1
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Selenoproteins: Zoom-In to Their Metal-Binding Properties in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:1305. [PMID: 39941073 PMCID: PMC11818150 DOI: 10.3390/ijms26031305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Selenoproteins contain selenium (Se), which is included in the 21st proteinogenic amino acid selenocysteine (Sec). Selenium (Se) is an essential trace element that exerts its biological actions mainly through selenoproteins. Selenoproteins have crucial roles in maintaining healthy brain activity. At the same time, brain-function-associated selenoproteins may also be involved in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The selenoproteins GPx4 (glutathione peroxidase 4), GPx1 (glutathione peroxidase 1), SELENOP (selenoprotein P), SELENOK (selenoprotein K), SELENOS (selenoprotein S), SELENOW (selenoprotein W), and SELENOT (selenoprotein T) are highly expressed, specifically in AD-related brain regions being closely correlated to brain function. Only a few selenoproteins, mentioned above (especially SELENOP), can bind transition and heavy metals. Metal ion homeostasis accomplishes the vital physiological function of the brain. Dyshomeostasis of these metals induces and entertains neurodegenerative diseases. In this review, we described some of the proposed and established mechanisms underlying the actions and properties of the above-mentioned selenoproteins having the characteristic feature of binding transition or heavy metals.
Collapse
Affiliation(s)
| | | | - Carmen Beatrice Dogaru
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (C.M.); (I.S.)
| | | |
Collapse
|
3
|
Islam T, Hill E, Abrahamson EE, Servaes S, Smirnov DS, Zeng X, Sehrawat A, Chen Y, Kac PR, Kvartsberg H, Olsson M, Sjons E, Gonzalez-Ortiz F, Therriault J, Tissot C, Del Popolo I, Rahmouni N, Richardson A, Mitchell V, Zetterberg H, Pascoal TA, Lashley T, Wall MJ, Galasko D, Rosa-Neto P, Ikonomovic MD, Blennow K, Karikari TK. Phospho-tau serine-262 and serine-356 as biomarkers of pre-tangle soluble tau assemblies in Alzheimer's disease. Nat Med 2025; 31:574-588. [PMID: 39930142 PMCID: PMC11835754 DOI: 10.1038/s41591-024-03400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/02/2024] [Indexed: 02/20/2025]
Abstract
Patients with Alzheimer's disease (AD) with little or no quantifiable insoluble brain tau neurofibrillary tangle (NFT) pathology demonstrate stronger clinical benefits of therapies than those with advanced NFTs. The formation of NFTs can be prevented by targeting the intermediate soluble tau assemblies (STAs). However, biochemical understanding and biomarkers of STAs are lacking. We show that Tris-buffered saline-soluble tau aggregates from autopsy-verified AD brain tissues include the core sequence ~tau258-368. In neuropathological assessments, antibodies against the phosphorylation sites serine-262 and serine-356 within the STA core almost exclusively stained granular (that is, prefibrillar) tau aggregates in pre-NFTs while antibodies against phosphorylation at serine-202 and threonine-205 and threonine-231, outside the STA core, stained the entire spectrum of tau aggregates in pre-NFTs and mature NFTs, dystrophic neurites and neuropil threads in the hippocampus. Functionally, a recombinantly produced STA core peptide robustly altered neuronal excitability and synaptic transmission in mouse hippocampal brain slices. Furthermore, we developed a cerebrospinal fluid assay that differentiated STAs in AD from non-AD tauopathies, correlated with the severity of NFT burden and cognitive decline independently of amyloid beta deposition, and with tau positron emission tomography uptake across Braak NFT stages. Together, our findings inform about the status of early-stage tau aggregation, reveal aggregation-relevant phosphorylation epitopes in tau and offer a diagnostic biomarker and targeted therapeutic opportunities for AD.
Collapse
Grants
- R01 AG075336 NIA NIH HHS
- R01 AG083874 NIA NIH HHS
- R01 AG072641 NIA NIH HHS
- P30 AG062429 NIA NIH HHS
- AARF-21-850325 Alzheimer's Association
- P01AG14449 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P01 AG014449 NIA NIH HHS
- P50 AG005133 NIA NIH HHS
- RF1 AG025516 NIA NIH HHS
- P30 AG066468 NIA NIH HHS
- R01 AG073267 NIA NIH HHS
- P01 AG025204 NIA NIH HHS
- R01AG083874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R37 AG023651 NIA NIH HHS
- U24 AG082930 NIA NIH HHS
- 2021-03244 Vetenskapsrådet (Swedish Research Council)
- P01AG025204 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P30AG066468 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1 AG052525 NIA NIH HHS
- R01 AG053952 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- ELH is supported by a Race Against Dementia Fellowship (funded by the Barbara Naylor Foundation)
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2022-01018 and #2019-02397), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and the UK Dementia Research Institute at UCL (UKDRI-1003)
Collapse
Affiliation(s)
- Tohidul Islam
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Emily Hill
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Eric E Abrahamson
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Denis S Smirnov
- Shiley-Marcos Alzheimer's Disease Research Center, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
- Pathology Residency Program, Mass General and Brigham and Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | - Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijun Chen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Emma Sjons
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | | | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology UCL, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tharick A Pascoal
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Douglas Galasko
- Shiley-Marcos Alzheimer's Disease Research Center, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Milos D Ikonomovic
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Bai YZ, Zhang Y, Zhang SQ. New horizons for the role of selenium on cognitive function: advances and challenges. Metab Brain Dis 2024; 39:1255-1268. [PMID: 38963634 DOI: 10.1007/s11011-024-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Cognitive deficits associated with oxidative stress and the dysfunction of the central nervous system are present in some neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Selenium (Se), an essential microelement, exhibits cognition-associated functions through selenoproteins mainly owing to its antioxidant property. Due to the disproportionate distribution of Se in the soil, the amount of Se varies greatly in various foods, resulting in a large proportion of people with Se deficiency worldwide. Numerous cell and animal experiments demonstrate Se deficiency-induced cognitive deficits and Se supplementation-improved cognitive performances. However, human studies yield inconsistent results and the mechanism of Se in cognition still remains elusive, which hinder the further exploration of Se in human cognition. To address the urgent issue, the review summarizes Se-contained foods (plant-based foods, animal-based foods, and Se supplements), brain selenoproteins, mechanisms of Se in cognition (improvement of synaptic plasticity, regulation of Zn2+ level, inhibition of ferroptosis, modulation of autophagy and de novo synthesis of L-serine), and effects of Se on cognitive deficits, as well as consequently sheds light on great potentials of Se in the prevention and treatment of cognitive deficits.
Collapse
Affiliation(s)
- Ya-Zhi Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Yongming Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 East Yinghua Road, Beijing, 100029, China
- National Center for Respiratory Diseases, Beijing, 100029, China
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
5
|
Ren B, Situ J, Huang X, Tan Q, Xiao S, Li N, Tian J, Du X, Ni J, Liu Q. Selenoprotein W modulates tau homeostasis in an Alzheimer's disease mouse model. Commun Biol 2024; 7:872. [PMID: 39020075 PMCID: PMC11255228 DOI: 10.1038/s42003-024-06572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Lower selenium levels are observed in Alzheimer's disease (AD) brains, while supplementation shows multiple benefits. Selenoprotein W (SELENOW) is sensitive to selenium changes and binds to tau, reducing tau accumulation. However, whether restoration of SELENOW has any protective effect in AD models and its underlying mechanism remain unknown. Here, we confirm the association between SELENOW downregulation and tau pathology, revealing SELENOW's role in promoting tau degradation through the ubiquitin‒proteasome system. SELENOW competes with Hsp70 to interact with tau, promoting its ubiquitination and inhibiting tau acetylation at K281. SELENOW deficiency leads to synaptic defects, tau dysregulation and impaired long-term potentiation, resulting in memory deficits in mice. Conversely, SELENOW overexpression in the triple transgenic AD mice ameliorates memory impairment and tau-related pathologies, featuring decreased 4-repeat tau isoform, phosphorylation at Ser396 and Ser404, neurofibrillary tangles and neuroinflammation. Thus, SELENOW contributes to the regulation of tau homeostasis and synaptic maintenance, implicating its potential role in AD.
Collapse
Affiliation(s)
- Bingyu Ren
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong, 510630, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jiaxin Situ
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xuelian Huang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Qiulong Tan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
6
|
Ashrafi-Kooshk MR, Norouzi F, Zare Karizak A, Ahmadian S, Moosavi-Movahedi AA, Riazi G. Crosstalk between tau protein autoproteolysis and amyloid fibril formation. Int J Biol Macromol 2024; 262:129953. [PMID: 38325678 DOI: 10.1016/j.ijbiomac.2024.129953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Tau cleavage has been shown to have a significant effect on protein aggregation. Tau truncation results in the formation of aggregation-prone fragments leading to toxic aggregates and also causes the formation of harmful fragments that do not aggregate. Thus, targeting proteolysis of tau would be beneficial for the development of therapeutics for Alzheimer's disease and related tauopathies. In this study, amino-terminal quantification and ThT fluorimetry were respectively used to analyze the kinetics of tau fragmentation and fibril formation. SDS-PAGE analysis of tau protein incubated with a disulfide-reducing agent demonstrated that the cysteines of tau have a crucial role in the fibrillation and autoproteolysis. However, the structures converted to amyloid fibrils were different with conformations that led to autoproteolysis. The quantification of the amino terminal indicated that the double-disulfide parallel structures formed in the presence of heparin did not have protease activity. The survey of possible tau disulfide-mediated dimer configurations suggested that the non-register single disulfide bound conformations were involved in the tau autoproteolysis process. Moreover, the inhibition of autoproteolysis resulted in the increment of aggregation rate; hence it seems that the tau auto-cleavage is the cellular defense mechanism against protein fibrillation.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Ashkan Zare Karizak
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Jerom JP, Madhukumar S, Nair RH, Narayanan SP. Anti-amyloid potential of some phytochemicals against Aβ-peptide and α-synuclein, tau, prion, and Huntingtin protein. Drug Discov Today 2023; 28:103802. [PMID: 37858630 DOI: 10.1016/j.drudis.2023.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Some molecules self-assemble to create complex structures through molecular self-assembly. Hydrogel preparation, tissue repair, and therapeutic drug delivery are a few applications of molecular self-assembly. However, the self-assembly of amino acids, peptides, and proteins forms amyloid fibrils, resulting in various disorders, most notably neurodegenerative ailments. Examples include the self-assembly of phenylalanine, which causes phenylketonuria; Aβ, which causes Alzheimer's disease; the tau protein, which causes both Alzheimer's and Parkinson's diseases; and α-synuclein, which causes Parkinson's illness. This review provides information related to phytochemicals of great significance that can prevent the formation of, or destabilize, amino acid, peptide, and protein self-assemblies.
Collapse
Affiliation(s)
| | - Sooryalekshmi Madhukumar
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Sunilkumar Puthenpurackal Narayanan
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| |
Collapse
|
8
|
Rani A, Saini V, Patra P, Prashar T, Pandey RK, Mishra A, Jha HC. Epigallocatechin Gallate: A Multifaceted Molecule for Neurological Disorders and Neurotropic Viral Infections. ACS Chem Neurosci 2023; 14:2968-2980. [PMID: 37590965 DOI: 10.1021/acschemneuro.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a polyphenolic moiety found in green tea extracts, exhibits pleiotropic bioactivities to combat many diseases including neurological ailments. These neurological diseases include Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. For instance, in the case of Alzheimer's disease, the formation of a β-sheet in the region of the 10th-21st amino acids was significantly reduced in EGCG-induced oligomeric samples of Aβ40. Its interference induces the formation of Aβ structures with an increase in intercenter-of-mass distances, reduction in interchain/intrachain contacts, reduction in β-sheet propensity, and increase in α-helix. Besides, numerous neurotropic viruses are known to instigate or aggravate neurological ailments. It exerts an effect on the oxidative damage caused in neurodegenerative disorders by acting on GSK3-β, PI3K/Akt, and downstream signaling pathways via caspase-3 and cytochrome-c. EGCG also diminishes these viral-mediated effects, such as EGCG delayed HSV-1 infection by blocking the entry for virions, inhibitory effects on NS3/4A protease or NS5B polymerase of HCV and potent inhibitor of ZIKV NS2B-NS3pro/NS3 serine protease (NS3-SP). It showed a reduction in the neurotoxic properties of HIV-gp120 and Tat in the presence of IFN-γ. EGCG also involves numerous viral-mediated inflammatory cascades, such as JAK/STAT. Nonetheless, it also inhibits the Epstein-Barr virus replication protein (Zta and Rta). Moreover, it also impedes certain viruses (influenza A and B strains) by hijacking the endosomal and lysosomal compartments. Therefore, the current article aims to describe the importance of EGCG in numerous neurological diseases and its inhibitory effect against neurotropic viruses.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Vaishali Saini
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Priyanka Patra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Tanish Prashar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, 342030, Jodhpur India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| |
Collapse
|
9
|
Holubiec MI, Gellert M, Hanschmann EM. Redox signaling and metabolism in Alzheimer's disease. Front Aging Neurosci 2022; 14:1003721. [PMID: 36408110 PMCID: PMC9670316 DOI: 10.3389/fnagi.2022.1003721] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/14/2022] [Indexed: 08/11/2023] Open
Abstract
Reduction and oxidation reactions are essential for biochemical processes. They are part of metabolic pathways and signal transduction. Reactive oxygen species (ROS) as second messengers and oxidative modifications of cysteinyl (Cys) residues are key to transduce and translate intracellular and intercellular signals. Dysregulation of cellular redox signaling is known as oxidative distress, which has been linked to various pathologies, including neurodegeneration. Alzheimer's disease (AD) is a neurodegenerative pathology linked to both, abnormal amyloid precursor protein (APP) processing, generating Aβ peptide, and Tau hyperphosphorylation and aggregation. Signs of oxidative distress in AD include: increase of ROS (H2O2, O2 •-), decrease of the levels or activities of antioxidant enzymes, abnormal oxidation of macromolecules related to elevated Aβ production, and changes in mitochondrial homeostasis linked to Tau phosphorylation. Interestingly, Cys residues present in APP form disulfide bonds that are important for intermolecular interactions and might be involved in the aggregation of Aβ. Moreover, two Cys residues in some Tau isoforms have been shown to be essential for Tau stabilization and its interaction with microtubules. Future research will show the complexities of Tau, its interactome, and the role that Cys residues play in the progression of AD. The specific modification of cysteinyl residues in redox signaling is also tightly connected to the regulation of various metabolic pathways. Many of these pathways have been found to be altered in AD, even at very early stages. In order to analyze the complex changes and underlying mechanisms, several AD models have been developed, including animal models, 2D and 3D cell culture, and ex-vivo studies of patient samples. The use of these models along with innovative, new redox analysis techniques are key to further understand the importance of the redox component in Alzheimer's disease and the identification of new therapeutic targets in the future.
Collapse
Affiliation(s)
- M. I. Holubiec
- IBioBA-MPSP Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifwald, University Greifswald, Greifswald, Germany
| | | |
Collapse
|
10
|
Nicholson JL, Toh P, Alfulaij N, Berry MJ, Torres DJ. New insights on selenoproteins and neuronal function. Free Radic Biol Med 2022; 190:55-61. [PMID: 35948259 DOI: 10.1016/j.freeradbiomed.2022.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/17/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Fifty years have passed since the discovery of the first selenoprotein by Rotruck and colleagues. In that time, the essential nature of selenium has come to light including the dependence of the brain on selenium to function properly. Animal models have shown that a lack of certain selenoproteins in the brain is detrimental for neuronal health, sometimes leading to neurodegeneration. There is also potential for selenoprotein-mediated redox balance to impact neuronal activity, including neurotransmission. Important insights on these topics have been gained over the past several years. This review briefly summarizes the known roles of specific selenoproteins in the brain while highlighting recent advancements regarding selenoproteins in neuronal function. Hypothetical models of selenoprotein function and emerging topics in the field are also provided.
Collapse
Affiliation(s)
- Jessica L Nicholson
- Department of Cell & Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA; Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Pamela Toh
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Naghum Alfulaij
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Marla J Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Daniel J Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
11
|
Barko K, Shelton M, Xue X, Afriyie-Agyemang Y, Puig S, Freyberg Z, Tseng GC, Logan RW, Seney ML. Brain region- and sex-specific transcriptional profiles of microglia. Front Psychiatry 2022; 13:945548. [PMID: 36090351 PMCID: PMC9448907 DOI: 10.3389/fpsyt.2022.945548] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Microglia are resident macrophages of the brain, performing roles related to brain homeostasis, including modulation of synapses, trophic support, phagocytosis of apoptotic cells and debris, as well as brain protection and repair. Studies assessing morphological and transcriptional features of microglia found regional differences as well as sex differences in some investigated brain regions. However, markers used to isolate microglia in many previous studies are not expressed exclusively by microglia or cannot be used to identify and isolate microglia in all contexts. Here, fluorescent activated cell sorting was used to isolate cells expressing the microglia-specific marker TMEM119 from prefrontal cortex (PFC), striatum, and midbrain in mice. RNA-sequencing was used to assess the transcriptional profile of microglia, focusing on brain region and sex differences. We found striking brain region differences in microglia-specific transcript expression. Most notable was the distinct transcriptional profile of midbrain microglia, with enrichment for pathways related to immune function; these midbrain microglia exhibited a profile similar to disease-associated or immune-surveillant microglia. Transcripts more highly expressed in PFC isolated microglia were enriched for synapse-related pathways while microglia isolated from the striatum were enriched for pathways related to microtubule polymerization. We also found evidence for a gradient of expression of microglia-specific transcripts across the rostral-to-caudal axes of the brain, with microglia extracted from the striatum exhibiting a transcriptional profile intermediate between that of the PFC and midbrain. We also found sex differences in expression of microglia-specific transcripts in all 3 brain regions, with many selenium-related transcripts more highly expressed in females across brain regions. These results suggest that the transcriptional profile of microglia varies between brain regions under homeostatic conditions, suggesting that microglia perform diverse roles in different brain regions and even based on sex.
Collapse
Affiliation(s)
- Kelly Barko
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Micah Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Yvette Afriyie-Agyemang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Situ J, Huang X, Zuo M, Huang Y, Ren B, Liu Q. Comparative Proteomic Analysis Reveals the Effect of Selenoprotein W Deficiency on Oligodendrogenesis in Fear Memory. Antioxidants (Basel) 2022; 11:antiox11050999. [PMID: 35624863 PMCID: PMC9138053 DOI: 10.3390/antiox11050999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
The essential trace element selenium plays an important role in maintaining brain function. Selenoprotein W (SELENOW), the smallest selenoprotein that has been identified in mammals, is sensitive to selenium levels and abundantly expressed in the brain. However, its biological role in the brain remains to be clarified. Here, we studied the morphological and functional changes in the brain caused by SELENOW deficiency using its gene knockout (KO) mouse models. Histomorphological alterations of the amygdala and hippocampus, specifically in the female SELENOW KO mice, were observed, ultimately resulting in less anxiety-like behavior and impaired contextual fear memory. Fear conditioning (FC) provokes rapidly intricate responses involving neuroplasticity and oligodendrogenesis. During this process, the females generally show stronger contextual FC than males. To characterize the effect of SELENOW deletion on FC, specifically in the female mice, a Tandem mass tag (TMT)-based comparative proteomic approach was applied. Notably, compared to the wildtype (WT) no shock (NS) mice, the female SELENOW KO NS mice shared lots of common differentially expressed proteins (DEPs) with the WT FC mice in the hippocampus, enriched in the biological process of ensheathment and oligodendrocyte differentiation. Immunostaining and Western blotting analyses further confirmed the proteomic results. Our work may provide a holistic perspective of gender-specific SELENOW function in the brain and highlighted its role in oligodendrogenesis during fear memory.
Collapse
Affiliation(s)
- Jiaxin Situ
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
| | - Xuelian Huang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
| | - Mingyang Zuo
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
| | - Yingying Huang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
| | - Bingyu Ren
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
- Shenzhen Bay Laboratory, Shenzhen 518000, China
- Correspondence: (B.R.); (Q.L.)
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China
- Correspondence: (B.R.); (Q.L.)
| |
Collapse
|
13
|
Ye H, Han Y, Li P, Su Z, Huang Y. The Role of Post-Translational Modifications on the Structure and Function of Tau Protein. J Mol Neurosci 2022; 72:1557-1571. [PMID: 35325356 DOI: 10.1007/s12031-022-02002-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Involving addition of chemical groups or protein units to specific residues of the target protein, post-translational modifications (PTMs) alter the charge, hydrophobicity, and conformation of a protein, which in tune influences protein function, protein - protein interaction, and protein aggregation. While the occurrence of PTMs is dynamic and subject to regulations, conformational disorder of the target protein facilitates PTMs. The microtubule-associated protein tau is a typical intrinsically disordered protein that undergoes a variety of PTMs including phosphorylation, acetylation, ubiquitination, methylation, and oxidation. Accumulated evidence shows that these PTMs play a critical role in regulating tau-microtubule interaction, tau localization, tau degradation and aggregation, and reinforces the correlation between tau PTMs and pathogenesis of neurodegenerative disease. Here, we review tau PTMs with an emphasis on their influence on tau structure. With available biophysical characterization results, we describe how PTMs induce conformational changes in tau monomer and regulate tau aggregation. Compared to functional analysis of tau PTMs, biophysical characterization of tau PTMs is lagging. While it is challenging, characterizing the specific effects of PTMs on tau conformation and interaction is indispensable to unravel the tau PTM code.
Collapse
Affiliation(s)
- Haiqiong Ye
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Yue Han
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China. .,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China. .,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
14
|
Edelmann MR, Muser T. Tritium O-Methylation of N-Alkoxy Maleimide Derivatives as Labeling Reagents for Biomolecules. Bioconjug Chem 2021; 32:1027-1033. [PMID: 33909418 DOI: 10.1021/acs.bioconjchem.1c00202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient procedure to access tritium-labeled maleimide derivatives in a high specific activity has been developed. N-Substituted maleimides containing the hydroxy functionality are O-methylated in a three-step synthesis route, including (1) Diels-Alder protection of the maleimide core, (2) O-methylation by the use of commercially available [3H]methyl nosylate, and (3) deprotection by retro-Diels-Alder reaction. With our procedure, N-hydroxyalkyl maleimide derivatives can be labeled in overall radiochemical yields of 13-15% and in >98% radiochemical purity. The major advantage of N-alkoxy maleimides in comparison to N-alkylated maleimides such as N-ethylmaleimide is their lower volatility, which enables safer handling with respect to radiation-safety protection. Tritium-labeled maleimide building blocks allow subsequent Michael-type conjugation reactions of thiol-containing biomolecules for mechanistic in vitro or in vivo studies.
Collapse
Affiliation(s)
- Martin R Edelmann
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Isotope Synthesis, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Thorsten Muser
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Isotope Synthesis, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| |
Collapse
|
15
|
Zhang ZH, Song GL. Roles of Selenoproteins in Brain Function and the Potential Mechanism of Selenium in Alzheimer's Disease. Front Neurosci 2021; 15:646518. [PMID: 33762907 PMCID: PMC7982578 DOI: 10.3389/fnins.2021.646518] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) and its compounds have been reported to have great potential in the prevention and treatment of Alzheimer's disease (AD). However, little is known about the functional mechanism of Se in these processes, limiting its further clinical application. Se exerts its biological functions mainly through selenoproteins, which play vital roles in maintaining optimal brain function. Therefore, selenoproteins, especially brain function-associated selenoproteins, may be involved in the pathogenesis of AD. Here, we analyze the expression and distribution of 25 selenoproteins in the brain and summarize the relationships between selenoproteins and brain function by reviewing recent literature and information contained in relevant databases to identify selenoproteins (GPX4, SELENOP, SELENOK, SELENOT, GPX1, SELENOM, SELENOS, and SELENOW) that are highly expressed specifically in AD-related brain regions and closely associated with brain function. Finally, the potential functions of these selenoproteins in AD are discussed, for example, the function of GPX4 in ferroptosis and the effects of the endoplasmic reticulum (ER)-resident protein SELENOK on Ca2+ homeostasis and receptor-mediated synaptic functions. This review discusses selenoproteins that are closely associated with brain function and the relevant pathways of their involvement in AD pathology to provide new directions for research on the mechanism of Se in AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
16
|
Xiao S, Lu Y, Wu Q, Yang J, Chen J, Zhong S, Eliezer D, Tan Q, Wu C. Fisetin inhibits tau aggregation by interacting with the protein and preventing the formation of β-strands. Int J Biol Macromol 2021; 178:381-393. [PMID: 33662414 DOI: 10.1016/j.ijbiomac.2021.02.210] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease which severely impacts the health of the elderly. Current treatments are only able to alleviate symptoms, but not prevent or cure the disease. The neurofibrillary tangles formed by tau protein aggregation are one of the defining characteristics of Alzheimer's disease, so tau protein has become a key target for the drug design. In this study, we show that fisetin, a plant-derived polyphenol compound, can inhibit aggregation of the tau fragment, K18, and can disaggregate tau K18 filaments in vitro. Meanwhile it is able to prevent the formation of tau aggregates in cells. Both experimental and computational studies indicate that fisetin could directly interact with tau K18 protein. The binding is mainly created by hydrogen bond and van der Waal force, prevents the formation of β-strands at the two hexapeptide motifs, and does not perturb the secondary structure or the tubulin binding ability of tau protein. In summary, fisetin might be a candidate for further development as a potential preventive or therapeutic drug for Alzheimer's disease.
Collapse
Affiliation(s)
- Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Yafei Lu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Qiuping Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jiaying Yang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jierui Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Suyue Zhong
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Qiulong Tan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Chengchen Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
17
|
Chidambaram H, Chinnathambi S. Role of cysteines in accelerating Tau filament formation. J Biomol Struct Dyn 2020; 40:4366-4375. [PMID: 33317395 DOI: 10.1080/07391102.2020.1856720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease is majorly associated with intracellular accumulation of Tau into paired helical filaments and tangles. The self-aggregated dimeric and oligomeric species of Tau formed are more toxic to neuronal cells and acts as seeds for filament formation. The two cysteine residues and the two hexapeptide regions of full-length Tau play a key role in initialization and filament formation during Tau aggregation. The role of cysteine residues in Tau aggregation has been studied by in-vitro aggregation assay that was measured by Thioflavin S fluorescence to observe the kinetics of aggregation. In this study, we have performed in-vitro aggregation assay with recombinant full-length Tau and the cysteine mutants to understand the mechanism of cysteine independent Tau aggregation. Here, we report that cysteine mutant full-length Tau can aggregate to form filaments under in-vitro conditions. To visualize the polymorphisms of Tau and cysteine mutants under different aggregation conditions anionic cofactor, heparin was employed. Wild-type Tau showed rapid aggregation to form oligomers and filaments. On the other hand, the cysteine mutant delayed the initial Tau aggregation. This indicates the importance of cysteine residues in accelerating initial Tau nucleation for its aggregation. The filament morphology of wild-type and cysteine mutant Tau has been characterized using transmission electron microscopy and high-resolution transmission electron microscopy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Karikari TK, Thomas R, Moffat KG. The C291R Tau Variant Forms Different Types of Protofibrils. Front Mol Neurosci 2020; 13:39. [PMID: 32256313 PMCID: PMC7093375 DOI: 10.3389/fnmol.2020.00039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 11/25/2022] Open
Abstract
Mutations in the MAPT gene can lead to disease-associated variants of tau. However, the pathological mechanisms behind these genetic tauopathies are poorly understood. Here, we characterized the aggregation stages and conformational changes of tau C291R, a recently described MAPT mutation with potential pathogenic functions. The C291R variant of the tau four-repeat domain (tau-K18; a functional fragment with increased aggregation propensity compared with the full-length protein), aggregated into a mix of granular oligomers, amorphous and annular pore-like aggregates, in native-state and heparin-treated reactions as observed using atomic force microscopy (AFM) and negative-stained electron microscopy. On extended incubation in the native-state, tau-K18 C291R oligomers, unlike wild type (WT) tau-K18, aggregated to form protofibrils of four different phenotypes: (1) spherical annular; (2) spherical annular encapsulating granular oligomers; (3) ring-like annular but non-spherical; and (4) linear protofibrils. The ring-like tau-K18 C291R aggregates shared key properties of annular protofibrils previously described for other amyloidogenic proteins, in addition to two unique features: irregular/non-spherical-shaped annular protofibrils, and spherical protofibrils encapsulating granular oligomers. Tau-K18 C291R monomers had a circular dichroism (CD) peak at ~210 nm compared with ~199 nm for tau-K18 WT. These data suggest mutation-enhanced β-sheet propensity. Together, we describe the characterization of tau-K18 C291R, the first genetic mutation substituting a cysteine residue. The aggregation mechanism of tau-K18 C291R appears to involve β-sheet-rich granular oligomers which rearrange to form unique protofibrillar structures.
Collapse
Affiliation(s)
- Thomas K Karikari
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.,Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, United Kingdom.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rachel Thomas
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kevin G Moffat
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
19
|
14-3-3/Tau Interaction and Tau Amyloidogenesis. J Mol Neurosci 2019; 68:620-630. [PMID: 31062171 DOI: 10.1007/s12031-019-01325-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/22/2019] [Indexed: 01/02/2023]
Abstract
The major function of microtubule-associated protein tau is to promote microtubule assembly in the central nervous system. However, aggregation of abnormally phosphorylated tau is a hallmark of tauopathies. Although the molecular mechanisms of conformational transitions and assembling of tau molecules into amyloid fibril remain largely unknown, several factors have been shown to promote tau aggregation, including mutations, polyanions, phosphorylation, and interactions with other proteins. 14-3-3 proteins are a family of highly conserved, multifunctional proteins that are mainly expressed in the central nervous system. Being a scaffolding protein, 14-3-3 proteins interact with tau and regulate tau phosphorylation by bridging tau with various protein kinases. 14-3-3 proteins also directly regulate tau aggregation via specific and non-specific interactions with tau. In this review, we summarize recent advances in characterization of tau conformation and tau/14-3-3 interaction. We discuss the connection between 14-3-3 binding and tau aggregation with a special emphasis on the regulatory role of 14-3-3 on tau conformation.
Collapse
|
20
|
Identification of FAM96B as a novel selenoprotein W binding partner in the brain. Biochem Biophys Res Commun 2019; 512:137-143. [PMID: 30876693 DOI: 10.1016/j.bbrc.2019.02.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/25/2019] [Indexed: 11/21/2022]
Abstract
Selenoprotien W (SelW) plays a key role in brain development, although the exact biological function and mechanisms remain unclear. We performed a yeast two-hybrid screen on a human fetal brain cDNA library and identified FAM96B as a novel binding partner of SelW. FRET analyses confirmed the interaction between SelW' and FAM96B. The mutated SelW' construct was cloned and overexpressed in E. coli, and a pull-down assay verified a direct interaction between SelW' and FAM96B. Finally, Co-Immunoprecipitation on murine brain tissue proteins demonstrated an endogenous interaction between the two proteins in the brain. Taken together, our findings prove a direct interaction between SelW and FAM96B, which may provide new insights into the role of SelW in brain development and neurodegenerative diseases.
Collapse
|
21
|
Karikari TK, Nagel DA, Grainger A, Clarke-Bland C, Hill EJ, Moffat KG. Preparation of stable tau oligomers for cellular and biochemical studies. Anal Biochem 2018; 566:67-74. [PMID: 30315761 PMCID: PMC6331036 DOI: 10.1016/j.ab.2018.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 02/02/2023]
Abstract
Increasing evidence suggests that small oligomers are the principal neurotoxic species of tau in Alzheimer's disease and other tauopathies. However, mechanisms of tau oligomer-mediated neurodegeneration are poorly understood. The transience of oligomers due to aggregation can compromise the stability of oligomers prepared in vitro. Consequently, we sought to develop an efficient method which maintains the stability and globular conformation of preformed oligomers. This study demonstrates that labeling a single-cysteine form of the pro-aggregant tau four-repeat region (K18) with either Alexa Fluor 488-C5-maleimide or N-ethylmaleimide in reducing conditions stabilizes oligomers by impeding their further aggregation. Furthermore, the use of this approach to study the propagation of labeled extracellular tau K18 oligomers into human neuroblastoma cells and human stem cell-derived neurons is described. This method is potentially applicable for preparing stabilized oligomers of tau for diagnostic and biomarker tests, as well as for in vitro structure-activity relationship assays. The transient nature of tau aggregation makes it difficult to maintain the stability of preformed oligomers. Efficient labeling of tau K18 with Alexa Fluor-488-C5-maleimide or N-ethyl maleimide stabilizes the resulting oligomers. Oligomers applied exogenously are propagated intracellularly by cultured human iPSC neurons and neuroblastoma cells. Oligomer preparation by maleimide labeling allows mechanistic studies of tau aggregation and its link to neurodegeneration.
Collapse
Affiliation(s)
- Thomas K Karikari
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK; Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, CV4 7AL, UK.
| | - David A Nagel
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Alastair Grainger
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | | | - Eric J Hill
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Kevin G Moffat
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
22
|
Tau Protein Squired by Molecular Chaperones During Alzheimer’s Disease. J Mol Neurosci 2018; 66:356-368. [DOI: 10.1007/s12031-018-1174-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/14/2018] [Indexed: 01/19/2023]
|