kattia Núñez-Montero
- Laboratory of Molecular Applied Biology, Center of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, Temuco 4810296, Chile; (K.N.-M.); (D.Q.-S.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Biotechnology Investigation Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Damián Quezada-Solís
- Laboratory of Molecular Applied Biology, Center of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, Temuco 4810296, Chile; (K.N.-M.); (D.Q.-S.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Fernando D. Andreote
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil;
| | - Leticia Barrientos
- Laboratory of Molecular Applied Biology, Center of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, Temuco 4810296, Chile; (K.N.-M.); (D.Q.-S.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
29
|
Unno K, Kaweewan I, Nakagawa H, Kodani S. Heterologous expression of a cryptic gene cluster from Grimontia marina affords a novel tricyclic peptide grimoviridin. Appl Microbiol Biotechnol 2020; 104:5293-5302. [DOI: 10.1007/s00253-020-10605-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
|
30
|
Dienst D, Wichmann J, Mantovani O, Rodrigues JS, Lindberg P. High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803. Sci Rep 2020; 10:5932. [PMID: 32246065 PMCID: PMC7125158 DOI: 10.1038/s41598-020-62681-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/05/2020] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria and microalgae are attractive photoautotrophic host systems for climate-friendly production of fuels and other value-added biochemicals. However, for economic applications further development and implementation of efficient and sustainable cultivation strategies are essential. Here, we present a comparative study on cyanobacterial sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803 using a commercial lab-scale High Density Cultivation (HDC) platform in the presence of dodecane as in-situ extractant. Operating in a two-step semi-batch mode over a period of eight days, volumetric yields of (E)-α-bisabolene were more than two orders of magnitude higher than previously reported for cyanobacteria, with final titers of 179.4 ± 20.7 mg * L−1. Likewise, yields of the sesquiterpene alcohols (−)-patchoulol and (−)-α-bisabolol were many times higher than under reference conditions, with final titers of 17.3 ± 1.85 mg * L−1 and 96.3 ± 2.2 mg * L−1, respectively. While specific productivity was compromised particularly for (E)-α-bisabolene in the HDC system during phases of high biomass accumulation rates, volumetric productivity enhancements during linear growth at high densities were more pronounced for (E)-α-bisabolene than for the hydroxylated terpenoids. Together, this study provides additional insights into cell density-related process characteristics, introducing HDC as highly efficient strategy for phototrophic terpenoid production in cyanobacteria.
Collapse
Affiliation(s)
- Dennis Dienst
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Julian Wichmann
- Faculty of Biology - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Oliver Mantovani
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - João S Rodrigues
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden.
| |
Collapse
|
31
|
Bioactive Peptides Produced by Cyanobacteria of the Genus Nostoc: A Review. Mar Drugs 2019; 17:md17100561. [PMID: 31569531 PMCID: PMC6835634 DOI: 10.3390/md17100561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteria of the genus Nostoc are widespread in all kinds of habitats. They occur in a free-living state or in association with other organisms. Members of this genus belong to prolific producers of bioactive metabolites, some of which have been recognized as potential therapeutic agents. Of these, peptides and peptide-like structures show the most promising properties and are of a particular interest for both research laboratories and pharmaceutical companies. Nostoc is a sole source of some lead compounds such as cytotoxic cryptophycins, antiviral cyanovirin-N, or the antitoxic nostocyclopeptides. Nostoc also produces the same bioactive peptides as other cyanobacterial genera, but they frequently have some unique modifications in the structure. This includes hepatotoxic microcystins and potent proteases inhibitors such as cyanopeptolins, anabaenopeptins, and microginins. In this review, we described the most studied peptides produced by Nostoc, focusing especially on the structure, the activity, and a potential application of the compounds.
Collapse
|