1
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 PMCID: PMC11801300 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
2
|
Xu Z, Yi W, Guan L, Tang J, Feng D, Zou Y. Deciphering the Inhibitory Mechanism of ALS-Associated N352S and S352p Variants against TDP-43 Aggregation and Its Destabilization Effect on TDP-43 Protofibrils. ACS Chem Neurosci 2025; 16:1898-1908. [PMID: 40311013 DOI: 10.1021/acschemneuro.5c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is closely related to ubiquitin-positive inclusions formed by transactive response deoxyribonucleic acid (DNA) binding protein of 43 kDa (TDP-43). Previous experiments identified that the ALS-linked familial variant, N352S (asparagine substituted by serine), and subsequent phosphorylation of S352 (S352p) are associated with the aggregation of TDP-43. However, the underlying molecular mechanisms are still not fully understood. By performing all-atom explicit-solvent replica exchange molecular dynamics (REMD) simulations with a total simulation time of 100.8 μs, we scrutinized the impact of the N352S mutation and its phosphorylation variant S352p on the conformational ensembles of the TDP-43342-366 dimer. Our simulation results show that both the N352S and S352p variants could promote the formation of unstructured conformation and impede the formation of β-structure and helix content, and the inhibitive effect of S352P is more obvious. Further analyses suggest that the H-bonding and hydrophobic interaction among TDP-43342-366 peptides, as well as the R361-E362 salt bridge, are attenuated by N352S and S352p variants. Additional MD simulations show that N352S and S352p variants reduce the structural stability of the hydrophobic region and lower the number of H-bonds and contacts of two hydrophobic clusters, thus possessing a destabilization effect on the TDP-43282-360 protofibrils. Our results unmask the molecular mechanism of the N352S mutation and its phosphorylation variant S352p toward the inhibition of TDP-43342-366 aggregation and prove the protofibril-destabilizing effects of these two variants, which may be helpful for designing drugs for the treatment of ALS.
Collapse
Affiliation(s)
- Zhengdong Xu
- Department of Physical Education, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Wenjuan Yi
- Department Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310007, People's Republic of China
| | - Lulu Guan
- Department Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310007, People's Republic of China
| | - Jiaxing Tang
- School of Physical Education, Xiangnan University, 889 Chenzhou Road, Chenzhou 423000, People's Republic of China
| | - Dushuo Feng
- Department Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310007, People's Republic of China
| | - Yu Zou
- Department Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310007, People's Republic of China
| |
Collapse
|
3
|
Dabas A, Goyal B. Delineating the tryptophan-galactosylamine conjugate mediated structural distortions in Aβ 42 protofibrils. Phys Chem Chem Phys 2025; 27:7336-7355. [PMID: 40123533 DOI: 10.1039/d4cp03330b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Amyloid-β (Aβ) fibrillation into neurotoxic soluble oligomers and mature fibrils is mainly responsible for the etiology of Alzheimer's disease (AD). A recent study revealed 61% disaggregation of the pre-formed Aβ42 fibrils upon incubating with a highly soluble tryptophan-galactosylamine conjugate, WGalNAc. WGalNAc displayed no toxicity and increased the viability of SH-SY5Y cells up to 62.9 ± 2% with an EC50 value of 2.3 μM against Aβ42 pre-formed fibrils. However, the key interactions and disruptive mechanism of WGalNAc against Aβ fibrils remain elusive. Thus, mechanistic insights into the disruptive potential of WGalNAc against Aβ42 protofibrils (PDB: 5OQV) were examined using molecular dynamics (MD) simulations. The molecular docking depicted a favourable binding energy (-6.60 kcal mol-1) and interaction of WGalNAc with the central hydrophobic core (CHC) region of chain A of the 5OQV protofibril. The MD simulations depicted that WGalNAc disrupted the contacts among Ala2, Phe4, Leu34, and Val36 in the hydrophobic core 1 of the 5OQV protofibril responsible for maintaining the stability of the LS-shaped 5OQV protofibril. WGalNAc binds favourably to the 5OQV protofibril (ΔGbinding = -21.76 ± 2.40 kcal mol-1) with a significant contribution from the van der Waals interaction term. Notably, the binding affinity between the neighbouring chains of the 5OQV protofibril was significantly reduced from -134.31 ± 11.12 to -121.88 ± 1.95 kcal mol-1 upon the incorporation of WGalNAc, which is consistent with the ThT kinetic results that revealed disaggregation of the pre-formed Aβ42 fibrils upon incubating with WGalNAc. The in silico ADMET properties of WGalNAc showed its ability as a promising therapeutic candidate due to its blood-brain barrier (BBB) permeability, extended half-life, and non-toxic profile. The MD simulations illuminated the binding interactions of WGalNAc with the 5OQV protofibril and provided mechanistic insights into the WGalNAc-mediated structural distortions in the 5OQV protofibril.
Collapse
Affiliation(s)
- Arushi Dabas
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| | - Bhupesh Goyal
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
4
|
Xu H, Zhang X, Lv Z, Huang F, Zou Y, Wang C, Ding F, Sun Y. Computational exploration of the self-aggregation mechanisms of phenol-soluble modulins β1 and β2 in Staphylococcus aureus biofilms. Colloids Surf B Biointerfaces 2025; 248:114498. [PMID: 39778221 DOI: 10.1016/j.colsurfb.2025.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations. Our findings revealed that both peptides primarily adopt helical structures as monomers but shift to β-sheets upon dimerization. Monomeric state, PSM-β1 exhibited frequent transitions between helical and β-sheet forms, while PSM-β2 largely retained a helical structure. Upon dimerization, both peptides showed pronounced β-sheet formation around conserved C-terminal residues 21-44. Residues 21-33, largely unstructured as monomers, demonstrated strong tendencies for β-sheet formation and intermolecular interactions, underscoring their central role in the self-assembly of both peptides. Additionally, the PSM-β1 N-terminus formed β-sheets only when interacting with the C-terminus, whereas the PSM-β2 N-terminus remained helical and uninvolved in β-sheet formation. These distinct aggregation behaviors likely contribute to biofilm dynamics, with C-terminal regions facilitating biofilm formation and N-terminal regions influencing stability. Targeting residues 21-33 in PSM-β1 and PSM-β2 offers a promising therapeutic approach for disrupting biofilm integrity. This study advances our understanding of PSM-β1 and PSM-β2 self-assembly and presents new targets for drug design against biofilm-associated diseases.
Collapse
Affiliation(s)
- Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zhongyue Lv
- Department of Neurology, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo 315211, China
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Chuang Wang
- School of Basic Medical Science, Health Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
5
|
Atanasova M. Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics-Part A: Endogenous Compounds and Repurposed Drugs. Pharmaceuticals (Basel) 2025; 18:306. [PMID: 40143085 PMCID: PMC11944459 DOI: 10.3390/ph18030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The amyloid hypothesis is the predominant model of Alzheimer's disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various processes, such as vascular damage, inflammation-induced astrocyte and microglia activation, disrupted neuronal ionic homeostasis, oxidative stress, abnormal kinase and phosphatase activity, tau phosphorylation, neurofibrillary tangle formation, cognitive dysfunction, synaptic loss, cell death, and, ultimately, dementia. Molecular dynamics (MD) is a powerful structure-based drug design (SBDD) approach that aids in understanding the properties, functions, and mechanisms of action or inhibition of biomolecules. As the only method capable of simulating atomic-level internal motions, MD provides unique insights that cannot be obtained through other techniques. Integrating experimental data with MD simulations allows for a more comprehensive understanding of biological processes and molecular interactions. This review summarizes and evaluates MD studies from the past decade on small molecules, including endogenous compounds and repurposed drugs, that inhibit amyloid beta. Furthermore, it outlines key considerations for future MD simulations of amyloid inhibitors, offering a potential framework for studies aimed at elucidating the mechanisms of amyloid beta inhibition by small molecules.
Collapse
|
6
|
Wang X, Xiong D, Zhang Y, Zhai J, Gu YC, He X. The evolution of the Amber additive protein force field: History, current status, and future. J Chem Phys 2025; 162:030901. [PMID: 39817575 DOI: 10.1063/5.0227517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
Molecular dynamics simulations are pivotal in elucidating the intricate properties of biological molecules. Nonetheless, the reliability of their outcomes hinges on the precision of the molecular force field utilized. In this perspective, we present a comprehensive review of the developmental trajectory of the Amber additive protein force field, delving into researchers' persistent quest for higher precision force fields and the prevailing challenges. We detail the parameterization process of the Amber protein force fields, emphasizing the specific improvements and retained features in each version compared to their predecessors. Furthermore, we discuss the challenges that current force fields encounter in balancing the interactions of protein-protein, protein-water, and water-water in molecular dynamics simulations, as well as potential solutions to overcome these issues.
Collapse
Affiliation(s)
- Xianwei Wang
- School of Physics, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Danyang Xiong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yueqing Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jihang Zhai
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
7
|
Qi B, Guan L, Tan J, Li G, Sun Y, Zhang Q, Zou Y. Identification of novel tau positron emission tomography tracers for chronic traumatic encephalopathy by comprehensive in silico screening and molecular dynamics simulation. Phys Chem Chem Phys 2025; 27:754-767. [PMID: 39655528 DOI: 10.1039/d4cp03207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with repetitive mild traumatic brain injury, is characterized neuropathologically by abnormal hyperphosphorylated tau accumulation. Early detection of tau deposition in the brain is crucial for the prevention and evaluation of CTE. Positron emission tomography (PET) tracers can image specific proteins, while the optimal PET tracer for CTE tau fibrils remains unidentified. In this study, structure-based virtual screening and CNS PET MPO algorithms were utilized to identify candidates for novel tau PET tracers from 23 000 compounds in the ChemDiv CNS BBB library. A total of 8 μs molecular dynamics simulations were then employed to evaluate their binding affinity and atomic-level interaction with CTE tau protofibrils. The results indicate that V017-7820 (CNS-4), S776-0061 (CNS-12), S567-0465 (CNS-18), and T828-0465 (CNS-25) exhibit higher docking scores and binding free energies with CTE tau protofibrils while also satisfying the fundamental physicochemical properties of PET tracers. Further simulation analyses reveal that CNS-4 has the strongest binding affinity to tau protofibrils among the four compounds. Hydrophobic, π-π stacking, and hydrogen bonding interactions are the primary driving forces for the binding of these compounds to CTE tau protofibrils. In particular, CNS-12 and CNS-25 exhibit more intense hydrophobic and π-π stacking interactions, whereas CNS-4 and CNS-25 exhibit stronger hydrogen bonding interactions. This study identifies promising lead compounds for tau PET tracers and highlights their mechanism of binding to CTE tau protofibrils, which provides new insights for further screening and development of novel PET tracers for CTE diagnosis.
Collapse
Affiliation(s)
- Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Gengchen Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
8
|
Jia M, Li Y, Wang C, Gao X, Guan Y, Ai H. Fluorescence Detection and Inhibition Mechanisms of DNTPH on Aβ42 Oligomers Characterized as Products in the Four Stages of Aggregation. ACS Chem Neurosci 2024; 15:4220-4228. [PMID: 39494683 DOI: 10.1021/acschemneuro.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Aβ42 aggregation was implicated in the pathogenesis of Alzheimer's disease (AD) without effective treatment available currently. Future efforts in clinical trials should instead focus on applying those antiamyloid treatment strategies to the preclinical stage and "the earlier, the better". How to identify and inhibit Aβ42 oligomers in the different stages of aggregation is therefore becoming the key to controlling primary aggregation and consequent AD development. Aggregation-induced emission probe DNTPH was demonstrated recently, enabling detection of amyloid at wavelengths up to 710 nm and exhibiting strong inhibitory effects on Aβ fibrosis at low dose. However, the detection and inhibition mechanisms of Aβ oligomers at various early stages of aggregation remain unknown. To this end, we built four different morphologies of Aβ42 pentamers characterized by products in monomeric aggregate (PM), primary nucleation (PP), secondary nucleation (PS), and fibril stages (PF) to explore the distinguishable ability and inhibition mechanisms of DNTPH with different concentrations upon binding. The results showcased that DNTPH does detect the four different Aβ42 oligomers with conspicuous fluorescence (λPM = 657 nm, λPP = 639 nm, λPS = 630 nm, and λPF = 648 nm) but fails to distinguish them, indicating that additional improvements are required further for the probe to achieve it. The inhibition mechanisms of DNTPH on the four Aβ42 aggregation are however of amazing differences. For PM and PP, aggregation was inhibited by altering the secondary structural composition, i.e., by decreasing the β-sheet and toxic turn (residues 22-23) probabilities, respectively. For PS, inhibition was achieved by segregating and keeping the two disordered monomeric species (PSM) away from the ordered secondary seed species (PSF) and consequently blocking further growth of the PSF seed. The inhibition mechanism for PS is first probed and proposed so far, as far as we know, and the corresponding aggregation stage of PS is the most important one among the four stages. The inhibition of PF was triggered by distorting the fibril chains, disrupting the ordered fibril surface for the contact of monomers. In addition, the optimal inhibitory concentrations of DNTPH for PM, PP, and PF were determined to be 1:3, while for PS, it was 1:5. This outcome offers a novel perspective for designing drugs targeting Aβ42 oligomers at different aggregation stages.
Collapse
Affiliation(s)
- Mengke Jia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Zibo City Engineering Research Center for New Pollution Monitoring and Governance, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Ye Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xvzhi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
9
|
Dabas A, Goyal B. Structural Reorganization Mechanism of the Aβ 42 Fibril Mediated by N-Substituted Oligopyrrolamide ADH-353. ACS Chem Neurosci 2024; 15:3136-3151. [PMID: 39158263 DOI: 10.1021/acschemneuro.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
The inhibition of amyloid-β (Aβ) fibrillation and clearance of Aβ aggregates have emerged as a potential pharmacological strategy to alleviate Aβ aggregate-induced neurotoxicity in Alzheimer's disease (AD). Maity et al. shortlisted ADH-353 from a small library of positively charged N-substituted oligopyrrolamides for its notable ability to inhibit Aβ fibrillation, disintegrate intracellular cytotoxic Aβ oligomers, and alleviate Aβ-induced cytotoxicity in the SH-SY5Y and N2a cells. However, the molecular mechanism through which ADH-353 interacts with the Aβ42 fibrils, leading to their disruption and subsequent clearance, remains unclear. Thus, a detailed molecular mechanism underlying the disruption of neurotoxic Aβ42 fibrils (PDB ID 2NAO) by ADH-353 has been illuminated in this work using molecular dynamics simulations. Interestingly, conformational snapshots during simulation depicted the shortening and disappearance of β-strands and the emergence of a helix conformation, indicating a loss of the well-organized β-sheet-rich structure of the disease-relevant Aβ42 fibril on the incorporation of ADH-353. ADH-353 binds strongly to the Aβ42 fibril (ΔGbinding= -142.91 ± 1.61 kcal/mol) with a notable contribution from the electrostatic interactions between positively charged N-propylamine side chains of ADH-353 with the glutamic (Glu3, Glu11, and Glu22) and aspartic (Asp7 and Asp23) acid residues of the Aβ42 fibril. This aligns well with heteronuclear single quantum coherence NMR studies, which depict that the binding of ADH-353 with the Aβ peptide is driven by electrostatic and hydrophobic contacts. Furthermore, a noteworthy decrease in the binding affinity of Aβ42 fibril chains on the incorporation of ADH-353 indicates the weakening of interchain interactions leading to the disruption of the double-horseshoe conformation of the Aβ42 fibril. The illumination of key interactions responsible for the destabilization of the Aβ42 fibril by ADH-353 in this work will greatly aid in designing new chemical scaffolds with enhanced efficacy for the clearance of Aβ aggregates in AD.
Collapse
Affiliation(s)
- Arushi Dabas
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Bhupesh Goyal
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| |
Collapse
|
10
|
Moorthy H, Ramesh M, Padhi D, Baruah P, Govindaraju T. Polycatechols inhibit ferroptosis and modulate tau liquid-liquid phase separation to mitigate Alzheimer's disease. MATERIALS HORIZONS 2024; 11:3082-3089. [PMID: 38647314 DOI: 10.1039/d4mh00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects learning, memory, and cognition. Current treatments targeting amyloid-β (Aβ) and tau have shown limited effectiveness, necessitating further research on the aggregation and toxicity mechanisms. One of these mechanisms involves the liquid-liquid phase separation (LLPS) of tau, contributing to the formation of pathogenic tau aggregates, although their conformational details remain elusive. Another mechanism is ferroptosis, a type of iron-dependent lipid peroxidation-mediated cell death, which has been implicated in AD. There is a lack of therapeutic strategies that simultaneously target amyloid toxicity and ferroptosis. This study aims to explore the potential of polycatechols, PDP and PLDP, consisting of dopamine and L-Dopa, respectively, as multifunctional agents to modulate the pathological nexus between ferroptosis and AD. Polycatechols were found to sequester the labile iron pool (LIP), inhibit Aβ and tau aggregation, scavenge free radicals, protect mitochondria, and prevent ferroptosis, thereby rescuing neuronal cell death. Interestingly, PLDP promotes tau LLPS, and modulates their intermolecular interactions to inhibit the formation of toxic tau aggregates, offering a conceptually innovative approach to tackle tauopathies. This is a first-of-its-kind polymer-based integrative approach that inhibits ferroptosis, counteracts amyloid toxicity, and modulates tau LLPS to mitigate the multifaceted toxicity of AD.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Prayasee Baruah
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| |
Collapse
|
11
|
Kaku T, Ikebukuro K, Tsukakoshi K. Structure of cytotoxic amyloid oligomers generated during disaggregation. J Biochem 2024; 175:575-585. [PMID: 38430131 PMCID: PMC11155694 DOI: 10.1093/jb/mvae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
Amyloidosis is characterized by the abnormal accumulation of amyloid proteins. The causative proteins aggregate from monomers to oligomers and fibrils, among which some intermediate oligomers are considered as major toxins. Cytotoxic oligomers are generated not only by aggregation but also via fibril disaggregation. However, little is known about the structural characteristics and generation conditions of cytotoxic oligomers produced during disaggregation. Herein, we summarized the structural commonalities of cytotoxic oligomers formed under various disaggregation conditions, including the addition of heat shock proteins or small compounds. In vitro experimental data demonstrated the presence of high-molecular-weight oligomers (protofibrils or protofilaments) that exhibited a fibrous morphology and β-sheet structure. Molecular dynamics simulations indicated that the distorted β-sheet structure contributed to their metastability. The tendency of these cytotoxic oligomers to appear under mild disaggregation conditions, implied formation during the early stages of disaggregation. This review will aid researchers in exploring the characteristics of highly cytotoxic oligomers and developing drugs that target amyloid aggregates.
Collapse
Affiliation(s)
- Toshisuke Kaku
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
12
|
Chai K, Yang J, Tu Y, Wu J, Fang K, Shi S, Yao T. Molecular Deformation Is a Key Factor in Screening Aggregation Inhibitor for Intrinsically Disordered Protein Tau. ACS CENTRAL SCIENCE 2024; 10:717-728. [PMID: 38559297 PMCID: PMC10979476 DOI: 10.1021/acscentsci.3c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
Direct inhibitor of tau aggregation has been extensively studied as potential therapeutic agents for Alzheimer's disease. However, the natively unfolded structure of tau complicates the structure-based ligand design, and the relatively large surface areas that mediate tau-tau interactions in aggregation limit the potential for identifying high-affinity ligand binding sites. Herein, a group of isatin-pyrrolidinylpyridine derivative isomers (IPP1-IPP4) were designed and synthesized. They are like different forms of molecular "transformers". These isatin isomers exhibit different inhibitory effects on tau self-aggregation or even possess a depolymerizing effect. Our results revealed for the first time that the direct inhibitor of tau protein aggregation is not only determined by the previously reported conjugated structure, substituent, hydrogen bond donor, etc. but also depends more importantly on the molecular shape. In combination with molecular docking and molecular dynamics simulations, a new inhibition mechanism was proposed: like a "molecular clip", IPP1 could noncovalently bind and fix a tau polypeptide chain at a multipoint to prevent the transition from the "natively unfolded conformation" to the "aggregation competent conformation" before nucleation. At the cellular and animal levels, the effectiveness of the inhibitor of the IPP1 has been confirmed, providing an innovative design strategy as well as a lead compound for Alzheimer's disease drug development.
Collapse
Affiliation(s)
- Keke Chai
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Jian Yang
- School
of Medicine, Shanghai University, Shanghai 200444, China
| | - Ying Tu
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Junjie Wu
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Kang Fang
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Shuo Shi
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Tianming Yao
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Li X, Zhang Y, Wang Y, Zhang S, Zhang L. Molecular Insights into the Inhibition and Disaggregation Effects of EGCG on Aβ40 and Aβ42 Cofibrillation. J Phys Chem B 2024; 128:1843-1853. [PMID: 38359305 DOI: 10.1021/acs.jpcb.3c07232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The misfolding and aggregation of amyloid-β (Aβ) peptides play a pivotal role in the pathogenesis of Alzheimer's disease (AD). Aβ40 and Aβ42, the two primary isoforms of Aβ, can not only self-aggregate into homogeneous aggregates but also coaggregate to form mixed fibrils. Epigallocatechin-3-gallate (EGCG), a prominent tea polyphenol, has shown the capability to prevent the self-aggregation of Aβ40 and Aβ42 peptides and disaggregate their homogeneous fibrils. However, its effects on the cofibrillation of Aβ40 and Aβ42 have not yet been explored. Here, we employed molecular dynamic simulations to investigate the effects of EGCG on the coaggregation of Aβ40 and Aβ42, as well as on their mixed fibril. Our findings indicated that EGCG effectively inhibits the codimerization of Aβ40 and Aβ42 primarily by impeding the interchain interaction between the two isoforms. The key binding sites for EGCG on Aβ40 and Aβ42 are the polar residues and aromatic residues, engaging in hydrogen-bond , π-π, and cation-π interactions with EGCG. Additionally, EGCG disaggregates the Aβ40-Aβ42 mixed fibril by reducing its long-range interaction through similar binding sites and interactions as those between EGCG and Aβ40-Aβ42 heterodimers. Our research reveals the comprehensive inhibition and disaggregation effects of EGCG on the cofibrillation of Aβ isoforms, which provides further support for the development of EGCG as an effective antiaggregation agent for AD.
Collapse
Affiliation(s)
- Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yu Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Yuetian Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| |
Collapse
|
14
|
Uttarkar A, Rao V, Bhat D, Niranjan V. Disaggregation of amyloid-beta fibrils via natural metabolites using long timescale replica exchange molecular dynamics simulation studies. J Mol Model 2024; 30:61. [PMID: 38321243 DOI: 10.1007/s00894-024-05860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
CONTEXT Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with several presently incurable diseases such as Alzheimer's. disease that is characterized by the accumulation of amyloid fibrils in the brain, which leads to the formation of plaques and the death of brain cells. Disaggregation of amyloid fibrils is considered a promising approach to cure Alzheimer's disease. The mechanism of amyloid fibril formation is complex and not fully understood, making it difficult to develop drugs that can target the process. Diacetonamine and cystathionine are potential lead compounds to induce disaggregation of amyloid fibrils. METHODS In the current research, we have used long timescale molecular simulation studies and replica exchange molecular dynamics (REMD) for 1000 ns (1 μs) to examine the mechanisms by which natural metabolites can disaggregate amyloid-beta fibrils. Molecular docking was carried out using Glide and with prior protein minimization and ligand preparation. We focused on a screening a database of natural metabolites, as potential candidates for disaggregating amyloid fibrils. We used Desmond with OPLS 3e as a force field. MM-GBSA calculations were performed. Blood-brain barrier permeability, SASA, and radius of gyration parameters were calculated.
Collapse
Affiliation(s)
- Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vibha Rao
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Dhrithi Bhat
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India.
| |
Collapse
|
15
|
Tang J, Sun R, Wan J, Xu Z, Zou Y, Zhang Q. Atomic insights into the inhibition of R3 domain of tau protein by epigallocatechin gallate, quercetin and gallic acid. Biophys Chem 2024; 305:107142. [PMID: 38088006 DOI: 10.1016/j.bpc.2023.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024]
Abstract
Inhibiting tau protein aggregation has become a prospective avenue for the therapeutic development of tauopathies. The third microtubule-binding repeat (R3) domain of tau is confirmed as the most aggregation-favorable fragment of the whole protein. As dimerization is the first step of the aggregation of tau into amyloid fibrils, impeding the dimerization of the R3 domain is critical to prevent the full-length tau aggregation. Natural polyphenol small molecules epigallocatechin gallate (EGCG), quercetin (QE) and gallic acid (GA) are proven to inhibit the aggregation of the full-length recombinant tau (For EGCG and QE) or the R3 domain (For GA) of tau in vitro. However, the underlying molecular mechanisms of the inhibitive effects on the R3 domain of tau remain largely unknown. In this study, we conducted numerous all-atom molecular dynamics simulations on R3 dimers with and without EGCG, QE or GA, respectively. The results reveal that all three molecules can effectively decrease the β structure composition of the R3 dimer, induce the dimer to adopt loosely-packed conformations, and weaken interchain interactions, thus impeding the dimerization of the R3 peptide chains. The specific preferentially binding sites for the three molecules exhibit similarities and differences. Hydrophobic, π-π stacking and hydrogen-bonding interactions collectively drive EGCG, QE and GA respectively binding on the R3 dimer, while QE also binds with the dimer through cation-π interaction. Given the incurable nature of tauopathies hitherto, our research provides helpful knowledge for the development of drugs to treat tauopathies.
Collapse
Affiliation(s)
- Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Ruiqing Sun
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Zhengdong Xu
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| |
Collapse
|
16
|
Li X, Zhang Y, Yang Z, Zhang S, Zhang L. The Inhibition Effect of Epigallocatechin-3-Gallate on the Co-Aggregation of Amyloid-β and Human Islet Amyloid Polypeptide Revealed by Replica Exchange Molecular Dynamics Simulations. Int J Mol Sci 2024; 25:1636. [PMID: 38338914 PMCID: PMC10855639 DOI: 10.3390/ijms25031636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease and Type 2 diabetes are two epidemiologically linked diseases which are closely associated with the misfolding and aggregation of amyloid proteins amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP), respectively. The co-aggregation of the two amyloid proteins is regarded as the fundamental molecular mechanism underlying their pathological association. The green tea extract epigallocatechin-3-gallate (EGCG) has been extensively demonstrated to inhibit the amyloid aggregation of Aβ and hIAPP proteins. However, its potential role in amyloid co-aggregation has not been thoroughly investigated. In this study, we employed the enhanced-sampling replica exchange molecular dynamics simulation (REMD) method to investigate the effect of EGCG on the co-aggregation of Aβ and hIAPP. We found that EGCG molecules substantially diminish the β-sheet structures within the amyloid core regions of Aβ and hIAPP in their co-aggregates. Through hydrogen-bond, π-π and cation-π interactions targeting polar and aromatic residues of Aβ and hIAPP, EGCG effectively attenuates both inter-chain and intra-chain interactions within the co-aggregates. All these findings indicated that EGCG can effectively inhibit the co-aggregation of Aβ and hIAPP. Our study expands the potential applications of EGCG as an anti-amyloidosis agent and provides therapeutic options for the pathological association of amyloid misfolding disorders.
Collapse
Affiliation(s)
- Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China (Z.Y.); (S.Z.); (L.Z.)
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yu Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China (Z.Y.); (S.Z.); (L.Z.)
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China (Z.Y.); (S.Z.); (L.Z.)
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China (Z.Y.); (S.Z.); (L.Z.)
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China (Z.Y.); (S.Z.); (L.Z.)
| |
Collapse
|
17
|
Huang F, Fan X, Wang Y, Zou Y, Lian J, Wang C, Ding F, Sun Y. Computational insights into the cross-talk between medin and Aβ: implications for age-related vascular risk factors in Alzheimer's disease. Brief Bioinform 2024; 25:bbad526. [PMID: 38271485 PMCID: PMC10810335 DOI: 10.1093/bib/bbad526] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The aggregation of medin forming aortic medial amyloid is linked to arterial wall degeneration and cerebrovascular dysfunction. Elevated levels of arteriolar medin are correlated with an increased presence of vascular amyloid-β (Aβ) aggregates, a hallmark of Alzheimer's disease (AD) and vascular dementia. The cross-interaction between medin and Aβ results in the formation of heterologous fibrils through co-aggregation and cross-seeding processes both in vitro and in vivo. However, a comprehensive molecular understanding of the cross-interaction between medin and Aβ-two intrinsically disordered proteins-is critically lacking. Here, we employed atomistic discrete molecular dynamics simulations to systematically investigate the self-association, co-aggregation and also the phenomenon of cross-seeding between these two proteins. Our results demonstrated that both Aβ and medin were aggregation prone and their mixture tended to form β-sheet-rich hetero-aggregates. The formation of Aβ-medin hetero-aggregates did not hinder Aβ and medin from recruiting additional Aβ and medin peptides to grow into larger β-sheet-rich aggregates. The β-barrel oligomer intermediates observed in the self-aggregations of Aβ and medin were also present during their co-aggregation. In cross-seeding simulations, preformed Aβ fibrils could recruit isolated medin monomers to form elongated β-sheets. Overall, our comprehensive simulations suggested that the cross-interaction between Aβ and medin may contribute to their pathological aggregation, given the inherent amyloidogenic tendencies of both medin and Aβ. Targeting medin, therefore, could offer a novel therapeutic approach to preserving brain function during aging and AD by improving vascular health.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Ningbo 315211, China
| | - Xinjie Fan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Ningbo 315211, China
| | - Chuang Wang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
18
|
Okumura H. Perspective for Molecular Dynamics Simulation Studies of Amyloid-β Aggregates. J Phys Chem B 2023; 127:10931-10940. [PMID: 38109338 DOI: 10.1021/acs.jpcb.3c06051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The cause of Alzheimer's disease is related to aggregates such as oligomers and amyloid fibrils consisting of amyloid-β (Aβ) peptides. Molecular dynamics (MD) simulation studies have been conducted to understand the molecular mechanism of the formation and disruption of Aβ aggregates. In this Perspective, the MD simulation studies are classified into four categories, focusing on the target systems: aggregation of Aβ peptides in bulk solution, Aβ aggregation at the interface, aggregation inhibitor against Aβ peptides, and nonequilibrium MD simulation of Aβ aggregates. MD simulation studies in these categories are first reviewed. Future perspectives in each category are then presented. Finally, the overall perspective is presented on how MD simulations of Aβ aggregates can be utilized for developing Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
19
|
Kaur A, Goyal B. Identification of new pentapeptides as potential inhibitors of amyloid-β 42 aggregation using virtual screening and molecular dynamics simulations. J Mol Graph Model 2023; 124:108558. [PMID: 37390790 DOI: 10.1016/j.jmgm.2023.108558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly characterized by extracellular accumulation of amyloid-β (Aβ) peptide. Previous studies reported pentapeptide RIIGL as an effective inhibitor of Aβ aggregation and neurotoxicity induced by Aβ aggregates. In this work, a library of 912 pentapeptides based on RIIGL has been designed and assessed for their efficacy to inhibit Aβ42 aggregation using computational techniques. The top hit pentapeptides revealed by molecular docking were further assessed for their binding affinity with Aβ42 monomer using MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) method. The MM-PBSA analysis identified RLAPV, RVVPI, and RIAPA, which bind to Aβ42 monomer with a higher binding affinity -55.80, -46.32, and -44.26 kcal/mol, respectively, as compared to RIIGL (ΔGbinding = -41.29 kcal/mol). The residue-wise binding free energy predicted hydrophobic contacts between Aβ42 monomer and pentapeptides. The secondary structure analysis of the conformational ensembles generated by molecular dynamics (MD) depicted remarkably enhanced sampling of helical and no β-sheet conformations in Aβ42 monomer on the incorporation of RVVPI and RIAPA. Notably, RVVPI and RIAPA destabilized the D23-K28 salt bridge in Aβ42 monomer, which plays a crucial role in Aβ42 oligomer stability and fibril formation. The MD simulations highlighted that the incorporation of proline and arginine in pentapeptides contributed to their strong binding with Aβ42 monomer. Furthermore, RVVPI and RIAPA prevented conformational conversion of Aβ42 monomer to aggregation-prone structures, which, in turn, resulted in a lower aggregation tendency of Aβ42 monomer.
Collapse
Affiliation(s)
- Apneet Kaur
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
20
|
Wang Y, Liu W, Dong X, Sun Y. Design of Self-Assembled Nanoparticles as a Potent Inhibitor and Fluorescent Probe for β-Amyloid Fibrillization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12576-12589. [PMID: 37624641 DOI: 10.1021/acs.langmuir.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Alzheimer's disease (AD) remains incurable due to its complex pathogenesis. The deposition of β-amyloid (Aβ) in the brain appears much earlier than any clinical symptoms and plays an essential role in the occurrence and development of AD neuropathology, which implies the importance of early theranostics. Herein, we designed a self-assembled bifunctional nanoparticle (LC8-pCG-fLC8) for Aβ fluorescent diagnosis and inhibition. The nanoparticle was synthesized by click chemistry from Aβ-targeting peptide Ac-LVFFARKC-NH2 (LC8) and an Aβ fluorescent probe f with the zwitterionic copolymer poly(carboxybetaine methacrylate-glycidyl methacrylate) (p(CBMA-GMA), pCG). Owing to the high reactivity of epoxy groups, the peptide concentration of LC8-pCG-fLC8 nanoparticles reached about 4 times higher than that of the existing inhibitor LVFFARK@poly(carboxybetaine) (LK7@pCB). LC8-pCG-fLC8 exhibited remarkable inhibitory capability (suppression efficiency of 83.0% at 20 μM), altered the aggregation pathway of Aβ, and increased the survival rate of amyloid-induced cultured cells from 76.5% to 98.0% at 20 μM. Notably, LC8-pCG-fLC8 possessed excellent binding affinity, good biostability, and high fluorescence responsivity to β-sheet-rich Aβ oligomers and fibrils, which could be used for the early diagnosis of Aβ aggregation. More importantly, in vivo tests using transgenic C. elegans CL2006 stain showed that LC8-pCG-fLC8 could specifically image Aβ plaques, prolong the lifespan (from 13 to 17 days), and attenuate the AD-like symptoms (reducing paralysis and Aβ deposition). Therefore, self-assembled nanoparticles hold great potential in AD theranostics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
21
|
Xu W, Mei J, Wang C, Yang H, Ma X, Gao W, Ahmad S, Ai H. Origin of stronger binding of ionic pair (IP) inhibitor to Aβ42 than the equimolar neutral counterparts: synergy mechanism of IP in disrupting Aβ42 protofibril and inhibiting Aβ42 aggregation under two pH conditions. Phys Chem Chem Phys 2023; 25:21612-21630. [PMID: 37551434 DOI: 10.1039/d3cp01683h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Fibrous aggregates of beta-amyloid (Aβ) is a hallmark of Alzheimer's disease (AD). Several major strategies of drugs or inhibitors, including neutral molecules, positive or negative ions, and dual-inhibitor, are used to inhibit the misfolding or aggregation of Aβ42, among which a kind of dual-inhibitor composed of a pair of positive and negative ions is emerging as the most powerful candidate. This knowledge lacks the origin of the strong inhibitory effect and synergy mechanisms blocking the development and application of such inhibitors. To this end, we employed 1 : 1 ionic pairs (IP) of oppositely charged benzothiazole molecules (+)BAM1-EG6 (Pos) and (-)BAM1-EG6 (Neg) as well as equimolar neutral BAM1-EG6 (Neu) counterpart at two pH conditions (5.5 and 7.0) to bind Aβ42 targets, Aβ42 monomer (AβM), soluble pentamer (AβP), and pentameric protofibril (AβF) models, respectively, corresponding to the products of three toxic Aβ42 development pathways, lag, exponential and fibrillation phases. Simulated results illustrated the details of the inhibitory mechanisms of IP and Neu for the AβY (Y = M, P, or F) in the three different phases, characterizing the roles of Pos and Neg of IP as well as their charged, hydrophobic groups and linker playing in the synergistic interaction, and elucidated a previously unknown molecular mechanism governing the IP-Aβ42 interaction. Most importantly, we first revealed the origin of the stronger binding of IP inhibitors to Aβ42 than that of the equimolar neutral counterparts, observing a perplexing phenomenon that the physiological condition (pH = 7.0) than the acidic one (pH = 5.5) is more favorable to the enhancement of IP binding, and finally disclosed that solvation is responsible to the enhancement because at pH 7.0, AβP and AβF act as anionic membranes, where solvation plays a critical role in the chemoelectromechanics. The result not only provides a new dimension in dual-inhibitor/drug design and development but also a new perspective for uncovering charged protein disaggregation under IP-like inhibitors.
Collapse
Affiliation(s)
- Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Huijuan Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xiaohong Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wenqi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
22
|
Wang Y, Xu J, Huang F, Yan J, Fan X, Zou Y, Wang C, Ding F, Sun Y. SEVI Inhibits Aβ Amyloid Aggregation by Capping the β-Sheet Elongation Edges. J Chem Inf Model 2023; 63:3567-3578. [PMID: 37246935 PMCID: PMC10363411 DOI: 10.1021/acs.jcim.3c00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Inhibiting the aggregation of amyloid peptides with endogenous peptides has broad interest due to their intrinsically high biocompatibility and low immunogenicity. Here, we investigated the inhibition mechanism of the prostatic acidic phosphatase fragment SEVI (semen-derived enhancer of viral infection) against Aβ42 fibrillization using atomistic discrete molecular dynamic simulations. Our result revealed that SEVI was intrinsically disordered with dynamic formation of residual helices. With a high positive net charge, the self-aggregation tendency of SEVI was weak. Aβ42 had a strong aggregation propensity by readily self-assembling into β-sheet-rich aggregates. SEVI preferred to interact with Aβ42, rather than SEVI themselves. In the heteroaggregates, Aβ42 mainly adopted β-sheets buried inside and capped by SEVI in the outer layer. SEVI could bind to various Aβ aggregation species─including monomers, dimers, and proto-fibrils─by capping the exposed β-sheet elongation edges. The aggregation processes Aβ42 from the formation of oligomers to conformational nucleation into fibrils and fibril growth should be inhibited as their β-sheet elongation edges are being occupied by the highly charged SEVI. Overall, our computational study uncovered the molecular mechanism of experimentally observed inhibition of SEVI against Aβ42 aggregation, providing novel insights into the development of therapeutic strategies against Alzheimer's disease.
Collapse
Affiliation(s)
- Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xinjie Fan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Chuang Wang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
23
|
Xu J, Wu S, Huo L, Zhang Q, Liu L, Ye Z, Cao J, Ma H, Shang C, Ma C. Trigeminal nerve stimulation restores hippocampal dopamine deficiency to promote cognitive recovery in traumatic brain injury. Prog Neurobiol 2023:102477. [PMID: 37270025 DOI: 10.1016/j.pneurobio.2023.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Cognitive impairment (CI) is a common neurological disease resulting from traumatic brain injury (TBI). Trigeminal nerve stimulation (TNS) is an emerging, non-invasive, and effective neuromodulation therapy especially for patients suffering from brain function disorders. However, the treatment and recovery mechanisms of TNS remain poorly understood. By using combined advanced technologies, we revealed here that the neuroprotective potential of TNS to improve CI caused by TBI. The study results found that 40Hz TNS treatment has the ability to improve CI in TBI mice and communicates with central nervous system via the trigeminal ganglion (TG). Transsynaptic virus experiments revealed that TG is connected to the hippocampus (HPC) through the corticotropin-releasing hormone (CRH) neurons of paraventricular hypothalamic nucleus (PVN) and the dopamine transporter (DAT) neurons of substantia nigra pars compacta/ventral tegmental area (SNc/VTA). Mechanistically, the data showed that TNS can increase the release of dopamine in the HPC by activating the following neural circuit: TG→CRH+ PVN→DAT+ SNc/VTA → HPC. Bulk RNA sequencing confirmed changes in the expression of dopamine-related genes in the HPC. This work preliminarily explains the efficacy and mechanism of TNS and adds to the increasing evidence demonstrating that nerve stimulation is an effective method to treat neurological diseases. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Jing Xu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Shaoling Wu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Lifang Huo
- Guangzhou Laboratory, Guangzhou, 510005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Qian Zhang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Lijiaqi Liu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Zhimin Ye
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Jie Cao
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Haiyun Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Congping Shang
- Guangzhou Laboratory, Guangzhou, 510005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China; School of Basic Medical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China.
| | - Chao Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China.
| |
Collapse
|
24
|
Fang M, Wang X, Su K, Jia X, Guan P, Hu X. Inhibition Effect and Molecular Mechanisms of Quercetin on the Aβ42 Dimer: A Molecular Dynamics Simulation Study. ACS OMEGA 2023; 8:18009-18018. [PMID: 37251196 PMCID: PMC10210038 DOI: 10.1021/acsomega.3c01208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
Amyloid-β (Aβ) dimer as the smallest oligomer has recently been drawing attention due to its neurotoxicity, transient nature, and heterogeneity. The inhibition of Aβ dimer's aggregation is the key to primary intervention of Alzheimer's disease. Previous experimental studies have reported that quercetin, the widespread polyphenolic constituent of multiple fruits and vegetables, can hamper the formation of Aβ protofibrils and disaggregate Aβ fibrils. However, the molecular mechanisms of quercetin in the suppression of the Aβ(1-42) dimer's conformational changes still remain elusive. In this work, to investigate the inhibitory mechanisms of quercetin molecules on the Aβ(1-42) dimer, an Aβ(1-42) dimer based on monomeric the Aβ(1-42) peptide with enriched coil structures is constructed. The early molecular mechanisms of quercetin molecules on inhibiting the Aβ(1-42) dimer at two different Aβ42-to-quercetin molar ratios (1:5 and 1:10) are explored via all-atom molecular dynamics simulations. The results indicate that quercetin molecules can impede the configurational change of the Aβ(1-42) dimer. The interactions and the binding affinity between the Aβ(1-42) dimer and quercetin molecules in the Aβ42 dimer + 20 quercetin system are stronger in comparison with that in the Aβ42 dimer + 10 quercetin system. Our work may be helpful in developing new drug candidates for preventing the conformational transition and further aggregation of the Aβ dimer.
Collapse
|
25
|
Zhou Y, Yao Y, Yang Z, Tang Y, Wei G. Naphthoquinone-dopamine hybrids disrupt α-synuclein fibrils by their intramolecular synergistic interactions with fibrils and display a better effect on fibril disruption. Phys Chem Chem Phys 2023; 25:14471-14483. [PMID: 37190853 DOI: 10.1039/d3cp00340j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
α-Synuclein (αSyn) is an intrinsically disordered protein and its abnormal aggregation into amyloid fibrils is the main hallmark of Parkinson's disease (PD). The disruption of preformed αSyn fibrils using small molecules is considered as a potential strategy for PD treatment. Recent experiments have reported that naphthoquinone-dopamine hybrids (NQDA), synthesized by naphthoquinone (NQ) and dopamine (DA) molecules, can significantly disrupt αSyn fibrils and cross the blood-brain barrier. To unravel the fibril-disruptive mechanisms at the atomic level, we performed microsecond molecular dynamics simulations of αSyn fibrils in the absence and presence of NQDA, NQ, DA, or NQ+DA molecules. Our simulations showed that NQDA reduces the β-sheet content, disrupts K45-E57 and E46-K80 salt-bridges, weakens the inter-protofibril interaction, and thus destabilizes the αSyn fibril structure. NQDA has the ability to form cation-π and H-bonding interactions with K45/K80, and form π-π stacking interactions with Y39/F94. Those interactions between NQDA and αSyn fibrils play a crucial role in disaggregating αSyn fibrils. Moreover, we found that NQDA has a better fibril destabilization effect than that of NQ, DA, and NQ+DA molecules. This is attributed to the synergistic fibril-binding effect between NQ and DA groups in NQDA molecules. The DA group can form strong π-π stacking interactions with aromatic residues Y39/F94 of the αSyn fibril, while the DA molecule cannot. In addition, NQDA can form stronger cation-π interactions with residues K45/K80 than those of both NQ and DA molecules. Our results provide the molecular mechanism underlying the disaggregation of the αSyn fibril by NQDA and its better performance in fibril disruption than NQ, DA, and NQ+DA molecules, which offers new clues for the screening and development of promising drug candidates to treat PD.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Zhongyuan Yang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
26
|
Li X, Yang Z, Chen Y, Zhang S, Wei G, Zhang L. Dissecting the Molecular Mechanisms of the Co-Aggregation of Aβ40 and Aβ42 Peptides: A REMD Simulation Study. J Phys Chem B 2023; 127:4050-4060. [PMID: 37126408 DOI: 10.1021/acs.jpcb.3c01078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The aggregation of amyloid-β protein (Aβ) into oligomers and amyloid fibrils is closely related to Alzheimer's disease (AD). Aβ40 and Aβ42, as two most prominent isoforms of Aβ peptides, can cross-interact with each other and form co-aggregates, which affect the progression of the disease. However, the molecular determinants underlying Aβ40 and Aβ42 cross-interaction and the structural details of their co-oligomers remain elusive. Herein, we performed all-atom explicit-solvent replica exchange molecular dynamics simulations on Aβ40-Aβ42 heterogeneous and Aβ40/Aβ42 homogeneous dimer systems to dissect the co-aggregation mechanisms of the two isoforms. Our results show that the interpeptide main-chain interaction of Aβ40-Aβ42 is stronger than that of Aβ40-Aβ40 and Aβ42-Aβ42. The positions of hotspot residues in heterodimers and homodimers display high similarity, implying similar molecular recognition sites for both cross-interaction and self-interaction. Contact maps of Aβ40-Aβ42 heterodimers reveal that residue pairs crucial for cross-interaction are mostly located in the C-terminal hydrophobic regions of Aβ40 and Aβ42 peptides. Conformational analysis shows that Aβ40 and Aβ42 monomers can co-assemble into β-sheet-rich heterodimers with shorter β-sheets than those in homodimers, which is decremental to monomer addition. Similar molecular recognition sites and β-sheet distribution of Aβ40 and Aβ42 peptides are observed in heterodimers and homodimers, which may provide the molecular basis for the two isoforms' co-aggregation and cross-seeding. Our work dissects the co-aggregation mechanisms of Aβ40 and Aβ42 peptides at the atomic level, which will help for in-depth understanding of the cross-talk between the two Aβ isoforms and the pathogenesis of AD.
Collapse
Affiliation(s)
- Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yujie Chen
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
27
|
Tan Y, Chen Y, Liu X, Tang Y, Lao Z, Wei G. Dissecting how ALS-associated D290V mutation enhances pathogenic aggregation of hnRNPA2 286-291 peptides: Dynamics and conformational ensembles. Int J Biol Macromol 2023; 241:124659. [PMID: 37119915 DOI: 10.1016/j.ijbiomac.2023.124659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
The aggregation of RNA binding proteins, including hnRNPA1/2, TDP-43 and FUS, is heavily implicated in causing or increasing disease risk for a series of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). A recent experimental study demonstrated that an ALS-related D290V mutation in the low complexity domain (LCD) of hnRNPA2 can enhance the aggregation propensity of wild type (WT) hnRNPA2286-291 peptide. However, the underlying molecular mechanisms remain elusive. Herein, we investigated effects of D290V mutation on aggregation dynamics of hnRNPA2286-291 peptide and the conformational ensemble of hnRNPA2286-291 oligomers by performing all-atom molecular dynamic and replica-exchange molecular dynamic simulations. Our simulations demonstrate that D290V mutation greatly reduces the dynamics of hnRNPA2286-291 peptide and that D290V oligomers possess higher compactness and β-sheet content than WT, indicative of mutation-enhanced aggregation capability. Specifically, D290V mutation strengthens inter-peptide hydrophobic, main-chain hydrogen bonding and side-chain aromatic stacking interactions. Those interactions collectively lead to the enhancement of aggregation capability of hnRNPA2286-291 peptides. Overall, our study provides insights into the dynamics and thermodynamic mechanisms underlying D290V-induced disease-causing aggregation of hnRNPA2286-291, which could contribute to better understanding of the transitions from reversible condensates to irreversible pathogenic aggregates of hnRNPA2 LCD in ALS-related diseases.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Physics, Fudan University, Shanghai 200438, People's Republic of China; State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China; Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yujie Chen
- Department of Physics, Fudan University, Shanghai 200438, People's Republic of China; State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China; Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Xianshi Liu
- Department of Physics, Fudan University, Shanghai 200438, People's Republic of China; State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China; Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yiming Tang
- Department of Physics, Fudan University, Shanghai 200438, People's Republic of China; State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China; Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Zenghui Lao
- Department of Physics, Fudan University, Shanghai 200438, People's Republic of China; State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China; Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, Fudan University, Shanghai 200438, People's Republic of China; State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China; Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
28
|
Fang M, Su K, Wang X, Guan P, Hu X. Study on molecular mechanisms of destabilizing Aβ(1-42) protofibrils by licochalcone A and licochalcone B using molecular dynamics simulations. J Mol Graph Model 2023; 122:108500. [PMID: 37094420 DOI: 10.1016/j.jmgm.2023.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Amyloid-beta (Aβ) protofibrils are closely related to Alzheimer's disease. Their behaviors with or without the presence of Aβ fibrillization inhibitors have been intensively studied by molecular dynamics simulations. In this work, the molecular mechanisms of licochalcone A and licochalcone B on destabilizing Aβ(1-42) protofibrils are explored. It is found that both two licochalcones can disorder the configuration of the Aβ(1-42) protofibril. The stable interactions between the Aβ(1-42) protofibril and licochalcone A or licochalcone B are able to be formed. A reduction of the β-sheet structure contents and an increment of the random coil structures of Aβ(1-42) protofibril are observed in the presence of either licochalcone A or licochalcone B. The hydrogen bonds inside the Aβ(1-42) protofibril could be partially collapsed to varying degrees by two licochalcones. Furthermore, the van der Waals interactions between Aβ(1-42) protofibril and licochalcone A make an important contribution to the binding free energy, while the contribution of the electrostatic interactions between Aβ(1-42) protofibril and licochalcone B is more prominent in the binding affinity. Our work may help in the development of new drug candidates for disrupting the Aβ protofibril.
Collapse
Affiliation(s)
- Mei Fang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Kehe Su
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
29
|
Liu X, Li X, Qiao Q, Li F, Wei G. ALS-Linked A315T and A315E Mutations Enhance β-Barrel Formation of the TDP-43 307-319 Hexamer: A REST2 Simulation Study. ACS Chem Neurosci 2023; 14:1310-1320. [PMID: 36888995 DOI: 10.1021/acschemneuro.3c00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Pathogenic mutations of transactivation response element DNA-binding protein 43 (TDP-43) are closely linked with amyotrophic lateral sclerosis (ALS). It was recently reported that two ALS-linked familial mutants A315T and A315E of TDP-43307-319 peptides can self-assemble into oligomers including tetramers, hexamers, and octamers, among which hexamers were suggested to form the β-barrel structure. However, due to the transient nature of oligomers, their conformational properties and the atomic mechanisms underlying the β-barrel formation remain largely elusive. Herein, we investigated the hexameric conformational distributions of the wild-type (WT) TDP-43307-319 fragment and its A315T and A315E mutants by performing all-atom explicit-solvent replica exchange with solute tempering 2 simulations. Our simulations reveal that each peptide can self-assemble into diverse conformations including ordered β-barrels, bilayer β-sheets and/or monolayer β-sheets, and disordered complexes. A315T and A315E mutants display higher propensity to form β-barrel structures than the WT, which provides atomic explanation for their enhanced neurotoxicity reported previously. Detailed interaction analysis shows that A315T and A315E mutations increase inter-molecular interactions. Also, the β-barrel structures formed by the three different peptides are stabilized by distinct inter-peptide side-chain hydrogen bonding, hydrophobic, and aromatic stacking interactions. This study demonstrates the enhanced β-barrel formation of the TDP-43307-319 hexamer by the pathogenic A315T and A315E mutations and reveals the underlying molecular determinants, which may be helpful for in-depth understanding of the ALS-mutation-induced neurotoxicity of TDP-43 protein.
Collapse
Affiliation(s)
- Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qin Qiao
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| |
Collapse
|
30
|
Roy R, Paul S. Illustrating the Effect of Small Molecules Derived from Natural Resources on Amyloid Peptides. J Phys Chem B 2023; 127:600-615. [PMID: 36638829 DOI: 10.1021/acs.jpcb.2c07607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The onset of amyloidogenic diseases is associated with the misfolding and aggregation of proteins. Despite extensive research, no effective therapeutics are yet available to treat these chronic degenerative diseases. Targeting the aggregation of disease-specific proteins is regarded as a promising new approach to treat these diseases. In the past few years, rapid progress in this field has been made in vitro, in vivo, and in silico to generate potential drug candidates, ranging from small molecules to polymers to nanoparticles. Small molecular probes, mostly those derived from natural sources, have been of particular interest among amyloid inhibitors. Here, we summarize some of the most important natural small molecular probes which can inhibit the aggregation of Aβ, hIAPP, and α-syn peptides and discuss how their binding efficacy and preference for the peptides vary with their structure and conformation. This provides a comprehensive idea of the crucial factors which should be incorporated into the future design of novel drug candidates useful for the treatment of amyloid diseases.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| |
Collapse
|
31
|
Xu Z, Gong Y, Zou Y, Wan J, Tang J, Zhan C, Wei G, Zhang Q. Dissecting the Inhibitory Mechanism of the αB-Crystallin Domain against Aβ 42 Aggregation and Its Effect on Aβ 42 Protofibrils: A Molecular Dynamics Simulation Study. ACS Chem Neurosci 2022; 13:2842-2851. [PMID: 36153964 DOI: 10.1021/acschemneuro.2c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is related to the misfolding and aggregation of amyloid-β (Aβ) protein, and its major pathological hallmark is fibrillary β-amyloid plaques. Impeding the formation of Aβ β-structure-rich aggregates and dissociating Aβ fibrils are considered potent strategies to suppress the onset and progression of AD. As a molecular chaperone, human αB-crystallin has received extensive attention in the inhibition of protein aggregation. Previous experiments reported that the structured core region of αB-crystallin (αBC) exhibits a better preventive effect on Aβ aggregation and toxicity than the full-length protein. However, the molecular mechanism behind the effect of inhibition remains mostly unknown. Herein, we carried out six 500 ns molecular dynamics (MD) simulations to investigate the inhibitory mechanism of αBC on Aβ42 aggregation. Our simulations show that αBC greatly impedes the formation of β-structure contents. We find that the binding of αBC to the Aβ42 monomer is driven by polar, hydrophobic, and H-bonding interactions. To explore whether αBC could destabilize Aβ42 protofibrils, we also carried out MD simulations of Aβ42 protofibrils with and without αBC. The results show that αBC interacts with three binding sites of the Aβ42 protofibril, and the binding is mainly driven by polar and H-bonding interactions. The binding of αBC at these three sites has a preferred dissociation effect on the β-structure content, kink angle, and K28-A42 salt bridges. Overall, this study not only discloses the molecular mechanism of αBC against Aβ42 aggregation but also demonstrates the disruption effects of αBC on Aβ42 protofibrils, which yields an avenue for designing anti-AD drug candidates.
Collapse
Affiliation(s)
- Zhengdong Xu
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Yehong Gong
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China.,School of Sports Science and Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yu Zou
- Department Sport and Exercise Science, College of Education, Zhejiang University, 148 Tianmenshan Road, Hangzhou 310007, Zhejiang, People's Republic of China
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Chendi Zhan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
32
|
Liu X, Lao Z, Li X, Dong X, Wei G. ALS-associated A315E and A315pT variants exhibit distinct mechanisms in inducing irreversible aggregation of TDP-43 312-317 peptides. Phys Chem Chem Phys 2022; 24:16263-16273. [PMID: 35758309 DOI: 10.1039/d2cp01625g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is intensively associated with insoluble aggregates formed by transactivation response element DNA-binding protein 43 (TDP-43) in the cytoplasm of neuron cells. A recent experimental study reported that two ALS-linked familial variants, A315E and A315pT (pT, phosphorylated threonine), can induce irreversible aggregation of the TDP-43 312NFGAFS317 segment (TDP-43312-317). However, the underlying molecular mechanism remains largely elusive. Here, we investigated the early aggregation process of the wild type (WT) 312NFGAFS317 segment and its A315E and A315pT variants by performing multiple microsecond all-atom molecular dynamics simulations. Our simulations show that the two variants display lower fluidity than WT, consistent with their decreased labilities observed in previous denaturation assay experiments. Despite each of the two variants carrying one negative charge, unexpectedly, we find that both A315E mutation and A315pT phosphorylation enhance intermolecular interactions and result in the formation of more compact oligomers. Compared to WT, A315E oligomers possess low β-sheet content but a compact hydrophobic core, while A315pT oligomers have high β-sheet content and large β-sheets. Side chain hydrogen-bonding and hydrophobic interactions as well as N312-E315 salt bridges contribute most to the increased aggregation propensity of the A315E mutant. By contrast, main chain and side chain hydrogen-bonding interactions, side chain hydrophobic and aromatic interactions, are crucial to the enhanced aggregation capability of the A315pT variant. These results indicate that glutamate mutation and phosphorylation at position 315 induce the irreversible aggregation of TDP-43312-317 peptides through differential mechanisms, which remind us that we should be careful in the investigation of the phosphorylation effect on protein aggregation by using phosphomimetic substitutions. This study provides mechanistic insights into the A315E/A315pT-induced irreversible aggregation of TDP-43312-317, which may be helpful for the in-depth understanding of ALS-mutation/phosphorylation-associated liquid-to-solid phase transition of TDP-43 protein aggregates.
Collapse
Affiliation(s)
- Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| | - Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
33
|
Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, Li L. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci 2022; 14:869507. [PMID: 35663578 PMCID: PMC9158463 DOI: 10.3389/fnagi.2022.869507] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by the accumulation of proteinaceous aggregates and neurofibrillary lesions composed of β-amyloid (Aβ) peptide and hyperphosphorylated microtubule-associated protein tau, respectively. It has long been known that dysregulation of cholinergic and monoaminergic (i.e., dopaminergic, serotoninergic, and noradrenergic) systems is involved in the pathogenesis of AD. Abnormalities in neuronal activity, neurotransmitter signaling input, and receptor function exaggerate Aβ deposition and tau hyperphosphorylation. Maintenance of normal neurotransmission is essential to halt AD progression. Most neurotransmitters and neurotransmitter-related drugs modulate the pathology of AD and improve cognitive function through G protein-coupled receptors (GPCRs). Exercise therapies provide an important alternative or adjunctive intervention for AD. Cumulative evidence indicates that exercise can prevent multiple pathological features found in AD and improve cognitive function through delaying the degeneration of cholinergic and monoaminergic neurons; increasing levels of acetylcholine, norepinephrine, serotonin, and dopamine; and modulating the activity of certain neurotransmitter-related GPCRs. Emerging insights into the mechanistic links among exercise, the neurotransmitter system, and AD highlight the potential of this intervention as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Boyi Zong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Xiaoyou Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenrui Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Peng Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shichang Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
- *Correspondence: Lin Li,
| |
Collapse
|
34
|
Singh K, Kaur A, Goyal D, Goyal B. Mechanistic insights into the mitigation of Aβ aggregation and protofibril destabilization by a D–enantiomeric decapeptide rk10. Phys Chem Chem Phys 2022; 24:21975-21994. [DOI: 10.1039/d2cp02601e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
According to clinical studies, the development of Alzheimer’s disease (AD) is linked to the abnormal aggregation of amyloid-β (Aβ) peptides into toxic soluble oligomers, protofibrils as well as mature fibrils....
Collapse
|
35
|
Gao D, Wan J, Zou Y, Gong Y, Dong X, Xu Z, Tang J, Wei G, Zhang Q. Destructive Mechanism of Aβ 1-42 Protofibril by Norepinephrine revealed via Molecular Dynamics Simulations. Phys Chem Chem Phys 2022; 24:19827-19836. [DOI: 10.1039/d2cp01754g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyloid-β (Aβ) fibrillary plaques represent the main hallmarks of Alzheimer’s disease (AD), in addition to tau neurofibrillary tangles. Disrupting early-formed Aβ protofibril is considered as one of the primary therapeutic...
Collapse
|
36
|
Cytotoxic Aβ Protofilaments Are Generated in the Process of Aβ Fibril Disaggregation. Int J Mol Sci 2021; 22:ijms222312780. [PMID: 34884584 PMCID: PMC8657853 DOI: 10.3390/ijms222312780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Significant research on Alzheimer's disease (AD) has demonstrated that amyloid β (Aβ) oligomers are toxic molecules against neural cells. Thus, determining the generation mechanism of toxic Aβ oligomers is crucial for understanding AD pathogenesis. Aβ fibrils were reported to be disaggregated by treatment with small compounds, such as epigallocatechin gallate (EGCG) and dopamine (DA), and a loss of fibril shape and decrease in cytotoxicity were observed. However, the characteristics of intermediate products during the fibril disaggregation process are poorly understood. In this study, we found that cytotoxic Aβ aggregates are generated during a moderate disaggregation process of Aβ fibrils. A cytotoxicity assay revealed that Aβ fibrils incubated with a low concentration of EGCG and DA showed higher cytotoxicity than Aβ fibrils alone. Atomic force microscopy imaging and circular dichroism spectrometry showed that short and narrow protofilaments, which were highly stable in the β-sheet structure, were abundant in these moderately disaggregated samples. These results indicate that toxic Aβ protofilaments are generated during disaggregation from amyloid fibrils, suggesting that disaggregation of Aβ fibrils by small compounds may be one of the possible mechanisms for the generation of toxic Aβ aggregates in the brain.
Collapse
|