1
|
Stehouwer JS, Huang G, Saturnino Guarino D, Debnath ML, Polu A, Geib SJ, Lopresti B, Ikonomovic MD, Mason N, Mach RH, Mathis CA. Structure-Activity Relationships and Evaluation of 2-(Heteroaryl-cycloalkyl)-1 H-indoles as Tauopathy Positron Emission Tomography Radiotracers. J Med Chem 2025; 68:6462-6492. [PMID: 40068019 PMCID: PMC11956013 DOI: 10.1021/acs.jmedchem.4c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Structure-activity relationship studies were performed on a library of synthesized compounds based on previously identified tau ligands. The top 13 new compounds had Ki values in the range of 5-14 nM in Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) post-mortem brain tissues. One of the more promising new compounds ([3H]75) bound with high affinity in AD, PSP, and CBD tissues (KD's = 1-1.5 nM) and Pick's disease tissue (KD = 3.8 nM). Autoradiography studies with [3H]75 demonstrated specific binding in AD, PSP, and CBD post-mortem tissues. Nonhuman primate brain PET imaging with [18F]75 demonstrated a peak standardized uptake value (SUV) of ∼5 in the cerebellum, ∼4.5 in the cortex, and ∼4 in whole brain with SUV 2-to-90 min ratios of 3.9 in whole brain, 4.9 in cortex, and 4.5 in cerebellum. Compound [18F]75 is a promising candidate for translation to human brain PET imaging studies.
Collapse
Affiliation(s)
- Jeffrey S. Stehouwer
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Guofeng Huang
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Dinahlee Saturnino Guarino
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States
| | - Manik L. Debnath
- Department
of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Ashok Polu
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Steven J. Geib
- X-ray
Crystallography Laboratory, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Brian Lopresti
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Milos D. Ikonomovic
- Department
of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Geriatric
Research and Clinical Education, VA Pittsburgh
Healthcare System, Pittsburgh, Pennsylvania 15240, United States
| | - Neale Mason
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Robert H. Mach
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States
| | - Chester A. Mathis
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Bauer T, Brendel M, Zaganjori M, Bernhardt AM, Jäck A, Stöcklein S, Scheifele M, Levin J, van Eimeren T, Drzezga A, Sabri O, Barthel H, Perneczky R, Höglinger G, Franzmeier N, Gnörich J. Pragmatic algorithm for visual assessment of 4-Repeat tauopathies in [ 18F]PI-2620 PET Scans. Neuroimage 2025; 306:121001. [PMID: 39798829 DOI: 10.1016/j.neuroimage.2025.121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/11/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
AIM Standardized evaluation of [18F]PI-2620 tau-PET scans in 4R-tauopathies represents an unmet need in clinical practice. This study aims to investigate the effectiveness of visual evaluation of [18F]PI-2620 images for diagnosing 4R-tauopathies and to develop a straight-forward reading algorithm to improve objectivity and data reproducibility. METHODS A total of 83 individuals with [18F]PI-2620 PET scans were included. Participants were classified as probable 4R-tauopathies (n = 29), Alzheimer's disease (AD) (n = 20), α-synucleinopathies (n = 15), and healthy controls (n = 19) based on clinical criteria. Visual assessment of tau-PET scans (choice: 4R-tauopathy, AD-tauopathy, no-tauopathy) was conducted using either 20-40-minute or 40-60-minute intervals, with raw (common) and cerebellar grey matter scaled standardized reading settings (intensity-scaled). Two readers evaluated scans independently and blinded, with a third reader providing consensus in case of discrepant primary evaluation. A regional analysis was performed using the cortex, basal ganglia, midbrain, and dentate nucleus. Sensitivity, specificity, and interrater agreement were calculated for all settings and compared against the visual reads of parametric images (0-60-minutes, distribution volume ratios, DVR). RESULTS Patients with 4R-tauopathies in contrast to non-4R-tauopathies were detected at higher sensitivity in the 20-40-minute frame (common: 79%, scaled: 76%) compared to the 40-60-minute frame (common: 55%, scaled: 62%), albeit with reduced specificity in the common setting (20-40-min: 78%, 40-60-min: 95%), which was ameliorated in the intensity-scaled setting (20-40-min: 91%, 40-60-min: 96%). Combined assessment of multiple brain regions did not significantly improve diagnostic sensitivity, compared to assessing the basal ganglia alone (76% each). Evaluation of intensity-scaled parametric images resulted in higher sensitivity compared to intensity-scaled static scans (86% vs. 76%) at similar specificity (89% vs. 91%). CONCLUSION Visual reading of [18F]PI-2620 tau-PET scans demonstrated reliable detection of 4R-tauopathies, particularly when standardized processing methods and early imaging windows were employed. Parametric images should be preferred for visual assessment of 4R-tauopathies.
Collapse
Affiliation(s)
- Theresa Bauer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Alexander M Bernhardt
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Jäck
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn/Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn/Cologne, Germany; Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Germany
| | - Osama Sabri
- University Hospital Leipzig, Department of Nuclear Medicine, Leipzig, Germany
| | - Henryk Barthel
- University Hospital Leipzig, Department of Nuclear Medicine, Leipzig, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK; Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicolai Franzmeier
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany; University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
| |
Collapse
|
3
|
Slemann L, Gnörich J, Hummel S, Bartos LM, Klaus C, Kling A, Kusche-Palenga J, Kunte ST, Kunze LH, Englert AL, Li Y, Vogler L, Katzdobler S, Palleis C, Bernhardt A, Jäck A, Zwergal A, Hopfner F, Roemer-Cassiano SN, Biechele G, Stöcklein S, Bischof G, van Eimeren T, Drzezga A, Sabri O, Barthel H, Respondek G, Grimmer T, Levin J, Herms J, Paeger L, Willroider M, Beyer L, Höglinger GU, Roeber S, Franzmeier N, Brendel M. Neuronal and oligodendroglial, but not astroglial, tau translates to in vivo tau PET signals in individuals with primary tauopathies. Acta Neuropathol 2024; 148:70. [PMID: 39580770 PMCID: PMC11586312 DOI: 10.1007/s00401-024-02834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Tau PET has attracted increasing interest as an imaging biomarker for 4-repeat (4R)-tauopathy progressive supranuclear palsy (PSP). However, the translation of in vitro 4R-tau binding to in vivo tau PET signals is still unclear. Therefore, we performed a translational study using a broad spectrum of advanced methodologies to investigate the sources of [18F]PI-2620 tau PET signals in individuals with 4R-tauopathies, including a pilot PET autopsy study in patients. First, we conducted a longitudinal [18F]PI-2620 PET/MRI study in a 4-repeat-tau mouse model (PS19) and detected elevated [18F]PI-2620 PET signals in the presence of high levels of neuronal tau. An innovative approach involving cell sorting after radiotracer injection in vivo revealed higher tracer uptake in single neurons than in the astrocytes of PS19 mice. Regional [18F]PI-2620 tau PET signals during the lifetime correlated with the abundance of fibrillary tau and with autoradiography signal intensity in PSP patients and disease controls who underwent autopsy 2-63 months after tau PET. In autoradiography, tau-positive neurons and oligodendrocytes with a high AT8 density, but not tau-positive astrocytes, were the drivers of [18F]PI-2620 autoradiography signals in individuals with PSP. The high tau abundance in oligodendrocytes at the boundary of gray and white matter facilitated the identification of an optimized frontal lobe target region to detect the tau burden in patients with PSP. In summary, neuronal and oligodendroglial tau constitutes the dominant source of tau PET radiotracer binding in 4-repeat-tauopathies, translating to an in vivo signal.
Collapse
Affiliation(s)
- Luna Slemann
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Selina Hummel
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Carolin Klaus
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Agnes Kling
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Julia Kusche-Palenga
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Sebastian T Kunte
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Lea H Kunze
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Amelie L Englert
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Yunlei Li
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Letizia Vogler
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Sabrina Katzdobler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carla Palleis
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alexander Bernhardt
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Alexander Jäck
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- German Center for Vertigo and Balance Disorders, DSGZ, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Franziska Hopfner
- Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sebastian N Roemer-Cassiano
- Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Institute for Stroke and Dementia Research, LMU Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Radiology, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gerard Bischof
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Thilo van Eimeren
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Gesine Respondek
- Department of Neurology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Timo Grimmer
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Center of Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Marie Willroider
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sigrun Roeber
- Center of Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Nicolai Franzmeier
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Stroke and Dementia Research, LMU Hospital, LMU Munich, Munich, Germany
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, , University of Gothenburg, The Sahlgrenska Academy, Mölndal, Gothenburg, Sweden
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Marchioninstraße 15, 81377, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
4
|
Dilcher R, Wall S, Groß M, Katzdobler S, Wagemann O, Palleis C, Weidinger E, Fietzek U, Bernhardt A, Kurz C, Ferschmann C, Scheifele M, Zaganjori M, Gnörich J, Bürger K, Janowitz D, Rauchmann B, Stöcklein S, Bartenstein P, Villemagne V, Seibyl J, Sabri O, Barthel H, Perneczky R, Schöberl F, Zwergal A, Höglinger GU, Levin J, Franzmeier N, Brendel M. Combining cerebrospinal fluid and PI-2620 tau-PET for biomarker-based stratification of Alzheimer's disease and 4R-tauopathies. Alzheimers Dement 2024; 20:6896-6909. [PMID: 39263969 PMCID: PMC11485081 DOI: 10.1002/alz.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Recent advances in biomarker research have improved the diagnosis and monitoring of Alzheimer's disease (AD), but in vivo biomarker-based workflows to assess 4R-tauopathy (4RT) patients are currently missing. We suggest a novel biomarker-based algorithm to characterize AD and 4RTs. METHODS We cross-sectionally assessed combinations of cerebrospinal fluid measures (CSF p-tau181 and t-tau) and 18F-PI-2620 tau-positron emission tomography (PET) in patients with AD (n = 64), clinically suspected 4RTs (progressive supranuclear palsy or corticobasal syndrome, n = 82) and healthy controls (n = 19). RESULTS Elevated CSF p-tau181 and cortical 18F-PI-2620 binding was characteristic for AD while normal CSF p-tau181 with elevated subcortical 18F-PI-2620 binding was characteristic for 4RTs. 18F-PI-2620-assessed posterior cortical hypoperfusion could be used as an additional neuronal injury biomarker in AD. DISCUSSION The specific combination of CSF markers and 18F-PI-2620 tau-PET in disease-specific regions facilitates the biomarker-guided stratification of AD and 4RTs. This has implications for biomarker-aided diagnostic workflows and the advancement in clinical trials. HIGHLIGHTS Novel biomarker-based algorithm for differentiating AD and 4R-tauopathies. A combination of CSF p-tau181 and 18F-PI-2620 discriminates AD versus 4R tauopathies. Hypoperfusion serves as an additional neuronal injury biomarker in AD.
Collapse
Affiliation(s)
- Roxane Dilcher
- NeuroscienceMonash UniversityMelbourneAustralia
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Stephan Wall
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Mattes Groß
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Sabrina Katzdobler
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Olivia Wagemann
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Carla Palleis
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Endy Weidinger
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Urban Fietzek
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Alexander Bernhardt
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Carolin Kurz
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Christian Ferschmann
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Maximilian Scheifele
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Mirlind Zaganjori
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Johannes Gnörich
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Katharina Bürger
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Daniel Janowitz
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Boris‐Stephan Rauchmann
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
- Institute for NeuroradiologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Sophia Stöcklein
- Department of RadiologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Peter Bartenstein
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Victor Villemagne
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergAustralia
| | - John Seibyl
- Institute for Neurodegenerative DisordersNew HavenConnecticutUSA
| | - Osama Sabri
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Henryk Barthel
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Robert Perneczky
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Florian Schöberl
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Andreas Zwergal
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- German Center for Vertigo and Balance Disorders (DSGZ)University Hospital of Munich, LMU MunichMünchenGermany
| | - Günter U. Höglinger
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Johannes Levin
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of Psychiatry and NeurochemistryUniversity of GothenburgThe Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyMölndal and GothenburgSweden
| | - Matthias Brendel
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| |
Collapse
|
5
|
Meindl M, Zatcepin A, Gnörich J, Scheifele M, Zaganjori M, Groß M, Lindner S, Schaefer R, Simmet M, Roemer S, Katzdobler S, Levin J, Höglinger G, Bischof AC, Barthel H, Sabri O, Bartenstein P, Saller T, Franzmeier N, Ziegler S, Brendel M. Assessment of [ 18F]PI-2620 Tau-PET Quantification via Non-Invasive Automatized Image Derived Input Function. Eur J Nucl Med Mol Imaging 2024; 51:3252-3266. [PMID: 38717592 PMCID: PMC11368995 DOI: 10.1007/s00259-024-06741-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/01/2024] [Indexed: 09/03/2024]
Abstract
PURPOSE [18F]PI-2620 positron emission tomography (PET) detects misfolded tau in progressive supranuclear palsy (PSP) and Alzheimer's disease (AD). We questioned the feasibility and value of absolute [18F]PI-2620 PET quantification for assessing tau by regional distribution volumes (VT). Here, arterial input functions (AIF) represent the gold standard, but cannot be applied in routine clinical practice, whereas image-derived input functions (IDIF) represent a non-invasive alternative. We aimed to validate IDIF against AIF and we evaluated the potential to discriminate patients with PSP and AD from healthy controls by non-invasive quantification of [18F] PET. METHODS In the first part of the study, we validated AIF derived from radial artery whole blood against IDIF by investigating 20 subjects (ten controls and ten patients). IDIF were generated by manual extraction of the carotid artery using the average and the five highest (max5) voxel intensity values and by automated extraction of the carotid artery using the average and the maximum voxel intensity value. In the second part of the study, IDIF quantification using the IDIF with the closest match to the AIF was transferred to group comparison of a large independent cohort of 40 subjects (15 healthy controls, 15 PSP patients and 10 AD patients). We compared VT and VT ratios, both calculated by Logan plots, with distribution volume (DV) ratios using simplified reference tissue modelling and standardized uptake value (SUV) ratios. RESULTS AIF and IDIF showed highly correlated input curves for all applied IDIF extraction methods (0.78 < r < 0.83, all p < 0.0001; area under the curves (AUC): 0.73 < r ≤ 0.82, all p ≤ 0.0003). Regarding the VT values, correlations were mainly found between those generated by the AIF and by the IDIF methods using the maximum voxel intensity values. Lowest relative differences (RD) were observed by applying the manual method using the five highest voxel intensity values (max5) (AIF vs. IDIF manual, avg: RD = -82%; AIF vs. IDIF automated, avg: RD = -86%; AIF vs. IDIF manual, max5: RD = -6%; AIF vs. IDIF automated, max: RD = -26%). Regional VT values revealed considerable variance at group level, which was strongly reduced upon scaling by the inferior cerebellum. The resulting VT ratio values were adequate to detect group differences between patients with PSP or AD and healthy controls (HC) (PSP target region (globus pallidus): HC vs. PSP vs. AD: 1.18 vs. 1.32 vs. 1.16; AD target region (Braak region I): HC vs. PSP vs. AD: 1.00 vs. 1.00 vs. 1.22). VT ratios and DV ratios outperformed SUV ratios and VT in detecting differences between PSP and healthy controls, whereas all quantification approaches performed similarly in comparing AD and healthy controls. CONCLUSION Blood-free IDIF is a promising approach for quantification of [18F]PI-2620 PET, serving as correlating surrogate for invasive continuous arterial blood sampling. Regional [18F]PI-2620 VT show large variance, in contrast to regional [18F]PI-2620 VT ratios scaled with the inferior cerebellum, which are appropriate for discriminating PSP, AD and healthy controls. DV ratios obtained by simplified reference tissue modeling are similarly suitable for this purpose.
Collapse
Affiliation(s)
- Maria Meindl
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Artem Zatcepin
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mattes Groß
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Rebecca Schaefer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marcel Simmet
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Roemer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Medizinische Hochschule Hannover, Hannover, Germany
- Department of Neurology, Technical University Munich, Munich, Germany
| | - Ann-Cathrin Bischof
- Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Saller
- Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Sibylle Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
6
|
Malpetti M, Roemer SN, Harris S, Gross M, Gnörich J, Stephens A, Dewenter A, Steward A, Biel D, Dehsarvi A, Wagner F, Müller A, Koglin N, Weidinger E, Palleis C, Katzdobler S, Rupprecht R, Perneczky R, Rauchmann BS, Levin J, Höglinger GU, Brendel M, Franzmeier N. Neuroinflammation Parallels 18F-PI-2620 Positron Emission Tomography Patterns in Primary 4-Repeat Tauopathies. Mov Disord 2024; 39:1480-1492. [PMID: 39022835 DOI: 10.1002/mds.29924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Preclinical, postmortem, and positron emission tomography (PET) imaging studies have pointed to neuroinflammation as a key pathophysiological hallmark in primary 4-repeat (4R) tauopathies and its role in accelerating disease progression. OBJECTIVE We tested whether microglial activation (1) progresses in similar spatial patterns as the primary pathology tau spreads across interconnected brain regions, and (2) whether the degree of microglial activation parallels tau pathology spreading. METHODS We examined in vivo associations between tau aggregation and microglial activation in 31 patients with clinically diagnosed 4R tauopathies, using 18F-PI-2620 PET and 18F-GE180 (translocator protein [TSPO]) PET. We determined tau epicenters, defined as subcortical brain regions with highest tau PET signal, and assessed the connectivity of tau epicenters to cortical regions of interest using a 3-T resting-state functional magnetic resonance imaging template derived from age-matched healthy elderly controls. RESULTS In 4R tauopathy patients, we found that higher regional tau PET covaries with elevated TSPO-PET across brain regions that are functionally connected to each other (β = 0.414, P < 0.001). Microglial activation follows similar distribution patterns as tau and distributes primarily across brain regions strongly connected to patient-specific tau epicenters (β = -0.594, P < 0.001). In these regions, microglial activation spatially parallels tau distribution detectable with 18F-PI-2620 PET. CONCLUSIONS Our findings indicate that the spatial expansion of microglial activation parallels tau distribution across brain regions that are functionally connected to each other, suggesting that tau and inflammation are closely interrelated in patients with 4R tauopathies. The combination of in vivo tau and inflammatory biomarkers could therefore support the development of immunomodulatory strategies for disease-modifying treatments in these conditions. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Maura Malpetti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Sebastian N Roemer
- Department of Neurology, LMU Hospital, LMU Hospital, LMU Munich, Munich, Germany
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | - Stefanie Harris
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Mattes Gross
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | | | - Anna Dewenter
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | | | | | - Endy Weidinger
- Department of Neurology, LMU Hospital, LMU Hospital, LMU Munich, Munich, Germany
| | - Carla Palleis
- Department of Neurology, LMU Hospital, LMU Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU Hospital, LMU Hospital, LMU Munich, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Robert Perneczky
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU Hospital, LMU Munich, Munich, Germany
- Aging Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, LMU Hospital, LMU Munich, Munich, Germany
- Department of Neuroradiology, LMU Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, LMU Hospital, LMU Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, LMU Hospital, LMU Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
7
|
Roemer SN, Brendel M, Gnörich J, Malpetti M, Zaganjori M, Quattrone A, Gross M, Steward A, Dewenter A, Wagner F, Dehsarvi A, Ferschmann C, Wall S, Palleis C, Rauchmann BS, Katzdobler S, Jäck A, Stockbauer A, Fietzek UM, Bernhardt AM, Weidinger E, Zwergal A, Stöcklein S, Perneczky R, Barthel H, Sabri O, Levin J, Höglinger GU, Franzmeier N. Subcortical tau is linked to hypoperfusion in connected cortical regions in 4-repeat tauopathies. Brain 2024; 147:2428-2439. [PMID: 38842726 DOI: 10.1093/brain/awae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
Four-repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R tauopathies are progressive supranuclear palsy (PSP) and corticobasal degeneration characterized by subcortical tau accumulation and cortical neuronal dysfunction, as shown by PET-assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction, and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces remote neuronal dysfunction in functionally connected cortical regions to test a pathophysiological model that mechanistically links subcortical tau accumulation to cortical neuronal dysfunction in 4R tauopathies. We included 51 Aβ-negative patients with clinically diagnosed PSP variants (n = 26) or corticobasal syndrome (n = 25) who underwent structural MRI and 18F-PI-2620 tau-PET. 18F-PI-2620 tau-PET was recorded using a dynamic one-stop-shop acquisition protocol to determine an early 0.5-2.5 min post tracer-injection perfusion window for assessing cortical neuronal dysfunction, as well as a 20-40 min post tracer-injection window to determine 4R-tau load. Perfusion-PET (i.e. early window) was assessed in 200 cortical regions, and tau-PET was assessed in 32 subcortical regions of established functional brain atlases. We determined tau epicentres as subcortical regions with the highest 18F-PI-2620 tau-PET signal and assessed the connectivity of tau epicentres to cortical regions of interest using a resting-state functional MRI-based functional connectivity template derived from 69 healthy elderly controls from the ADNI cohort. Using linear regression, we assessed whether: (i) higher subcortical tau-PET was associated with reduced cortical perfusion; and (ii) cortical perfusion reductions were observed preferentially in regions closely connected to subcortical tau epicentres. As hypothesized, higher subcortical tau-PET was associated with overall lower cortical perfusion, which remained consistent when controlling for cortical tau-PET. Using group-average and subject-level PET data, we found that the seed-based connectivity pattern of subcortical tau epicentres aligned with cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicentre showed lower perfusion. Together, subcortical tau-accumulation is associated with remote perfusion reductions indicative of neuronal dysfunction in functionally connected cortical regions in 4R-tauopathies. This suggests that subcortical tau pathology may induce cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity.
Collapse
Affiliation(s)
- Sebastian N Roemer
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Andrea Quattrone
- Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mattes Gross
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Christian Ferschmann
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stephan Wall
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Carla Palleis
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Boris S Rauchmann
- Department of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexander Jäck
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Stockbauer
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Urban M Fietzek
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexander M Bernhardt
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Endy Weidinger
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Perneczky
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London SW7 2BX, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Psychiatry and Neurochemistry, University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, SE 413 90 Mölndal and Gothenburg, Sweden
| |
Collapse
|
8
|
Ferschmann C, Messerschmidt K, Gnörich J, Barthel H, Marek K, Palleis C, Katzdobler S, Stockbauer A, Fietzek U, Finze A, Biechele G, Rumpf JJ, Saur D, Schroeter ML, Rullmann M, Beyer L, Eckenweber F, Wall S, Schildan A, Patt M, Stephens A, Classen J, Bartenstein P, Seibyl J, Franzmeier N, Levin J, Höglinger GU, Sabri O, Brendel M, Scheifele M. Tau accumulation is associated with dopamine deficiency in vivo in four-repeat tauopathies. Eur J Nucl Med Mol Imaging 2024; 51:1909-1922. [PMID: 38366196 PMCID: PMC11139736 DOI: 10.1007/s00259-024-06637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal ganglia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [18F]PI-2620 tau-positron-emission-tomography (PET) imaging with [123I]-Ioflupane single-photon-emission-computed tomography (SPECT) for dopamine transporter (DaT) availability. METHODS Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [18F]PI-2620 tau-PET and DaT-SPECT imaging with a time gap of 3 ± 5 months were evaluated. Regional Tau-PET signals and DaT availability as well as their principal components were correlated in patients with 4R-tauopathies and α-synucleinopathies. Both biomarkers and the residuals of their association were correlated with clinical severity scores in 4R-tauopathies. RESULTS In patients with 4R-tauopathies, [18F]PI-2620 binding in basal ganglia and midbrain regions was negatively associated with striatal DaT availability (i.e. globus pallidus internus and putamen (β = - 0.464, p = 0.006, Durbin-Watson statistics = 1.824) in a multiple regression model. Contrarily, [18F]PI-2620 binding in the dentate nucleus showed no significant regression factor with DaT availability in the striatum (β = 0.078, p = 0.662, Durbin-Watson statistics = 1.686). Patients with α-synucleinopathies did not indicate any regional associations between [18F]PI-2620-binding and DaT availability. Higher DaT-SPECT binding relative to tau burden was associated with better clinical performance (β = - 0.522, p = 0.011, Durbin-Watson statistics = 2.663) in patients with 4R-tauopathies. CONCLUSION Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite tau accumulation may preserve motor function.
Collapse
Affiliation(s)
- Christian Ferschmann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Ken Marek
- InviCRO, LLC, Boston, MA, USA
- Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | - Carla Palleis
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anna Stockbauer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Urban Fietzek
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Dorothee Saur
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Wall
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Schildan
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - John Seibyl
- InviCRO, LLC, Boston, MA, USA
- Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | - Nicolai Franzmeier
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
9
|
Kimura T, Sato H, Kano M, Tatsumi L, Tomita T. Novel aspects of the phosphorylation and structure of pathological tau: implications for tauopathy biomarkers. FEBS Open Bio 2024; 14:181-193. [PMID: 37391389 PMCID: PMC10839341 DOI: 10.1002/2211-5463.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023] Open
Abstract
The deposition of highly phosphorylated and aggregated tau is a characteristic of tauopathies, including Alzheimer's disease. It has long been known that different isoforms of tau are aggregated in different cell types and brain regions in each tauopathy. Recent advances in analytical techniques revealed the details of the biochemical and structural biological differences of tau specific to each tauopathy. In this review, we explain recent advances in the analysis of post-translational modifications of tau, particularly phosphorylation, brought about by the development of mass-spectrometry and Phos-tag technology. We then discuss the structure of tau filaments in each tauopathy revealed by the advent of cryo-EM. Finally, we describe the progress in biofluid and imaging biomarkers for tauopathy. This review summarizes current efforts to elucidate the characteristics of pathological tau and the landscape of the use of tau as a biomarker to diagnose and determine the pathological stage of tauopathy.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Haruaki Sato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Maria Kano
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Lisa Tatsumi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| |
Collapse
|
10
|
Finze A, Biechele G, Rauchmann BS, Franzmeier N, Palleis C, Katzdobler S, Weidinger E, Guersel S, Schuster S, Harris S, Schmitt J, Beyer L, Gnörich J, Lindner S, Albert NL, Wetzel CH, Rupprecht R, Rominger A, Danek A, Burow L, Kurz C, Tato M, Utecht J, Papazov B, Zaganjori M, Trappmann LK, Goldhardt O, Grimmer T, Haeckert J, Janowitz D, Buerger K, Keeser D, Stoecklein S, Dietrich O, Morenas-Rodriguez E, Barthel H, Sabri O, Bartenstein P, Simons M, Haass C, Höglinger GU, Levin J, Perneczky R, Brendel M. Individual regional associations between Aβ-, tau- and neurodegeneration (ATN) with microglial activation in patients with primary and secondary tauopathies. Mol Psychiatry 2023; 28:4438-4450. [PMID: 37495886 PMCID: PMC10827660 DOI: 10.1038/s41380-023-02188-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
β-amyloid (Aβ) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, Aβ-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of Aβ (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional Aβ (AD: βT = 0.412 ± 0.196 vs. βA = 0.142 ± 0.123, p < 0.001; AD-CBS: βT = 0.385 ± 0.176 vs. βA = 0.131 ± 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (βT = 0.418 ± 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and Aβ related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases.
Collapse
Grants
- EXC 2145 SyNergy - ID 390857198 Deutsche Forschungsgemeinschaft (German Research Foundation)
- EXC 2155 - project number 39087428 Deutsche Forschungsgemeinschaft (German Research Foundation)
- HO2402/18-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- FOR-2858 project numbers 403161218, 421887978 and 422188432 Deutsche Forschungsgemeinschaft (German Research Foundation)
- 19063p Alzheimer Forschung Initiative (Alzheimer Forschung Initiative e.V.)
- GUH was additionally funded by the German Federal Ministry of Education and Research (BMBF, 01KU1403A EpiPD; 01EK1605A HitTau; 01DH18025 TauTherapy); European Joint Programme on Rare Diseases (Improve-PSP); VolkswagenStiftung (Niedersächsisches Vorab); Petermax-Müller Foundation (Etiology and Therapy of Synucleinopathies and Tauopathies). The Lüneburg Heritage and Friedrich-Baur-Stiftung have supported the work of CP. The Hirnliga e.V. supported recruitment and imaging of the ActiGliA cohort (Manfred-Strohscheer-Stiftung) by a grant to BSR and MB.
- TG received consulting fees from AbbVie, Alector, Anavex, Biogen, Eli Lilly, Functional Neuromodulation, Grifols, Iqvia, Noselab, Novo Nordisk, NuiCare, Orphanzyme, Roche Diagnostics, Roche Pharma, UCB, and Vivoryon; lecture fees from Grifols, Medical Tribune, Novo Nordisk, Roche Pharma, and Schwabe; and has received grants to his institution from Roche Diagnostics.
- CH collaborates with Denali Therapeutics. CH is chief advisor of ISAR Bioscience and a member of the advisory board of AviadoBio.
- Günter Höglinger participated in industry-sponsored research projects from Abbvie, Biogen, Biohaven, Novartis, Roche, Sanofi, UCB; serves as a consultant for Abbvie, Alzprotect, Aprineua, Asceneuron, Bial, Biogen, Biohaven, Kyowa Kirin, Lundbeck, Novartis, Retrotope, Roche, Sanofi, UCB; received honoraria for scientific presentations from Abbvie, Bayer Vital, Bial, Biogen, Bristol Myers Squibb, Kyowa Kirin, Roche, Teva, UCB, Zambon; holds a patent on Treatment of Synucleinopathies. United States Patent No.: US 10,918,628 B2: EP 17 787 904.6-1109 / 3 525 788; received publication royalties from Academic Press, Kohlhammer, and Thieme.
Collapse
Affiliation(s)
- Anika Finze
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Carla Palleis
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Endy Weidinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Schuster
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Harris
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Schmitt
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, University Hospital, Inselspital Bern, Bern, Switzerland
| | - Adrian Danek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maia Tato
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Utecht
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena-Katharina Trappmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Jan Haeckert
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | | | | | - Daniel Keeser
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Olaf Dietrich
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Christian Haass
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Johannes Levin
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
- Sheffield Institute for Translational Neurosciences (SITraN), University of Sheffield, Sheffield, UK
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
11
|
Zhao Y, Guo Q, Zhang Y, Zheng J, Yang Y, Du X, Feng H, Zhang S. Application of Deep Learning for Prediction of Alzheimer's Disease in PET/MR Imaging. Bioengineering (Basel) 2023; 10:1120. [PMID: 37892850 PMCID: PMC10604050 DOI: 10.3390/bioengineering10101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide. Positron emission tomography/magnetic resonance (PET/MR) imaging is a promising technique that combines the advantages of PET and MR to provide both functional and structural information of the brain. Deep learning (DL) is a subfield of machine learning (ML) and artificial intelligence (AI) that focuses on developing algorithms and models inspired by the structure and function of the human brain's neural networks. DL has been applied to various aspects of PET/MR imaging in AD, such as image segmentation, image reconstruction, diagnosis and prediction, and visualization of pathological features. In this review, we introduce the basic concepts and types of DL algorithms, such as feed forward neural networks, convolutional neural networks, recurrent neural networks, and autoencoders. We then summarize the current applications and challenges of DL in PET/MR imaging in AD, and discuss the future directions and opportunities for automated diagnosis, predictions of models, and personalized medicine. We conclude that DL has great potential to improve the quality and efficiency of PET/MR imaging in AD, and to provide new insights into the pathophysiology and treatment of this devastating disease.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Information Center, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Qianrui Guo
- Department of Nuclear Medicine, Beijing Cancer Hospital, Beijing 100142, China;
| | - Yukun Zhang
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Jia Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing 100094, China
| | - Xuemei Du
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Hongbo Feng
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Shuo Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| |
Collapse
|
12
|
Li J, Kumar A, Långström B, Nordberg A, Ågren H. Insight into the Binding of First- and Second-Generation PET Tracers to 4R and 3R/4R Tau Protofibrils. ACS Chem Neurosci 2023; 14:3528-3539. [PMID: 37639522 PMCID: PMC10515481 DOI: 10.1021/acschemneuro.3c00437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Primary supranuclear palsy (PSP) is a rare neurodegenerative disease that perturbs body movement, eye movement, and walking balance. Similar to Alzheimer's disease (AD), the abnormal aggregation of tau fibrils in the central neuronal and glial cells is a major hallmark of PSP disease. In this study, we use multiple approaches, including docking, molecular dynamics, and metadynamics simulations, to investigate the binding mechanism of 10 first- and second-generations of PET tracers for PSP tau and compare their binding in cortical basal degeneration (CBD) and AD tauopathies. Structure-activity relationships, binding preferences, the nature of ligand binding in terms of basic intermolecular interactions, the role of polar/charged residues, induced-fit mechanisms, grove closures, and folding patterns for the binding of these tracers in PSP, CBD, and AD tau fibrils are evaluated and discussed in detail in order to build a holistic picture of what is essential for the binding and also to rank the potency of the different tracers. For example, we found that the same tracer shows different binding preferences for the surface sites of tau fibrils that are intrinsically distinct in the folding patterns. Results from the metadynamics simulations predict that PMPBB3 and PBB3 exhibit the strongest binding free energies onto the Q276[I277]I278, Q351[S352]K353, and N368[K369]K370 sites of PSP than the other explored tracers, indicating a solid preference for vdW and cation-π interactions. Our results also reproduced known preferences of tracers, namely, that MK6240 binds better to AD tau than CBD tau and PSP tau and that CBD2115, PI2620, and PMPBB3 are 4R tau binders. These findings fill in the well-sought-after knowledge gap in terms of these tracers' potential binding mechanisms and will be important for the design of highly selective novel PET tracers for tauopathies.
Collapse
Affiliation(s)
- Junhao Li
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Amit Kumar
- Department
of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Neo, 141 84 Stockholm, Sweden
| | - Bengt Långström
- Department
of Chemistry - BMC, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Agneta Nordberg
- Department
of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Neo, 141 84 Stockholm, Sweden
- Theme
Inflammation and Aging, Karolinska University
Hospital, S-141 86 Stockholm, Sweden
| | - Hans Ågren
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
13
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Scheres SHW, Ryskeldi-Falcon B, Goedert M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 2023; 621:701-710. [PMID: 37758888 DOI: 10.1038/s41586-023-06437-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/14/2023] [Indexed: 09/29/2023]
Abstract
Abnormal assembly of tau, α-synuclein, TDP-43 and amyloid-β proteins into amyloid filaments defines most human neurodegenerative diseases. Genetics provides a direct link between filament formation and the causes of disease. Developments in cryo-electron microscopy (cryo-EM) have made it possible to determine the atomic structures of amyloids from postmortem human brains. Here we review the structures of brain-derived amyloid filaments that have been determined so far and discuss their impact on research into neurodegeneration. Whereas a given protein can adopt many different filament structures, specific amyloid folds define distinct diseases. Amyloid structures thus provide a description of neuropathology at the atomic level and a basis for studying disease. Future research should focus on model systems that replicate the structures observed in disease to better understand the molecular mechanisms of disease and develop improved diagnostics and therapies.
Collapse
Affiliation(s)
- Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
15
|
Walton-Raaby M, Woods R, Kalyaanamoorthy S. Investigating the Theranostic Potential of Graphene Quantum Dots in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119476. [PMID: 37298426 DOI: 10.3390/ijms24119476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is one of the leading causes of death worldwide, with no definitive diagnosis or known cure. The aggregation of Tau protein into neurofibrillary tangles (NFTs), which contain straight filaments (SFs) and paired helical filaments (PHFs), is a major hallmark of AD. Graphene quantum dots (GQDs) are a type of nanomaterial that combat many of the small-molecule therapeutic challenges in AD and have shown promise in similar pathologies. In this study, two sizes of GQDs, GQD7 and GQD28, were docked to various forms of Tau monomers, SFs, and PHFs. From the favorable docked poses, we simulated each system for at least 300 ns and calculated the free energies of binding. We observed a clear preference for GQD28 in the PHF6 (306VQIVYK311) pathological hexapeptide region of monomeric Tau, while GQD7 targeted both the PHF6 and PHF6* (275VQIINK280) pathological hexapeptide regions. In SFs, GQD28 had a high affinity for a binding site that is available in AD but not in other common tauopathies, while GQD7 behaved promiscuously. In PHFs, GQD28 interacted strongly near the protofibril interface at the putative disaggregation site for epigallocatechin-3-gallate, and GQD7 largely interacted with PHF6. Our analyses revealed several key GQD binding sites that may be used for detecting, preventing, and disassembling the Tau aggregates in AD.
Collapse
Affiliation(s)
- Max Walton-Raaby
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Riley Woods
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | |
Collapse
|
16
|
Conte M, De Feo MS, Sidrak MMA, Corica F, Gorica J, Granese GM, Filippi L, De Vincentis G, Frantellizzi V. Imaging of Tauopathies with PET Ligands: State of the Art and Future Outlook. Diagnostics (Basel) 2023; 13:diagnostics13101682. [PMID: 37238166 DOI: 10.3390/diagnostics13101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Tauopathies are a group of diseases characterized by the deposition of abnormal tau protein. They are distinguished into 3R, 4R, and 3R/4R tauopathies and also include Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Positron emission tomography (PET) imaging represents a pivotal instrument to guide clinicians. This systematic review aims to summarize the current and novel PET tracers. (2) Methods: Literature research was conducted on Pubmed, Scopus, Medline, Central, and the Web of Science using the query "pet ligands" and "tauopathies". Articles published from January 2018 to 9 February, 2023, were searched. Only studies on the development of novel PET radiotracers for imaging in tauopathies or comparative studies between existing PET tracers were included. (3) Results: A total of 126 articles were found, as follows: 96 were identified from PubMed, 27 from Scopus, one on Central, two on Medline, and zero on the Web of Science. Twenty-four duplicated works were excluded, and 63 articles did not satisfy the inclusion criteria. The remaining 40 articles were included for quality assessment. (4) Conclusions: PET imaging represents a valid instrument capable of helping clinicians in diagnosis, but it is not always perfect in differential diagnosis, even if further investigations on humans for novel promising ligands are needed.
Collapse
Affiliation(s)
- Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Marko Magdi Abdou Sidrak
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Ferdinando Corica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Joana Gorica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Giorgia Maria Granese
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, 00410 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
17
|
Hsieh CJ, Giannakoulias S, Petersson EJ, Mach RH. Computational Chemistry for the Identification of Lead Compounds for Radiotracer Development. Pharmaceuticals (Basel) 2023; 16:317. [PMID: 37259459 PMCID: PMC9964981 DOI: 10.3390/ph16020317] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 11/19/2023] Open
Abstract
The use of computer-aided drug design (CADD) for the identification of lead compounds in radiotracer development is steadily increasing. Traditional CADD methods, such as structure-based and ligand-based virtual screening and optimization, have been successfully utilized in many drug discovery programs and are highlighted throughout this review. First, we discuss the use of virtual screening for hit identification at the beginning of drug discovery programs. This is followed by an analysis of how the hits derived from virtual screening can be filtered and culled to highly probable candidates to test in in vitro assays. We then illustrate how CADD can be used to optimize the potency of experimentally validated hit compounds from virtual screening for use in positron emission tomography (PET). Finally, we conclude with a survey of the newest techniques in CADD employing machine learning (ML).
Collapse
Affiliation(s)
- Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|