1
|
Anton PE, Maphis NM, Linsenbardt DN, Coleman LG. Excessive Alcohol Use as a Risk Factor for Alzheimer's Disease: Epidemiological and Preclinical Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:211-242. [PMID: 40128481 DOI: 10.1007/978-3-031-81908-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Alcohol use has recently emerged as a modifiable risk factor for Alzheimer's disease (AD). However, the neurobiological mechanisms by which alcohol interacts with AD pathogenesis remain poorly understood. In this chapter, we review the epidemiological and preclinical support for the interaction between alcohol use and AD. We hypothesize that alcohol use increases the rate of accumulation of specific AD-relevant pathologies during the prodromal phase and exacerbates dementia onset and progression. We find that alcohol consumption rates are increasing in adolescence, middle age, and aging populations. In tandem, rates of AD are also on the rise, potentially as a result of this increased alcohol use throughout the lifespan. We then review the biological processes in common between alcohol use disorder and AD as a means to uncover potential mechanisms by which they interact; these include oxidative stress, neuroimmune function, metabolism, pathogenic tauopathy development and spread, and neuronal excitatory/inhibitory balance (EIB). Finally, we provide some forward-thinking suggestions we believe this field should consider. In particular, the inclusion of alcohol use assessments in longitudinal studies of AD and more preclinical studies on alcohol's impacts using better animal models of late-onset Alzheimer's disease (LOAD).
Collapse
Affiliation(s)
- Paige E Anton
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole M Maphis
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - David N Linsenbardt
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Wang S, Li C, Kang X, Su X, Liu Y, Wang Y, Liu S, Deng X, Huang H, Li T, Lu D, Cai W, Lu Z, Wei L, Lu T. Agomelatine promotes differentiation of oligodendrocyte precursor cells and preserves white matter integrity after cerebral ischemic stroke. J Cereb Blood Flow Metab 2024; 44:1487-1500. [PMID: 38853430 PMCID: PMC11574932 DOI: 10.1177/0271678x241260100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
White matter injury contributes to neurological disorders after acute ischemic stroke (AIS). The repair of white matter injury is dependent on the re-myelination by oligodendrocytes. Both melatonin and serotonin antagonist have been proved to protect against post-stroke white matter injury. Agomelatine (AGM) is a multi-functional treatment which is both a melatonin receptor agonist and selective serotonin receptor antagonist. Whether AGM protects against white matter injury after stroke and the underlying mechanisms remain elusive. Here, using the transient middle cerebral artery occlusion (tMCAO) model, we evaluated the therapeutic effects of AGM in stroke mice. Sensorimotor and cognitive functions, white matter integrity, oligodendroglial regeneration and re-myelination in stroke hemisphere after AGM treatment were analyzed. We found that AGM efficiently preserved white matter integrity, reduced brain tissue loss, attenuated long-term sensorimotor and cognitive deficits in tMCAO models. AGM treatment promoted OPC differentiation and enhanced re-myelination both in vitro, ex vivo and in vivo, although OPC proliferation was unaffected. Mechanistically, AGM activated low density lipoprotein receptor related protein 1 (LRP1), peroxisome proliferator-activated receptor γ (PPARγ) signaling thus promoted OPC differentiation and re-myelination after stroke. Inhibition of PPARγ or knock-down of LRP1 in OPCs reversed the beneficial effects of AGM. Altogether, our data indicate that AGM represents a novel therapy against white matter injury after cerebral ischemia.
Collapse
Affiliation(s)
- Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Sakuragi S, Uchida T, Kato N, Zhao B, Takahashi T, Hattori A, Sakata Y, Soeda Y, Takashima A, Yoshimura H, Matsumoto G, Bannai H. Inducing aggresome and stable tau aggregation in Neuro2a cells with an optogenetic tool. Biophys Physicobiol 2024; 21:e210023. [PMID: 39963597 PMCID: PMC11832247 DOI: 10.2142/biophysico.bppb-v21.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/26/2024] [Indexed: 02/20/2025] Open
Abstract
Tauopathy is a spectrum of diseases characterized by fibrillary tau aggregate formation in neurons and glial cells in the brain. Tau aggregation originates in the brainstem and entorhinal cortex and then spreads throughout the brain in Alzheimer's disease (AD), which is the most prevalent type of tauopathy. Understanding the mechanism by which locally developed tau pathology propagates throughout the brain is crucial for comprehending AD pathogenesis. Therefore, a novel model of tau pathology that artificially induces tau aggregation in targeted cells at specific times is essential. This study describes a novel optogenetic module, OptoTau, which is a human tau with the P301L mutation fused with a photosensitive protein CRY2olig, inducing various forms of tau according to the temporal pattern of blue light illumination pattern. Continuous blue light illumination for 12 h to Neuro2a cells that stably express OptoTau (OptoTauKI cells) formed clusters along microtubules, many of which eventually accumulated in aggresomes. Conversely, methanol-resistant tau aggregation was formed when alternating light exposure and darkness in 30-min cycles for 8 sets per day were repeated over 8 days. Methanol-resistant tau was induced more rapidly by repeating 5-min illumination followed by 25-min darkness over 24 h. These results indicate that OptoTau induced various tau aggregation stages based on the temporal pattern of blue light exposure. Thus, this technique exhibits potential as a novel approach to developing specific tau aggregation in targeted cells at desired time points.
Collapse
Affiliation(s)
- Shigeo Sakuragi
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Tomoya Uchida
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Naoki Kato
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Boxiao Zhao
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Toshiki Takahashi
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Akito Hattori
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
- Present address: Department of Medical Laboratory Science, Kitasato University School of Health Sciences, Minami-Uonuma, Niigata 949-7241, Japan
| | - Yoshihiro Sakata
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Yoshiyuki Soeda
- Laboratory for Alzheimer’s Disease, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer’s Disease, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Gen Matsumoto
- Department of Neurological Disease Control, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Hiroko Bannai
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| |
Collapse
|
4
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
5
|
Tallon C, Bell BJ, Malvankar MM, Deme P, Nogueras-Ortiz C, Eren E, Thomas AG, Hollinger KR, Pal A, Mustapic M, Huang M, Coleman K, Joe TR, Rais R, Haughey NJ, Kapogiannis D, Slusher BS. Inhibiting tau-induced elevated nSMase2 activity and ceramides is therapeutic in an Alzheimer's disease mouse model. Transl Neurodegener 2023; 12:56. [PMID: 38049923 PMCID: PMC10694940 DOI: 10.1186/s40035-023-00383-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Cognitive decline in Alzheimer's disease (AD) is associated with hyperphosphorylated tau (pTau) propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EVs). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2 (nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that human tau expression elevates brain ceramides and nSMase2 activity. METHODS To determine the therapeutic benefit of inhibiting this elevation, we evaluated PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor in the transgenic PS19 AD mouse model. Additionally, we directly evaluated the effect of PDDC on tau propagation in a mouse model where an adeno-associated virus (AAV) encoding P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus. The contralateral transfer of the double mutant human tau to the dentate gyrus was monitored. We examined ceramide levels, histopathological changes, and pTau content within EVs isolated from the mouse plasma. RESULTS Similar to human AD, the PS19 mice exhibited increased brain ceramide levels and nSMase2 activity; both were completely normalized by PDDC treatment. The PS19 mice also exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all of which were pathologic features of human AD. PDDC treatment reduced these changes. The plasma of PDDC-treated PS19 mice had reduced levels of neuronal- and microglial-derived EVs, the former carrying lower pTau levels, compared to untreated mice. In the tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly reduced the amount of tau propagation to the contralateral side. CONCLUSIONS PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity, leading to the slowing of tau spread in AD mice.
Collapse
Affiliation(s)
- Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin J Bell
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Medhinee M Malvankar
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pragney Deme
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Carlos Nogueras-Ortiz
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Ste 8C228, Baltimore, MD, 21224, USA
| | - Erden Eren
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Ste 8C228, Baltimore, MD, 21224, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristen R Hollinger
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Arindom Pal
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Maja Mustapic
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Ste 8C228, Baltimore, MD, 21224, USA
| | - Meixiang Huang
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kaleem Coleman
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tawnjerae R Joe
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Norman J Haughey
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Rangos 278, Baltimore, MD, 21205, USA.
- Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Pathology 517, Baltimore, MD, 21287, USA.
| | - Dimitrios Kapogiannis
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Ste 8C228, Baltimore, MD, 21224, USA.
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Rangos 278, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Huang M, Tallon C, Zhu X, Huizar KDJ, Picciolini S, Thomas AG, Tenora L, Liyanage W, Rodà F, Gualerzi A, Kannan RM, Bedoni M, Rais R, Slusher BS. Microglial-Targeted nSMase2 Inhibitor Fails to Reduce Tau Propagation in PS19 Mice. Pharmaceutics 2023; 15:2364. [PMID: 37765332 PMCID: PMC10536502 DOI: 10.3390/pharmaceutics15092364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The progression of Alzheimer's disease (AD) correlates with the propagation of hyperphosphorylated tau (pTau) from the entorhinal cortex to the hippocampus and neocortex. Neutral sphingomyelinase2 (nSMase2) is critical in the biosynthesis of extracellular vesicles (EVs), which play a role in pTau propagation. We recently conjugated DPTIP, a potent nSMase2 inhibitor, to hydroxyl-PAMAM-dendrimer nanoparticles that can improve brain delivery. We showed that dendrimer-conjugated DPTIP (D-DPTIP) robustly inhibited the spread of pTau in an AAV-pTau propagation model. To further evaluate its efficacy, we tested D-DPTIP in the PS19 transgenic mouse model. Unexpectantly, D-DPTIP showed no beneficial effect. To understand this discrepancy, we assessed D-DPTIP's brain localization. Using immunofluorescence and fluorescence-activated cell-sorting, D-DPTIP was found to be primarily internalized by microglia, where it selectively inhibited microglial nSMase2 activity with no effect on other cell types. Furthermore, D-DPTIP inhibited microglia-derived EV release into plasma without affecting other brain-derived EVs. We hypothesize that microglial targeting allowed D-DPTIP to inhibit tau propagation in the AAV-hTau model, where microglial EVs play a central role in propagation. However, in PS19 mice, where tau propagation is independent of microglial EVs, it had a limited effect. Our findings confirm microglial targeting with hydroxyl-PAMAM dendrimers and highlight the importance of understanding cell-specific mechanisms when designing targeted AD therapies.
Collapse
Affiliation(s)
- Meixiang Huang
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiaolei Zhu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kaitlyn D. J. Huizar
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
| | - Silvia Picciolini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lukas Tenora
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wathsala Liyanage
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (W.L.); (R.M.K.)
| | - Francesca Rodà
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 42100 Modena, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (W.L.); (R.M.K.)
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Kandeel M, Morsy MA, Alkhodair KM, Alhojaily S. Mesenchymal Stem Cell-Derived Extracellular Vesicles: An Emerging Diagnostic and Therapeutic Biomolecules for Neurodegenerative Disabilities. Biomolecules 2023; 13:1250. [PMID: 37627315 PMCID: PMC10452295 DOI: 10.3390/biom13081250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of versatile adult stem cells present in various organs. These cells give rise to extracellular vesicles (EVs) containing a diverse array of biologically active elements, making them a promising approach for therapeutics and diagnostics. This article examines the potential therapeutic applications of MSC-derived EVs in addressing neurodegenerative disorders such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Furthermore, the present state-of-the-art for MSC-EV-based therapy in AD, HD, PD, ALS, and MS is discussed. Significant progress has been made in understanding the etiology and potential treatments for a range of neurodegenerative diseases (NDs) over the last few decades. The contents of EVs are carried across cells for intercellular contact, which often results in the control of the recipient cell's homeostasis. Since EVs represent the therapeutically beneficial cargo of parent cells and are devoid of many ethical problems connected with cell-based treatments, they offer a viable cell-free therapy alternative for tissue regeneration and repair. Developing innovative EV-dependent medicines has proven difficult due to the lack of standardized procedures in EV extraction processes as well as their pharmacological characteristics and mechanisms of action. However, recent biotechnology and engineering research has greatly enhanced the content and applicability of MSC-EVs.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Khalid M. Alkhodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sameer Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
8
|
Tallon C, Bell BJ, Sharma A, Pal A, Malvankar MM, Thomas AG, Yoo SW, Hollinger KR, Coleman K, Wilkinson EL, Kannan S, Haughey NJ, Kannan RM, Rais R, Slusher BS. Dendrimer-Conjugated nSMase2 Inhibitor Reduces Tau Propagation in Mice. Pharmaceutics 2022; 14:2066. [PMID: 36297501 PMCID: PMC9609094 DOI: 10.3390/pharmaceutics14102066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the progressive accumulation of amyloid-β and hyperphosphorylated tau (pTau), which can spread throughout the brain via extracellular vesicles (EVs). Membrane ceramide enrichment regulated by the enzyme neutral sphingomyelinase 2 (nSMase2) is a critical component of at least one EV biogenesis pathway. Our group recently identified 2,6-Dimethoxy-4-(5-Phenyl-4-Thiophen-2-yl-1H-Imidazol-2-yl)-Phenol (DPTIP), the most potent (30 nM) and selective inhibitor of nSMase2 reported to date. However, DPTIP exhibits poor oral pharmacokinetics (PK), modest brain penetration, and rapid clearance, limiting its clinical translation. To enhance its PK properties, we conjugated DPTIP to a hydroxyl-PAMAM dendrimer delivery system, creating dendrimer-DPTIP (D-DPTIP). In an acute brain injury model, orally administered D-DPTIP significantly reduced the intra-striatal IL-1β-induced increase in plasma EVs up to 72 h post-dose, while oral DPTIP had a limited effect. In a mouse tau propagation model, where a mutant hTau (P301L/S320F) containing adeno-associated virus was unilaterally seeded into the hippocampus, oral D-DPTIP (dosed 3× weekly) significantly inhibited brain nSMase2 activity and blocked the spread of pTau to the contralateral hippocampus. These data demonstrate that dendrimer conjugation of DPTIP improves its PK properties, resulting in significant inhibition of EV propagation of pTau in mice. Dendrimer-based delivery of DPTIP has the potential to be an exciting new therapeutic for AD.
Collapse
Affiliation(s)
- Carolyn Tallon
- Johns Hopkins Drug Discovery, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin J. Bell
- Johns Hopkins Drug Discovery, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Arindom Pal
- Johns Hopkins Drug Discovery, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | - Seung-Wan Yoo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Kaleem Coleman
- Johns Hopkins Drug Discovery, Baltimore, MD 21205, USA
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth L. Wilkinson
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Moser Center for Leukodystrophies at Kennedy Krieger, Kennedy Krieger Institute, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Hugo W. Moser Research Institute at Kennedy-Krieger Inc., Baltimore, MD 21205, USA
- Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Norman J. Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Moser Center for Leukodystrophies at Kennedy Krieger, Kennedy Krieger Institute, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Kang SS, Meng L, Zhang X, Wu Z, Mancieri A, Xie B, Liu X, Weinshenker D, Peng J, Zhang Z, Ye K. Tau modification by the norepinephrine metabolite DOPEGAL stimulates its pathology and propagation. Nat Struct Mol Biol 2022; 29:292-305. [PMID: 35332321 PMCID: PMC9018606 DOI: 10.1038/s41594-022-00745-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
The noradrenergic locus ceruleus (LC) is the first site of detectable tau pathology in Alzheimer's disease (AD), but the mechanisms underlying the selective vulnerability of the LC in AD have not been completely identified. In the present study, we show that DOPEGAL, a monoamine oxidase A (MAO-A) metabolite of norepinephrine (NE), reacts directly with the primary amine on the Lys353 residue of tau to stimulate its aggregation and facilitate its propagation. Inhibition of MAO-A or mutation of the Lys353 residue to arginine (Lys353Arg) decreases tau Lys353-DOPEGAL levels and diminishes tau pathology spreading. Wild-type tau preformed fibrils (PFFs) trigger Lys353-DOPEGAL formation, tau pathology propagation and cognitive impairment in MAPT transgenic mice, all of which are attenuated with PFFs made from the Lys353Arg mutant. Thus, the selective vulnerability of LC neurons in AD may be explained, in part, by NE oxidation via MAO-A into DOPEGAL, which covalently modifies tau and accelerates its aggregation, toxicity and propagation.
Collapse
Affiliation(s)
- Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ariana Mancieri
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Boer Xie
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China.
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| |
Collapse
|
10
|
Balczon R, Lin MT, Lee JY, Abbasi A, Renema P, Voth SB, Zhou C, Koloteva A, Michael Francis C, Sodha NR, Pittet JF, Wagener BM, Bell J, Choi CS, Ventetuolo CE, Stevens T. Pneumonia initiates a tauopathy. FASEB J 2021; 35:e21807. [PMID: 34384141 PMCID: PMC8443149 DOI: 10.1096/fj.202100718r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Pneumonia causes short‐ and long‐term cognitive dysfunction in a high proportion of patients, although the mechanism(s) responsible for this effect are unknown. Here, we tested the hypothesis that pneumonia‐elicited cytotoxic amyloid and tau variants: (1) are present in the circulation during infection; (2) lead to impairment of long‐term potentiation; and, (3) inhibit long‐term potentiation dependent upon tau. Cytotoxic amyloid and tau species were recovered from the blood and the hippocampus following pneumonia, and they were present in the extracorporeal membrane oxygenation oxygenators of patients with pneumonia, especially in those who died. Introduction of immunopurified blood‐borne amyloid and tau into either the airways or the blood of uninfected animals acutely and chronically impaired hippocampal information processing. In contrast, the infection did not impair long‐term potentiation in tau knockout mice and the amyloid‐ and tau‐dependent disruption in hippocampal signaling was less severe in tau knockout mice. Moreover, the infection did not elicit cytotoxic amyloid and tau variants in tau knockout mice. Therefore, pneumonia initiates a tauopathy that contributes to cognitive dysfunction.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Mike T Lin
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Ji Young Lee
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Internal Medicine, University of South Alabama, Mobile, AL, USA
| | - Adeel Abbasi
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Phoibe Renema
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Sarah B Voth
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Chun Zhou
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Anna Koloteva
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - C Michael Francis
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Neel R Sodha
- Department of Surgery, Brown University, Providence, RI, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Bell
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Chung-Sik Choi
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Corey E Ventetuolo
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA.,Health Services, Policy and Practice, Brown University School of Public Health, Providence, RI, USA
| | - Troy Stevens
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Internal Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|