1
|
Blanco CO, Cormier SK, Koller AJ, Boros E, Fogg DE. Olefin Metathesis in Water: Speciation of a Leading Water-Soluble Catalyst Pinpoints Challenges and Opportunities for Chemical Biology. J Am Chem Soc 2025; 147:9441-9448. [PMID: 40053839 PMCID: PMC11926881 DOI: 10.1021/jacs.4c16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
The metathetical modification of biomolecules in aqueous environments holds great promise for advances at the interface of chemistry, biology, and medicine. However, rapid degradation of the metathesis catalysts necessitates their use in large stoichiometric excess, resulting in undesired side-reactions promoted by the ruthenium products. Although water is now known to play a central role in catalyst decomposition, the elusive nature of the intermediates has hampered insight into the pathways involved. We describe the detailed speciation in water of AquaMet (AM), the dominant ruthenium catalyst used for aqueous metathesis, and implications for catalysis. Potentiometric and spectroscopic speciation studies reveal that only trace AM is present under the pH-neutral, salt-free conditions routinely employed in synthetic applications of aqueous metathesis. Instead, metathesis-inactive hydroxide species dominate. Even at pH 3, Ru-H2O complexes dominate in 0.01 M NaCl(aq), and the water ligands are readily deprotonated as the pH is increased. Raising NaCl(aq) concentrations to 1 M suppresses deprotonation events below pH 8, stabilizing AM as the dominant solution species at neutral pH, and significantly expanding the metathesis-compatible regime. Hitherto unrecognized catalyst solubility issues are also revealed, pointing toward avenues for advance. More broadly, the capacity to directly link catalyst environment to structure and performance opens new opportunities for olefin metathesis in complex, water-rich settings.
Collapse
Affiliation(s)
- Christian O Blanco
- Center for Catalysis Research and Innovation, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Samantha K Cormier
- Center for Catalysis Research and Innovation, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Angus J Koller
- Department of Chemistry, University of Southern Maine, Portland, Maine 04103, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Deryn E Fogg
- Center for Catalysis Research and Innovation, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Department of Chemistry, University of Bergen, N-5007 Bergen, Norway
| |
Collapse
|
2
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Hosozawa T, Niwa M, Takeuchi H, Inohana T, Okumura K, Itoh S. High-yield and high-purity amide bond formation using DMTMM PF 6 for DNA-encoded libraries. Bioorg Med Chem Lett 2024; 110:129859. [PMID: 38955244 DOI: 10.1016/j.bmcl.2024.129859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
In this study, we report on the ability of DMTMM PF6 to improve the amidation reaction. The on-DNA amidation reaction using DMTMM PF6 demonstrates higher conversion rates than those using HATU or DMTMM Cl, particularly with challenging sterically hindered amines and carboxylic acids. The developed method enables the expansion of available building blocks and the efficient synthesis of high-purity DNA-encoded libraries.
Collapse
Affiliation(s)
- Takumi Hosozawa
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Masatoshi Niwa
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Hisayuki Takeuchi
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Takehiko Inohana
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Kaori Okumura
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Shin Itoh
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan.
| |
Collapse
|
4
|
Huang Q, Gu Y, Qin A, Ma P, Xu H, Zhang S. FSO 2N 3-Mediated On-DNA Diazo-Transfer Chemistry. ACS Med Chem Lett 2024; 15:1591-1597. [PMID: 39291003 PMCID: PMC11403730 DOI: 10.1021/acsmedchemlett.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
DNA-encoded library (DEL) is a powerful hit selection technique in both basic science and innovative drug discovery. In this study, we report a robust and straightforward DNA-compatible diazo-transfer reaction utilizing FSO2N3 as the diazo-transfer reagent in solution. This reaction demonstrates high conversions and facile operation while being metal-free and maintaining high levels of DNA fidelity. It is also compatible with a wide range of substrates, allowing for convenient access to both aliphatic and aromatic amines. Consequently, it will further enrich the DEL chemistry toolbox.
Collapse
Affiliation(s)
- Qianping Huang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P.R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P.R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P.R. China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
5
|
Blanco C, Ramos Castellanos R, Fogg DE. Anionic Olefin Metathesis Catalysts Enable Modification of Unprotected Biomolecules in Water. ACS Catal 2024; 14:11147-11152. [PMID: 39114091 PMCID: PMC11301623 DOI: 10.1021/acscatal.4c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Stability problems have limited the uptake of cationic olefin metathesis catalysts in chemical biology. Described herein are anionic catalysts that improve water-solubility, robustness, and compatibility with biomolecules such as DNA. A sulfonate tag is installed on the cyclic (alkyl)(amino) carbene (CAAC) ligand platform, chosen for resistance to degradation by nucleophiles, base, water, and β-elimination. Hoveyda-Grubbs catalysts bearing the sulfonated CAAC ligands deliver record productivity in metathesis of unprotected carbohydrates and nucleosides at neutral pH. Decomposed catalyst has negligible impact on metathesis selectivity, whereas N-heterocyclic carbene (NHC) catalysts degrade rapidly in water and cause extensive C=C migration.
Collapse
Affiliation(s)
- Christian
O. Blanco
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Richard Ramos Castellanos
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
6
|
Ku AF, Sharma KL, Ta HM, Sutton CM, Bohren KM, Wang Y, Chamakuri S, Chen R, Hakenjos JM, Jimmidi R, Kent K, Li F, Li JY, Ma L, Madasu C, Palaniappan M, Palmer SS, Qin X, Robers MB, Sankaran B, Tan Z, Vasquez YM, Wang J, Wilkinson J, Yu Z, Ye Q, Young DW, Teng M, Kim C, Matzuk MM. Reversible male contraception by targeted inhibition of serine/threonine kinase 33. Science 2024; 384:885-890. [PMID: 38781365 PMCID: PMC11842024 DOI: 10.1126/science.adl2688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Men or mice with homozygous serine/threonine kinase 33 (STK33) mutations are sterile owing to defective sperm morphology and motility. To chemically evaluate STK33 for male contraception with STK33-specific inhibitors, we screened our multibillion-compound collection of DNA-encoded chemical libraries, uncovered potent STK33-specific inhibitors, determined the STK33 kinase domain structure bound with a truncated hit CDD-2211, and generated an optimized hit CDD-2807 that demonstrates nanomolar cellular potency (half-maximal inhibitory concentration = 9.2 nanomolar) and favorable metabolic stability. In mice, CDD-2807 exhibited no toxicity, efficiently crossed the blood-testis barrier, did not accumulate in brain, and induced a reversible contraceptive effect that phenocopied genetic STK33 perturbations without altering testis size. Thus, STK33 is a chemically validated, nonhormonal contraceptive target, and CDD-2807 is an effective tool compound.
Collapse
Affiliation(s)
- Angela F. Ku
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kiran L. Sharma
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hai Minh Ta
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Courtney M. Sutton
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kurt M. Bohren
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Wang
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruihong Chen
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - John M. Hakenjos
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ravikumar Jimmidi
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katarzyna Kent
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jian-Yuan Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lang Ma
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chandrashekhar Madasu
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Murugesan Palaniappan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen S. Palmer
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuan Qin
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yasmin M. Vasquez
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jian Wang
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Zhifeng Yu
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiuji Ye
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Damian W. Young
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Choel Kim
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin M. Matzuk
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Fan L, Yu Y, Jayne C, Frost JR, Scott JD. Synthesis of DNA-Encoded Macrocyclic Peptides via Nitrile-Aminothiol Click Reaction. Org Lett 2023; 25:8038-8042. [PMID: 37889907 DOI: 10.1021/acs.orglett.3c03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
DNA-encoded library (DEL) technology holds exciting potential for discovering novel therapeutic macrocyclic peptides (MPs). Herein, we describe the development of a DEL-compatible peptide macrocyclization method that proceeds via intramolecular click-condensation between 3-(2-cyano-4-pyridyl)-l-alanine (Cpa) and an N-terminal cysteine. Cyclization takes place spontaneously in a buffered aqueous solution and affords the cyclized products in excellent yields. The reaction exhibits a broad substrate scope and can be employed to generate MPs of variable ring size and amino acid composition.
Collapse
Affiliation(s)
- Lijun Fan
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yang Yu
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Charles Jayne
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - John R Frost
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jack D Scott
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
8
|
Pan K, Yao Y, Zhang Y, Gu Y, Wang Y, Ma P, Hou W, Yang G, Zhang S, Xu H. Enolate-Azide [3 + 2]-Cycloaddition Reaction Suitable for DNA-Encoded Library Synthesis. Bioconjug Chem 2023; 34:1459-1466. [PMID: 37443440 DOI: 10.1021/acs.bioconjchem.3c00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The DNA-encoded chemical library (DEL) is a powerful hit selection technique in either basic science or innovative drug discovery. With the aim to circumvent the issue concerning DNA barcode damage in a conventional on-DNA copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC), we have successfully developed the first DNA-compatible enolate-azide [3 + 2] cycloaddition reaction. The merits of this DEL chemistry include metal-free reaction and high DNA fidelity, high conversions and easy operation, broad substrate scope, and ready access to the highly substituted 1,4,5-trisubstituted triazoles. Thus, it will not only further enrich the DEL chemistry toolbox but also will have great potential in practical DEL synthesis.
Collapse
Affiliation(s)
- Kangyin Pan
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wei Hou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
9
|
Ding Z, Wu Y, Liu L, Qi B, Peng Z. Construction of Isocytosine Scaffolds via DNA-Compatible Biginelli-like Reaction. Org Lett 2023; 25:5515-5519. [PMID: 37462924 DOI: 10.1021/acs.orglett.3c01986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Herein we report a DNA-compatible Biginelli reaction to construct isocytosine scaffolds. This reaction utilizes a one-pot reaction of DNA-conjugated guanidines with aldehydes and methyl cyanoacetates to give isocytosine derivatives, and the method is well compatible with different types of substrates. This is the first report on the synthesis of an isocytosine backbone in the field of DNA-compatible organic synthesis. The successful development of this reaction can widen the chemical space of DELs.
Collapse
Affiliation(s)
- Zhaobing Ding
- PharmaBlock Sciences (Nanjing), Inc., Nanjing 210032, Jiangsu Province, China
| | - Yizhou Wu
- PharmaBlock Sciences (Nanjing), Inc., Nanjing 210032, Jiangsu Province, China
| | - Liu Liu
- PharmaBlock Sciences (Nanjing), Inc., Nanjing 210032, Jiangsu Province, China
| | | | | |
Collapse
|
10
|
Zhang Y, Guo J, Cheng J, Zhang Z, Kang F, Wu X, Chu Q. High-Throughput Screening of Stapled Helical Peptides in Drug Discovery. J Med Chem 2023; 66:95-106. [PMID: 36580278 DOI: 10.1021/acs.jmedchem.2c01541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic peptides have revolutionized treatment for a number of human diseases. In particular, the past two decades have witnessed rapid progress of stapled helical peptides in drug discovery. Stapled helical peptides are chemically modified and constrained in their bioactive α-helical conformation. Compared to unstabilized linear peptides, stapled helical peptides exhibit superior binding affinity and selectivity, enhanced membrane permeability, and improved metabolic stability, presenting exciting promise for targeting otherwise challenging protein-protein interfaces. In this Perspective, we summarize recent applications of high-throughput screening technologies for identification of potent stapled helical peptides with optimized binding properties. We expect to provide a broad reference to accelerate the development of stapled helical peptides as the next generation of therapeutic peptides for various human diseases.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabei Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhenghua Zhang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Fenghua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Blanco C, Fogg DE. Water-Accelerated Decomposition of Olefin Metathesis Catalysts. ACS Catal 2023; 13:1097-1102. [PMID: 36714054 PMCID: PMC9872090 DOI: 10.1021/acscatal.2c05573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Water is ubiquitous in olefin metathesis, at levels ranging from contaminant to cosolvent. It is also non-benign. Water-promoted catalyst decomposition competes with metathesis, even for "robust" ruthenium catalysts. Metathesis is hence typically noncatalytic for demanding reactions in water-rich environments (e.g., chemical biology), a challenge as the Ru decomposition products promote unwanted reactions such as DNA degradation. To date, only the first step of the decomposition cascade is understood: catalyst aquation. Here we demonstrate that the aqua species dramatically accelerate both β-elimination of the metallacyclobutane intermediate and bimolecular decomposition of four-coordinate [RuCl(H2O)n(L)(=CHR)]Cl. Decomposition can be inhibited by blocking aquation and β-elimination.
Collapse
Affiliation(s)
- Christian
O. Blanco
- Center
for Catalysis Research & Innovation and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, Canada K1N 6N5,Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway,,
| |
Collapse
|
12
|
Nie Q, Sun J, Fang X, He X, Xiong F, Zhang G, Li Y, Li Y. Antimony salt-promoted cyclization facilitating on-DNA syntheses of dihydroquinazolinone derivatives and its applications. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Xu H, Tan T, Zhang Y, Wang Y, Pan K, Yao Y, Zhang S, Gu Y, Chen W, Li J, Dong H, Meng Y, Ma P, Hou W, Yang G. Metal-Free and Open-Air Arylation Reactions of Diaryliodonium Salts for DNA-Encoded Library Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202790. [PMID: 35853237 PMCID: PMC9475524 DOI: 10.1002/advs.202202790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
A successful DNA-encoded library (DEL) will consist of diverse skeletons and cover chemical space as comprehensive as possible to fully realize its potential in drug discovery and chemical biology. However, the lack of versatile on-DNA arylation methods for phenols that are less nucleophilic and reactive poses a great hurdle for DEL to include diaryl ether, a privileged chemotype in pharmaceuticals and natural products. This work describes the use of "substrate activation" approach to address the arylation of DNA-conjugated phenols. Diaryliodonium salt, a highly electrophilic and reactive arylation reagent, is employed as Ar+ sources to ensure highly selective on-DNA arylation of phenols and oximes with both high yields and DNA fidelity. Notably, the new on-DNA arylation reaction can be applied to the late-stage modification of peptides containing tyrosine side-chain and to synthesize DNA-tagged analogues of existing drug molecules such as sorafenib, a known pan-kinase inhibitor. The new on-DNA diaryliodonium salts chemistry affords a greater flexibility in DEL design and synthesis.
Collapse
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Kangyin Pan
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Yu Meng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of Orthopedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong UniversitySchool of MedicineShanghai200011P. R. China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| |
Collapse
|
14
|
Melsen PRA, Yoshisada R, Jongkees SAK. Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA-Displayed Peptide Libraries. Chembiochem 2022; 23:e202100685. [PMID: 35100479 PMCID: PMC9306583 DOI: 10.1002/cbic.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Indexed: 11/07/2022]
Abstract
DNA-encoded small-molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide-tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the 'drug-likeness' of the molecules that each can be used to discover. We give here an overview of the two techniques, comparing some advantages and disadvantages of each, and suggest areas where particularly mRNA display can benefit from adopting advances developed with DNA-encoded small molecule libraries. We outline cases where chemical modification of the peptide library has already been used in mRNA display, and survey opportunities to expand this using examples from DNA-encoded small molecule libraries. We also propose potential opportunities for encoding such reactions within the mRNA/cDNA tag of an mRNA-displayed peptide library to allow a more diversity-oriented approach to library modification. Finally, we outline alternate approaches for enriching target-binding hits from a pooled and tagged library, and close by detailing several examples of how an adjusted mRNA-display based approach could be used to discover new 'drug-like' modified small peptides.
Collapse
Affiliation(s)
- Paddy R. A. Melsen
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
15
|
Occhipinti G, Nascimento DL, Foscato M, Fogg DE, Jensen VR. The Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decomposition. Chem Sci 2022; 13:5107-5117. [PMID: 35655574 PMCID: PMC9093171 DOI: 10.1039/d2sc00855f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ruthenium–cyclic(alkyl)(amino)carbene (CAAC) catalysts, used at ppm levels, can enable dramatically higher productivities in olefin metathesis than their N-heterocyclic carbene (NHC) predecessors. A key reason is the reduced susceptibility of the metallacyclobutane (MCB) intermediate to decomposition via β-H elimination. The factors responsible for promoting or inhibiting β-H elimination are explored via density functional theory (DFT) calculations, in metathesis of ethylene or styrene (a representative 1-olefin) by Ru–CAAC and Ru–NHC catalysts. Natural bond orbital analysis of the frontier orbitals confirms the greater strength of the orbital interactions for the CAAC species, and the consequent increase in the carbene trans influence and trans effect. The higher trans effect of the CAAC ligands inhibits β-H elimination by destabilizing the transition state (TS) for decomposition, in which an agostic MCB Cβ–H bond is positioned trans to the carbene. Unproductive cycling with ethylene is also curbed, because ethylene is trans to the carbene ligand in the square pyramidal TS for ethylene metathesis. In contrast, metathesis of styrene proceeds via a ‘late’ TS with approximately trigonal bipyramidal geometry, in which carbene trans effects are reduced. Importantly, however, the positive impact of a strong trans-effect ligand in limiting β-H elimination is offset by its potent accelerating effect on bimolecular coupling, a major competing means of catalyst decomposition. These two decomposition pathways, known for decades to limit productivity in olefin metathesis, are revealed as distinct, antinomic, responses to a single underlying phenomenon. Reconciling these opposing effects emerges as a clear priority for design of robust, high-performing catalysts. In ruthenium catalysts for olefin metathesis, carbene ligands of high trans influence/effect suppress decomposition via β-H elimination, but increase susceptibility to bimolecular decomposition.![]()
Collapse
Affiliation(s)
- Giovanni Occhipinti
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| | - Daniel L Nascimento
- Center for Catalysis Research & Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Canada K1N 6N5
| | - Marco Foscato
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| | - Deryn E Fogg
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway .,Center for Catalysis Research & Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Canada K1N 6N5
| | - Vidar R Jensen
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| |
Collapse
|
16
|
Chheda PR, Simmons N, Schuman DP, Shi Z. Palladium-Mediated C–N Coupling of DNA-Conjugated (Hetero)aryl Halides with Aliphatic and (Hetero)aromatic Amines. Org Lett 2022; 24:3401-3406. [DOI: 10.1021/acs.orglett.2c01175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pratik R. Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - David P. Schuman
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
17
|
Fu X, Tang J, Hua R, Li X, Kang Z, Qiu H, Hu W. Functionalization of DNA-Tagged Alkenes with Diazo Compounds via Photocatalysis. Org Lett 2022; 24:2208-2213. [PMID: 35289626 DOI: 10.1021/acs.orglett.2c00516] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To explore potential chemical space using DNA-encoded library (DEL) technology, the development of various types of robust DNA-compatible reactions is urgently needed. Diazo compounds, which serve as valuable building blocks and important synthons in synthetic chemistry, have been rarely applied in DEL synthesis, probably because of their potential modifications of the bases and phosphate backbone of DNA. Herein we report two cases of DNA-compatible reactions with alkenes and diazo compounds, providing corresponding hydroalkylation and cyclopropanation products in moderate to excellent yields. Notably, these transformations not only provide new access to C(sp3)-C(sp3) bond formation in DELs with excellent functional group tolerance but also represent practical ligation methods to introduce functionalized molecules into DNA.
Collapse
Affiliation(s)
- Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruyu Hua
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqian Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenghui Kang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Qiu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Liu W, Bai X, Song L, Wang X, Lu X. Constructing Head-to-Tail Cyclic Peptide DNA-Encoded Libraries Using Two-Directional Synthesis Strategy. Bioconjug Chem 2022; 33:560-565. [PMID: 35274526 DOI: 10.1021/acs.bioconjchem.2c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrocyclic peptides are an important class of therapeutic agents for the biological targets that are difficult to modulate by small-molecule compounds. Meanwhile, DNA-encoded library technology (DELT) provides a powerful platform for hits discovery. The unity of both fields has proven highly productive in finding cyclic peptide hits against diverse pharmaceutical proteins. Many researchers have extended the chemical toolbox for constructing head-to-tail macrocyclic DNA-encoded libraries with various ring sizes. However, the linear peptides of different lengths necessitate tuning the distance between closing sites and DNA-linked sites to perform the macrocyclization process, presumably due to the constrained conformation of linear precursors. To tackle this issue and streamline the synthetic workflow, we report a two-directional synthesis strategy. This method starts from a trifunctional reagent and prepares DNA-linked macrocyclic peptides of ring size between 15 (5-mer) and 24 (8-mer) via amide bond formation reaction, a common method to create macrocyclic peptides.
Collapse
Affiliation(s)
- Wang Liu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan, Shanghai, 200444, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaopeng Bai
- UCB, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Liping Song
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan, Shanghai, 200444, P. R. China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Nie Q, Fang X, Liu C, Zhang G, Fan X, Li Y, Li Y. DNA-Compatible ortho-Phthalaldehyde (OPA)-Mediated 2-Substituted Isoindole Core Formation and Applications. J Org Chem 2022; 87:2551-2558. [DOI: 10.1021/acs.joc.1c02496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qigui Nie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Changyang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, Chongqing 404100, People’s Republic of China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People’s Republic of China
| |
Collapse
|
20
|
Ma F, Li J, Zhang S, Gu Y, Tan T, Chen W, Wang S, Xu H, Yang G, Lerner RA. Metal-Catalyzed One-Pot On-DNA Syntheses of Diarylmethane and Thioether Derivatives. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Richard A. Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Plais L, Scheuermann J. Macrocyclic DNA-encoded chemical libraries: a historical perspective. RSC Chem Biol 2022; 3:7-17. [PMID: 35128404 PMCID: PMC8729180 DOI: 10.1039/d1cb00161b] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
While macrocyclic peptides are extensively researched for therapeutically relevant protein targets, DNA-encoded chemical libraries (DELs) are developed at a quick pace to discover novel small molecule binders. The combination of both fields has been explored since 2004 and the number of macrocyclic peptide DELs is steadily increasing. Macrocycles with high affinity and potency were identified for diverse classes of proteins, revealing DEL's huge potential. By giving a historical perspective, we would like to review the methods which permitted the rise of macrocyclic peptide DELs, describe the different DELs which were created and discuss the achievements and challenges of this emerging field.
Collapse
Affiliation(s)
- Louise Plais
- Department of Chemistry and Applied Biosciences, ETH Zürich (Swiss Federal Institute of Technology) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zürich (Swiss Federal Institute of Technology) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| |
Collapse
|
22
|
Fair RJ, Walsh RT, Hupp CD. The expanding reaction toolkit for DNA-encoded libraries. Bioorg Med Chem Lett 2021; 51:128339. [PMID: 34478840 DOI: 10.1016/j.bmcl.2021.128339] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Over the past decade, DNA-encoded libraries (DELs) have emerged as a leading platform for small molecule drug discovery among pharmaceutical companies, biotech companies and academic drug hunters alike. This revolutionary technology has tremendous potential that is yet to be fully realized, as the exploration of therapeutically relevant chemical space is fueled by the ever-expanding repertoire of DNA-compatible reactions used to construct the libraries. Advances in direct coupling reactions, like photo-catalytic cross couplings, unique cyclizations such as the formation of 1,2,4-oxadiazoles, and new functional group transformations are valuable contributions to the DEL reaction toolkit, and indicate where future reaction development efforts should focus in order to maximize the productivity of DELs.
Collapse
Affiliation(s)
| | - Ryan T Walsh
- X-Chem Inc., 100 Beaver Street, Waltham, MA 02453, USA
| | | |
Collapse
|
23
|
Chai J, Lu X, Arico-Muendel CC, Ding Y, Pollastri MP. Application of l-Threonine Aldolase to on-DNA Reactions. Bioconjug Chem 2021; 32:1973-1978. [PMID: 34424686 DOI: 10.1021/acs.bioconjchem.1c00363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enzymatic catalysis is a highly attractive approach to the DNA encoded library technology (DEL) that has not been widely explored. In this paper, we report an l-threonine aldolase (l-TA)-catalyzed on-DNA aldol reaction to form β-hydroxy-α-amino acids, and its diastereoselectivity determination. l-TAs from three species show good on-DNA aldehyde scope and complementary stereoselectivity. The formed aldol product can be further diversified via various reactions, which demonstrates the utility of this reaction in DEL.
Collapse
Affiliation(s)
- Jing Chai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Xiaojie Lu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher C Arico-Muendel
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Yun Ding
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Michael P Pollastri
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
24
|
DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 M pro inhibitors. Proc Natl Acad Sci U S A 2021; 118:2111172118. [PMID: 34426525 PMCID: PMC8433497 DOI: 10.1073/pnas.2111172118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 4 million humans globally, but there is no bona fide Food and Drug Administration-approved drug-like molecule to impede the COVID-19 pandemic. The sluggish pace of traditional therapeutic discovery is poorly suited to producing targeted treatments against rapidly evolving viruses. Here, we used an affinity-based screen of 4 billion DNA-encoded molecules en masse to identify a potent class of virus-specific inhibitors of the SARS-CoV-2 main protease (Mpro) without extensive and time-consuming medicinal chemistry. CDD-1714, the initial three-building-block screening hit (molecular weight [MW] = 542.5 g/mol), was a potent inhibitor (inhibition constant [K i] = 20 nM). CDD-1713, a smaller two-building-block analog (MW = 353.3 g/mol) of CDD-1714, is a reversible covalent inhibitor of Mpro (K i = 45 nM) that binds in the protease pocket, has specificity over human proteases, and shows in vitro efficacy in a SARS-CoV-2 infectivity model. Subsequently, key regions of CDD-1713 that were necessary for inhibitory activity were identified and a potent (K i = 37 nM), smaller (MW = 323.4 g/mol), and metabolically more stable analog (CDD-1976) was generated. Thus, screening of DNA-encoded chemical libraries can accelerate the discovery of efficacious drug-like inhibitors of emerging viral disease targets.
Collapse
|
25
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
26
|
Kölmel DK, Zhu H, Flanagan ME, Sakata SK, Harris AR, Wan J, Morgan BA. Employing Photocatalysis for the Design and Preparation of DNA‐Encoded Libraries: A Case Study. CHEM REC 2021; 21:616-630. [DOI: 10.1002/tcr.202000148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Dominik K. Kölmel
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Hongyao Zhu
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Mark E. Flanagan
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Sylvie K. Sakata
- Worldwide Research and Development Pfizer Inc 10770 Science Center Drive San Diego CA 92121 United States
| | - Anthony R. Harris
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Jinqiao Wan
- HitGen Inc Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District Chengdu City Sichuan Province P. R. China
| | - Barry A. Morgan
- HitGen Inc Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District Chengdu City Sichuan Province P. R. China
- HitGen Pharmaceuticals Inc PO Box 88240 Houston TX 77288 United States
| |
Collapse
|
27
|
Blanco CO, Sims J, Nascimento DL, Goudreault AY, Steinmann SN, Michel C, Fogg DE. The Impact of Water on Ru-Catalyzed Olefin Metathesis: Potent Deactivating Effects Even at Low Water Concentrations. ACS Catal 2021; 11:893-899. [PMID: 33614193 PMCID: PMC7886052 DOI: 10.1021/acscatal.0c04279] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Ruthenium catalysts for olefin metathesis are widely viewed as water-tolerant. Evidence is presented, however, that even low concentrations of water cause catalyst decomposition, severely degrading yields. Of 11 catalysts studied, fast-initiating examples (e.g., the Grela catalyst RuCl2(H2IMes)(=CHC6H4-2-O i Pr-5-NO2) were most affected. Maximum water tolerance was exhibited by slowly initiating iodide and cyclic (alkyl)(amino)carbene (CAAC) derivatives. Computational investigations indicated that hydrogen bonding of water to substrate can also play a role, by retarding cyclization relative to decomposition. These results have important implications for olefin metathesis in organic media, where water is a ubiquitous contaminant, and for aqueous metathesis, which currently requires superstoichiometric "catalyst" for demanding reactions.
Collapse
Affiliation(s)
- Christian O. Blanco
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
| | - Joshua Sims
- Univ. Lyon, ENS de Lyon,
CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratorie de Chimie, F-69342
Lyon, France
| | - Daniel L. Nascimento
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
| | - Alexandre Y. Goudreault
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
| | - Stephan N. Steinmann
- Univ. Lyon, ENS de Lyon,
CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratorie de Chimie, F-69342
Lyon, France
| | - Carine Michel
- Univ. Lyon, ENS de Lyon,
CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratorie de Chimie, F-69342
Lyon, France
| | - Deryn E. Fogg
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
- Department of Chemistry, University of
Bergen, Allégaten 41, N-5007 Bergen,
Norway
| |
Collapse
|
28
|
Shi Y, Wu YR, Yu JQ, Zhang WN, Zhuang CL. DNA-encoded libraries (DELs): a review of on-DNA chemistries and their output. RSC Adv 2021; 11:2359-2376. [PMID: 35424149 PMCID: PMC8693808 DOI: 10.1039/d0ra09889b] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
A DNA-encoded library is a collection of small molecules covalently linked to DNA that has unique information about the identity and the structure of each library member. A DNA-encoded chemical library (DEL) is broadly adopted by major pharmaceutical companies and used in numerous drug discovery programs. The application of the DEL technology is advantageous at the initial period of drug discovery because of reduced cost, time, and storage space for the identification of target compounds. The key points for the construction of DELs comprise the development and the selection of the encoding methods, transfer of routine chemical reaction from off-DNA to on-DNA, and exploration of new chemical reactions on DNA. The limitations in the chemical space and the diversity of DEL were reduced gradually by using novel DNA-compatible reactions based on the formation and the cleavage of various bonds. Here, we summarized a series of novel DNA-compatible chemistry reactions for DEL building blocks and analysed the druggability of screened hit molecules via DELs in the past five years.
Collapse
Affiliation(s)
- Ying Shi
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Yan-Ran Wu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Jian-Qiang Yu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Wan-Nian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| | - Chun-Lin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| |
Collapse
|
29
|
Monty OBC, Simmons N, Chamakuri S, Matzuk MM, Young DW. Solution-Phase Fmoc-Based Peptide Synthesis for DNA-Encoded Chemical Libraries: Reaction Conditions, Protecting Group Strategies, and Pitfalls. ACS COMBINATORIAL SCIENCE 2020; 22:833-843. [PMID: 33074645 DOI: 10.1021/acscombsci.0c00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peptide drug discovery has shown a resurgence since 2000, bringing 28 non-insulin therapeutics to the market compared to 56 since its first peptide drug, insulin, in 1923. While the main method of discovery has been biological display-phage, mRNA, and ribosome-the synthetic limitations of biological systems has restricted the depth of exploration of peptide chemical space. In contrast, DNA-encoded chemistry offers the synergy of large numbers and ribosome-independent synthetic flexibility for the fast and deeper exploration of the same space. Hence, as a bridge to building DNA-encoded chemical libraries (DECLs) of peptides, we have developed substrate-tolerant amide coupling reaction conditions for amino acid monomers, performed a coupling screen to illustrate such tolerance, developed protecting group strategies for relevant amino acids and reported the limitations thereof, developed a strategy for the coupling of α,α-disubstituted alkenyl amino acids relevant to all-hydrocarbon stapled peptide drug discovery, developed reaction conditions for the coupling of tripeptides likely to be used in DECL builds, and synthesized a fully deprotected DNA-decamer conjugate to illustrate the potency of the developed methodology for on-DNA peptide synthesis.
Collapse
Affiliation(s)
- Olivier B. C. Monty
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005 United States
| | - Nicholas Simmons
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
| | - Srinivas Chamakuri
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
| | - Damian W. Young
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005 United States
| |
Collapse
|
30
|
Rodríguez J, Martínez-Calvo M. Transition-Metal-Mediated Modification of Biomolecules. Chemistry 2020; 26:9792-9813. [PMID: 32602145 DOI: 10.1002/chem.202001287] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/25/2020] [Indexed: 01/15/2023]
Abstract
The site-selective modification of biomolecules has grown spectacularly in recent years. The presence of a large number of functional groups in a biomolecule makes its chemo- and regioselective modification a challenging goal. In this context, transition-metal-mediated reactions are emerging as a powerful tool owing to their unique reactivity and good functional group compatibility, allowing highly efficient and selective bioconjugation reactions that operate under mild conditions. This Minireview focuses on the current state of organometallic chemistry for bioconjugation, highlighting the potential of transition metals for the development of chemoselective and site-specific methods for functionalization of peptides, proteins and nucleic acids. The importance of the selection of ligands attached to the transition metal for conferring the desired chemoselectivity will be highlighted.
Collapse
Affiliation(s)
- Jessica Rodríguez
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Miguel Martínez-Calvo
- Centro de Investigaciones Científicas Avanzadas (CICA), AE CICA-INIBIC, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de Elviña, 15071 A, Coruña, Galicia, Spain
| |
Collapse
|
31
|
Madsen D, Azevedo C, Micco I, Petersen LK, Hansen NJV. An overview of DNA-encoded libraries: A versatile tool for drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:181-249. [PMID: 32362328 DOI: 10.1016/bs.pmch.2020.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA-encoded libraries (DELs) are collections of small molecules covalently attached to amplifiable DNA tags carrying unique information about the structure of each library member. A combinatorial approach is used to construct the libraries with iterative DNA encoding steps, facilitating tracking of the synthetic history of the attached compounds by DNA sequencing. Various screening protocols have been developed which allow protein target binders to be selected out of pools containing up to billions of different small molecules. The versatile methodology has allowed identification of numerous biologically active compounds and is now increasingly being adopted as a tool for lead discovery campaigns and identification of chemical probes. A great focus in recent years has been on developing DNA compatible chemistries that expand the structural diversity of the small molecule library members in DELs. This chapter provides an overview of the challenges and accomplishments in DEL technology, reviewing the technological aspects of producing and screening DELs with a perspective on opportunities, limitations, and future directions.
Collapse
|
32
|
Kölmel DK, Ratnayake AS, Flanagan ME, Tsai MH, Duan C, Song C. Photocatalytic [2 + 2] Cycloaddition in DNA-Encoded Chemistry. Org Lett 2020; 22:2908-2913. [PMID: 32239950 DOI: 10.1021/acs.orglett.0c00574] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The on-DNA synthesis of highly substituted cyclobutanes was achieved through a photocatalytic [2 + 2] cycloaddition reaction in aqueous solution. Readily available DNA-tagged styrene derivatives were reacted with structurally diverse cinnamates in the presence of an iridium-based photocatalyst, Ir(ppy)2(dtbbpy)PF6, to forge two new C(sp3)-C(sp3) bonds. This transformation was demonstrated to have excellent functional group tolerance and allowed for the facile installation of a variety of heteroaromatic substituents on a densely functionalized cyclobutane scaffold.
Collapse
Affiliation(s)
- Dominik K Kölmel
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Anokha S Ratnayake
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mark E Flanagan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mei-Hsuan Tsai
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province P. R. China
| | - Cong Duan
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province P. R. China
| | - Chao Song
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province P. R. China
| |
Collapse
|