1
|
Ambamba BDA, Paka GD, Takuissu GRN, Nongni QCP, Ntepe LJM, Ella FA, Mandob DE, Fonkoua M, Ngondi JL. Glycosyl terpenoid-rich fraction of TeMac™ attenuates oxidative stress, inhibits cholinesterases enzyme activities, and protects brain against scopolamine-induced histopathological alterations in rats. Biomed Pharmacother 2025; 186:118010. [PMID: 40168720 DOI: 10.1016/j.biopha.2025.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most commonly diagnosed form of senile dementia, with limited therapeutic options. Neuronal damage is caused by factors secreted by inflammatory cells but also, the lack of antioxidants to prevent oxidative stress and help maintain neuronal integrity, which is crucial for cognition and memory are mediators of AD. Terminalia macroptera barks contain glycosyl terpenoids, known for their strong antioxidant properties. This study investigated the antioxidant and neuroprotective effects of the glycosylic terpenoid-rich fraction of Terminalia macroptera (GT-TeMac™) in scopolamine-treated rats. METHODS Glycosylic terpenoids were identified by LC-MS and antiradical activity tests (DPPH and ORAC) were performed. Cholinergic cognitive dysfunction and oxidative stress were induced in male wistar rats, by intraperitoneal injection of scopolamine (1 mg/kg BW/day) for seven consecutive days. GT-TeMac™ at 100 mg/kg and Donepezil at 5 mg/kg body weight were administered orally 60 min after scopolamine. After treatment, rat were sacrificed and brains were collected for the evaluation of cholinergic enzyme activity, oxidative stress markers and histopathological analysis. In vitro study was carried out to assess the ability of GT-TeMac™ to scavenge free radicals and suppress H2O2-induced ROS production in SK-N-SH cells. In addition, the ability of GT-TeMac™ to restore cell viability reduced by acrolein was performed. RESULTS Chebuloside II, Sericoside, 24-deoxysericoside, arjunglucoside 1 and 23-galloylarjunolic acid 28-O-glucopyranosylester were identified by LC-MS. GT-TeMac™ has a SC50 of 9.54 μg/mL and an ORAC value of 1130 µM Trolox equivalent per mg of GT-TeMac™. The administration of GT-TeMac™ protected against cognitive decline in AD by inhibiting cholinesterase metabolism, modulating oxidative stress parameters and protecting hippocampal areas. Additionally, GT-TeMac™ absorbed and eliminated ROS produced by hydrogen peroxide in SKNSH cells and restored cell viability reduced by acrolein. CONCLUSION These findings suggest that the active ingredients in GT-TeMac™ are promising drug candidates for the treatment of cognitive disorders associated with oxidative stress in AD.
Collapse
Affiliation(s)
- Bruno Dupon Akamba Ambamba
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon; Center of Nutrition and Functional Foods, Yaounde 8024, Cameroon
| | - Ghislain Djiokeng Paka
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Guy Roussel Nguemto Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plant Studies, Yaounde 13033, Cameroon
| | | | - Leonel Javeres Mbah Ntepe
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plant Studies, Yaounde 13033, Cameroon
| | - Fils Armand Ella
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon; Center of Nutrition and Functional Foods, Yaounde 8024, Cameroon
| | - Damaris Enyegue Mandob
- Center of Nutrition and Functional Foods, Yaounde 8024, Cameroon; Department of Biological Sciences, Higher Teacher's Training College, University of Yaounde 1, P.O. Box 47, Yaounde, Cameroon
| | - Martin Fonkoua
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Judith Laure Ngondi
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon; Center of Nutrition and Functional Foods, Yaounde 8024, Cameroon.
| |
Collapse
|
2
|
Ghannam IAY, Hassan RM, Abdel-Maksoud MS. Peroxisome proliferator-activated receptors (PPARs) agonists as promising neurotherapeutics. Bioorg Chem 2025; 156:108226. [PMID: 39908735 DOI: 10.1016/j.bioorg.2025.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Neurodegenerative disorders are characterized by a continuous neurons loss resulting in a wide range of pathogenesis affecting the motor impairment. Several strategies are outlined for therapeutics of synthetic and natural PPARs agonists in some neurological disorders; Parkinson's disease (PD), Alzheimer's disease (AD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The aim of this review is to provide a recent update of the previously reported studies, and reviews dealing with the medicinal chemistry of PPARs and their agonists, and to highlight the outstanding advances in the development of both synthetic compounds including; PPARα agonists (fibrates), PPARγ agonists (thiazolidindiones), and PPARβ/δ agonists either as sole or dual acting PPAR full or pan agonists, in addition to the natural phytochemicals; acids, cannabinoids, and flavonoids for their different neuroprotection effects in the previously mentioned neurodegenerative disorders (PD, AD, MS, ALS, and HD). Moreover, this review reports the diverse pre-clinical and clinical studies of PPARs agonists in the neurodegenerative diseases via cellular, and animal models and human.
Collapse
Affiliation(s)
- Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
3
|
Li M, Ma C, Li Y, Wang H, Xiu X, Zhao X, Liu P, Yang H, Cheng M. Design, synthesis and biological evaluation of galantamine analogues for cognitive improvement in Alzheimer's disease. Eur J Med Chem 2025; 284:117198. [PMID: 39733484 DOI: 10.1016/j.ejmech.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
Galantamine plays a crucial role in the management of brain disorders. In this study, a series of galantamine analogues were designed, synthesized and evaluated as potential therapeutic agents for Alzheimer's disease (AD). Compound C2, a dual inhibitor of cholinesterase, was obtained by introducing a benzylpyridine ring to the hydroxyl group of galantamine. Compared to galantamine (hAChE, IC50 = 1529 ± 6 nM), C2 exhibited excellent inhibitory activities against hAChE (IC50 = 513.90 ± 9.60 nM) and hBuChE (IC50 = 357.77 ± 10.24 nM). Further studies revealed that C2 possessed significant abilities to protect PC12 cells from H2O2-induced apoptosis and reactive oxygen species (ROS) production. The acute toxicity test in vivo indicated that C2 exhibited a remarkable safety profile. Whether in the acute memory impairment induced by the Aβ1-42 model or in the amnesia induced by the scopolamine model, oral administration of C2 demonstrated superior improvement on cognition and spatial memory. In summary, both in vitro and in vivo results suggest that C2 deserves to be further explored as an anti-AD agent.
Collapse
Affiliation(s)
- Mengzhen Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Yao Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Xiaomeng Xiu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Xueqi Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China.
| |
Collapse
|
4
|
Jagielska A, Sałaciak K, Pytka K. Beyond the blur: Scopolamine's utility and limits in modeling cognitive disorders across sexes - Narrative review. Ageing Res Rev 2025; 104:102635. [PMID: 39653154 DOI: 10.1016/j.arr.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
Scopolamine, widely regarded as the gold standard in preclinical studies of memory impairments, acts as a non-selective antagonist of central and peripheral muscarinic receptors. While its application in modeling dementia primarily involves antagonism at the M1 receptor, its non-selective peripheral actions may introduce adverse effects that influence behavioral test outcomes. This review analyzes preclinical findings to consolidate knowledge on scopolamine's use and elucidate potential mechanisms responsible for its amnestic effects. We focused on recognition, spatial, and emotional memory processes, alongside executive functions such as attention, cognitive flexibility, and working memory. The cognitive effects of scopolamine are highly dose-dependent, influenced by factors such as species, age, and sex of subjects. Notably, scopolamine rapidly induces observable memory impairments across species, from fish to rodents and primates, often with deficits that can persist for days. However, the compound's broad action on muscarinic receptors and its peripheral side effects, including pupil dilation and reduced salivation, complicates result interpretation, particularly in tasks requiring visual discrimination or food intake. The review also highlights scopolamine's translational value in modeling dementia and Alzheimer's disease, emphasizing the importance of considering individual factors and task-specific designs. Despite its widespread use, scopolamine's limited specificity for cholinergic dysfunction and inability to fully mimic the complex pathophysiology of cognitive disorders like Alzheimer's and Parkinson's disease point to the need for complementary models. This review aims to guide researchers in using scopolamine for modeling cognitive impairments, ensuring attention to factors impacting experimental outcomes.
Collapse
Affiliation(s)
- Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
5
|
Jakkamsetti MS, Kolusu AS, Rongala S, Arakareddy BP, Nori LP, Samudrala PK. Saroglitazar, a PPAR α/γ agonist alleviates 3-Nitropropionic acid induced neurotoxicity in rats: Unveiling the underlying mechanisms. Neurotoxicology 2024; 105:131-146. [PMID: 39326639 DOI: 10.1016/j.neuro.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Saroglitazar (SGZ), a peroxisomal proliferated activated receptor α/γ agonist showed neuroprotective effects in various neurodegenerative disorders like Alzheimer's and Parkinson's. However, no studies were performed on Huntington's, so the goal of the current study is to examine the effect of SGZ on Huntington's disease like symptoms induced by 3-Nitropropionic acid. In this protocol, twenty-four rats were divided into four groups, each group consisting of 6 animals. Group 1: The control group received 1 % CMC 10 mg/kg, p.o. for 14 days. Groups 2, 3, and 4 received 3-NP 15 mg/kg, i.p. from Day 1 to Day 7. Groups 3 and 4 received SGZ 5 mg/kg, p.o. and 10 mg/kg, p.o. respectively once daily from day 1 to day 14. Various behavioral tests like OFT, rotarod, hanging wire, narrow beam walk, MWM, and Y-maze were performed. On day-15, the animals were euthanised by cervical dislocation and brain sample were isolated for biochemical and histopathological analysis. Administration of 3-NP showed a significant decrease in motor coordination and cognitive function. Furthermore, 3-NP altered the activity of acetylcholinesterase, anti-oxidant enzymes, Nrf-2, NF-κB, BDNF, CREB levels, and histological features. However, treatment with SGZ showed ameliorative effects in the 3-NP induced neurotoxicity via PPAR α/γ pathway by reducing motor dysfunction, memory impairment, cholinesterase levels, oxidative stress, neuroinflammation. It also enhanced the levels of Nrf-2, BDNF, and CREB expression and improved histological features. In conclusion, treatment with Saroglitazar attenuated Huntington's disease-like symptoms in rats which are induced by 3-NP via activation of PPAR α/γ pathway.
Collapse
Affiliation(s)
- Madhuri Suma Jakkamsetti
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Aravinda Sai Kolusu
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Suma Rongala
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Bhanu Prakash Arakareddy
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Lakshmi Prashanthi Nori
- Department of Pharmaceutics, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India.
| |
Collapse
|
6
|
Li MJ, Xu JY, Zhang HY, Guo M, Lan MN, Kong J, Liu SW, Zheng HJ. A medicine and food homology formula prevents cognitive deficits by inhibiting neuroinflammation and oxidative stress via activating AEA-Trpv1-Nrf2 pathway. Inflammopharmacology 2024; 32:3745-3759. [PMID: 39305407 DOI: 10.1007/s10787-024-01570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 11/10/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder frequently accompanied by neuroinflammation and oxidative stress. The medicine and food homology (MFH) has shown potential for treating neuroinflammation and oxidative stress. This study aimed to provide a safe and efficient therapy for AD based on MFH. In this study, we develop a MFH formula consisting of egg yolk oil, perilla seed oil, raphani seed oil, cinnamon oil, and noni puree (EPRCN). To evaluate the ameliorative effects of EPRCN on AD-related symptoms, a mouse model of AD was constructed using intraperitoneal injection of scopolamine in ICR mice. Experimental results demonstrated that EPRCN supplement restored behavioral deficits and suppressed neuroinflammation and oxidative stress in the hippocampus of scopolamine-induced mice. An in vitro study was then performed using induction of Aβ(25-35) in glial (BV-2 and SW-1783) and neuron (SH-SY5Y) cell lines to examine the improvement mechanism of EPRCN on cognitive deficits. Multi-omics and in vitro studies demonstrated that these changes were driven by the anandamide (AEA)-Trpv1-Nrf2 pathway, which was inhibited by AM404 (an AEA inhibitor), AMG9810 (a Trpv1 inhibitor), and BT (an Nrf2 inhibitor). Consequently, EPRCN is an effective therapy on preventing cognitive deficits in mouse models of AD. In contrast to donepezil, EPRCN exhibits a novel modes action for ameliorating neuroinflammation. The mechanism of EPRCN on preventing cognitive deficits is mediated by improving neuroinflammation and oxidative stress via activating the AEA-Trpv1-Nrf2 pathway.
Collapse
Affiliation(s)
- Ming-Jie Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing-Yi Xu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 117004, China
| | - Hua-Yue Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Meng-Ning Lan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jie Kong
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Shi-Wei Liu
- Shanghai Xizuo Biotechnology Co., Ltd, Shanghai, 201107, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| |
Collapse
|
7
|
Li X, Zheng K, Chen H, Li W. Ginsenoside Re Regulates Oxidative Stress through the PI3K/Akt/Nrf2 Signaling Pathway in Mice with Scopolamine-Induced Memory Impairments. Curr Issues Mol Biol 2024; 46:11359-11374. [PMID: 39451557 PMCID: PMC11506191 DOI: 10.3390/cimb46100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
While Ginsenoside Re has been shown to protect the central nervous system, reports of its effects on memory in the model of scopolamine-induced memory impairment are rare. The aim of this study was to investigate the effects of Ginsenoside Re on scopolamine (SCOP)-induced memory damage and the mechanism of action. Male ICR mice were treated with SCOP (3 mg/kg) for 7 days and with or without Ginsenoside Re for 14 days. As evidenced by behavioral studies (escape latency and cross platform position), brain tissue morphology, and oxidative stress indicators after Ginsenoside Re treatment, the memory damage caused by SCOP was significantly ameliorated. Further mechanism research indicated that Ginsenoside Re inhibited cell apoptosis by regulating the PI3K/Akt/Nrf2 pathway, thereby exerting a cognitive impairment improvement effect. This research suggests that Ginsenoside Re could protect against SCOP-induced memory defects possibly through inhibiting oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Xin Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | | | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Ma R, Feng XY, Tang JJ, Ha W, Shi YP. 5α-Epoxyalantolactone from Inula macrophylla attenuates cognitive deficits in scopolamine-induced Alzheimer's disease mice model. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:39. [PMID: 38954263 PMCID: PMC11219692 DOI: 10.1007/s13659-024-00462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition. 5α-epoxyalantolactone (5α-EAL), a eudesmane-type sesquiterpene isolated from the herb of Inula macrophylla, has various pharmacological effects. This work supposed to investigate the improved impact of 5α-EAL on cognitive impairment. 5α-EAL inhibited the generation of nitric oxide (NO) in BV-2 cells stimulated with lipopolysaccharide (LPS) with an EC50 of 6.2 μM. 5α-EAL significantly reduced the production of prostaglandin E2 (PGE2) and tumor necrosis factor-α (TNF-α), while also inhibiting the production of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proteins. The ability of 5α-EAL to penetrate the blood-brain barrier (BBB) was confirmed via a parallel artificial membrane permeation assay. Scopolamine (SCOP)-induced AD mice model was employed to assess the improved impacts of 5α-EAL on cognitive impairment in vivo. After the mice were pretreated with 5α-EAL (10 and 30 mg/kg per day, i.p.) for 21 days, the behavioral experiments indicated that the administration of the 5α-EAL could alleviate the cognitive and memory impairments. 5α-EAL significantly reduced the AChE activity in the brain of SCOP-induced AD mice. In summary, these findings highlight the beneficial effects of the natural product 5α-EAL as a potential bioactive compound for attenuating cognitive deficits in AD due to its pharmacological profile.
Collapse
Affiliation(s)
- Rui Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China
| | - Xu-Yao Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
9
|
Li Y, Zhang Y, Wang Q, Wu C, Du G, Zeng Y, Song Z, Jiang X, Jiang X, Zhuo R, Li J. Propane-2-sulfonic acid octadec-9-enyl-amide, a novel PPARα/γ dual agonist, attenuates molecular pathological alterations in learning memory in AD mice. Neurol Res 2024; 46:416-425. [PMID: 38577889 DOI: 10.1080/01616412.2024.2325313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE Previous studies have revealed that Propane-2-sulfonic acid octadec-9-enyl-amide(N15) exerts a protective role in the inflammatory response after ischemic stroke and in neuronal damage. However, little is known about N15 in Alzheimer's disease (AD). The aim of this study was to investigate the effects of N15 on AD and explore the underlying molecular mechanism. METHODS AD mice model was established by lateral ventricular injection with Aβ25-35. N15 was daily intraperitoneal administered for 28 days. Morris Water Maze was used to evaluate the neurocognitive function of the mice. The expression of PPARα/γ, brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT3), ADAM10, PS1 and BACE1 were measured by qPCR. Aβ amyloid in the hippocampus was measured by Congo red assay. Toluidine blue staining was used to detect the neuronal apoptosis. Protein levels of ADAM10, PS1 and BACE1 were determined using immunoblotting. RESULTS N15 treatment significantly reduced neurocognitive dysfunction, which also significantly activated the expression of PPARα/γ at an optimal dose of 200 mg/kg. Administration of N15 alleviated the formation of Aβ amyloid in the hippocampus of AD mice, enhanced the BDNF mRNA expression, decreased the mRNA and protein levels of PS1 and BACE1, upregulated ADAM10 mRNA and protein levels. CONCLUSION N15 exerts its neuroprotective effects through the activation of PPARα/γ and may be a potential drug for the treatment of AD.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Yanan Zhang
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Qing Wang
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Chuang Wu
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Guicheng Du
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Ying Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Zhengmao Song
- The Department of Neurosurgery, The Fifth Hospital of Xiamen, Xiamen, China
| | - Xing Jiang
- The Department of Neurosurgery, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Xun Jiang
- School of Medicine, Xiamen University, Xiamen, China
| | - Rengong Zhuo
- School of Medicine, Xiamen University, Xiamen, China
| | - Jingwen Li
- The Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang Province, China
| |
Collapse
|
10
|
Liu Y, Ma C, Li Y, Li M, Cui T, Zhao X, Li Z, Jia H, Wang H, Xiu X, Hu D, Zhang R, Wang N, Liu P, Yang H, Cheng M. Design, synthesis and biological evaluation of carbamate derivatives incorporating multifunctional carrier scaffolds as pseudo-irreversible cholinesterase inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2024; 265:116071. [PMID: 38157596 DOI: 10.1016/j.ejmech.2023.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
In this study, a series of carbamate derivatives incorporating multifunctional carrier scaffolds were designed, synthesized, and evaluated as potential therapeutic agents for Alzheimer's disease (AD). We used tacrine to modify the aliphatic substituent, and employed rivastigmine, indole and sibiriline fragments as carrier scaffolds. The majority of compounds exhibited good inhibitory activity for cholinesterase. Notably, compound C7 with sibiriline fragment exhibited potent inhibitory activities against human acetylcholinesterase (hAChE, IC50 = 30.35 ± 2.07 nM) and human butyrylcholinesterase (hBuChE, IC50 = 48.03 ± 6.41 nM) with minimal neurotoxicity. Further investigations have demonstrated that C7 exhibited a remarkable capacity to safeguard PC12 cells against H2O2-induced apoptosis and effectively suppressed the production of reactive oxygen species (ROS). Moreover, in an inflammation model of BV2 cells induced by lipopolysaccharide (LPS), C7 effectively attenuated the levels of pro-inflammatory cytokines. After 12 h of dialysis, C7 continued to exhibit an inhibitory effect on cholinesterase activity. An acute toxicity test in vivo demonstrated that C7 exhibited a superior safety profile and no hepatotoxicity compared to the parent nucleus tacrine. In the scopolamine-induced AD mouse model, C7 (20 mg/kg) significantly reduced cholinesterase activity in the brain of the mice. C7 was tested in a pharmacological AD mouse model induced by Aβ1-42 and attenuated memory deficits at doses as low as 5 mg/kg. The pseudo-irreversible cholinesterase inhibitory properties and multifunctional therapeutic attributes of C7 render it a promising candidate for further investigation in the treatment of AD.
Collapse
Affiliation(s)
- Yaoyang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Yingbo Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Mengzhen Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Tao Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xueqi Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Zhenli Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Hongwei Jia
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Xiaomeng Xiu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Dexiang Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Ruiwen Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Ningwei Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China.
| |
Collapse
|