1
|
Zhang P, Yan H, Liang Z, Zhang P, Li XH, Yuan XZ, Yu G, Wang W, Cai C. Synthesis of Fucoidan-Biomimetic Glycopolymers with Flexible Skeletons for Enhanced Anti-Herpes Virus Efficacy. ACS NANO 2025; 19:15411-15424. [PMID: 40243454 DOI: 10.1021/acsnano.4c15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Synthetic glycopolymers can be designed to mimic the structure and biological function of natural polysaccharides, offering a wide range of potential applications in the pharmaceutical and medicine. Nevertheless, amphiphilic synthetic glycopolymers commonly form biologically inert nanomicelle structures in aqueous solutions through spontaneous self-assembly. Envisioning that preventing self-assembly is pivotal to the full realization of the biological activities of the glycopolymers, we design and prepare a class of norbornene-derived hydrophilic glycopolymers containing sulfated fucose amenable to skeleton modification through ring-opening metathesis polymerization (ROMP). The skeleton of the fucoidan glycopolymers was chemically modified with hydrogen reduction, dihydroxylation, and oxidation following subsequent sulfation. We conducted physicochemical property characterization of the skeleton-modified glycopolymers to demonstrate that the hydrophilic glycopolymers have a more flexible structure compared to conventional polymers, and the sulfated fucoidan glycopolymers form a non-assembly morphology similar to the natural polysaccharides. Furthermore, the non-assembly glycopolymers exhibit significantly enhanced anti-HSV-1 activities. Our findings underscore the significance of the rational design of polymer skeletons in the development of structural and functional mimics of natural polysaccharides.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Han Yan
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhihe Liang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Zhang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao-Hua Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong Universit, Qingdao 266237, China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong Universit, Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266003, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266003, China
| |
Collapse
|
2
|
Gaikwad M, George A, Sivadas A, Karunakaran K, N S, Byradeddy SN, Mukhopadhyay C, Mudgal PP, Kulkarni M. Development and characterization of formulations based on combinatorial potential of antivirals against genital herpes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3103-3117. [PMID: 39347802 PMCID: PMC11919951 DOI: 10.1007/s00210-024-03468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Herpes simplex virus type 2 (HSV-2) treatment faces challenges due to antiviral resistance and systemic side effects of oral therapies. Local delivery of antiviral agents, such as tenofovir (TDF) and zinc acetate dihydrate (ZAD), may offer improved efficacy and reduced systemic toxicity. This study's objective is to develop and evaluate local unit dose formulations of TDF and ZAD combination for local treatment of HSV-2 infection and exploring their individual and combinatory effects in vitro. The study involved the development of immediate-release film and pessary formulations containing TDF and ZAD. These formulations were characterized for physicochemical properties and in vitro drug release profiles. Cytotoxicity and antiviral activity assays were conducted to evaluate the individual and combinatory effects of TDF and ZAD. Film formulations released over 90% of the drugs within 1 h, and pessary formulations within 90 min, ensuring effective local drug delivery. ZAD showed moderate antiviral activity while TDF exhibited significant antiviral activity at non-cytotoxic concentrations. The combination of TDF and ZAD demonstrated synergistic effects in co-infection treatments, reducing the concentration required for 50% inhibition of HSV-2. Developed film and pessary formulations offer consistent and predictable local drug delivery, enhancing antiviral efficacy while minimizing systemic side effects. The combination of TDF and ZAD showed potential synergy against HSV-2, particularly in co-infection treatments. Further preclinical studies on pharmacokinetics, safety, and efficacy are necessary to advance these formulations toward clinical application.
Collapse
Affiliation(s)
- Mahesh Gaikwad
- SCES's Indira College of Pharmacy, New Mumbai Pune Highway, Tathawade, Pune, India
| | - Amal George
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Aparna Sivadas
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Kavitha Karunakaran
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Sudheesh N
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Siddappa N Byradeddy
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE, USA
| | | | - Piya Paul Mudgal
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India.
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Mumbai Pune Highway, Tathawade, Pune, India.
| |
Collapse
|
3
|
Esporrín-Ubieto D, Sonzogni AS, Fernández M, Acera A, Matxinandiarena E, Cadavid-Vargas JF, Calafel I, Schmarsow RN, Müller AJ, Larrañaga A, Calderón M. The role of Eudragit® as a component of hydrogel formulations for medical devices. J Mater Chem B 2023; 11:9276-9289. [PMID: 37727112 DOI: 10.1039/d3tb01579c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Over the last decade, significant progress has been made in developing hydrogels as medical devices. By physically cross-linking pharmaceutically approved polymers into three-dimensional matrices, we can ensure their biocompatibility and facilitate their seamless transition from the laboratory to clinical applications. Moreover, the reversible nature of their physical cross-links allows hydrogels to dissolve in the presence of external stimuli. Particularly, their high degree of hydration, high molecular weight, and superior flexibility of the polymer chains facilitate their interaction with complex biological barriers (e.g., mucus layer), making them ideal candidates for mucosal drug delivery. However, fine-tuning the composition of the hydrogel formulations is of great importance to optimize the performance of the medical device and its therapeutic cargo. Herein, we investigated the influence of different Eudragits® on the properties of hydrogels based on polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and polyethylene glycol (PEG), which were originally proposed as ocular inserts in previous reports. Our research aims to determine the effects that including different Eudragits® have on the structure and protein ocular delivery ability of various hydrogel formulations. Properties such as matrix stability, protein encapsulation, release kinetics, mucoadhesion, and biocompatibility have been analyzed in detail. Our study represents a guideline of the features that Eudragits® have to exhibit to endow hydrogels with good adhesion to the eye's conjunctiva, biocompatibility, and structural strength to cope with the ocular biointerface and allow sustained protein release. This work has important implications for the design of new hydrogel materials containing Eudragits® in their composition, particularly in mucosal drug delivery.
Collapse
Affiliation(s)
- David Esporrín-Ubieto
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - Ana Sofía Sonzogni
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, 3000 Santa Fe, Argentina
| | - Mercedes Fernández
- POLYMAT Institute for Polymer Materials, University of the Basque Country UPV/EHU, San Sebastián, 20018, Spain
| | - Arantxa Acera
- Department of Cell Biology and Histology, Experimental Ophthalmo - Biology Group (GOBE, www.ehu.eus/gobe), University of the Basque Country UPV/EHU. B Sarriena, sn, 48940 Leioa, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Eider Matxinandiarena
- POLYMAT, Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Juan F Cadavid-Vargas
- INIFTA-CONICET-UNLP, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Itxaso Calafel
- POLYMAT Institute for Polymer Materials, University of the Basque Country UPV/EHU, San Sebastián, 20018, Spain
| | - Ruth N Schmarsow
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| | - Alejandro J Müller
- POLYMAT, Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Aitor Larrañaga
- Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
4
|
Solís-Cruz GY, Alvarez-Roman R, Rivas-Galindo VM, Galindo-Rodríguez SA, Silva-Mares DA, Marino-Martínez IA, Escobar-Saucedo M, Pérez-López LA. Formulation and optimization of polymeric nanoparticles loaded with riolozatrione: a promising nanoformulation with potential antiherpetic activity. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:457-473. [PMID: 37708959 DOI: 10.2478/acph-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 09/16/2023]
Abstract
Riolozatrione (RZ) is a diterpenoid compound isolated from a dichloromethane extract of the Jatropha dioica root. This compound has been shown to possess moderate antiherpetic activity in vitro. However, because of the poor solubility of this compound in aqueous vehicles, generating a stable formulation for potential use in the treatment of infection is challenging. The aim of this work was to optimize and physio-chemically characterize Eudragit® L100-55-based polymeric nanoparticles (NPs) loaded with RZ (NPR) for in vitro antiherpetic application. The NPs formulation was initially optimized using the dichloromethane extract of J. dioica, the major component of which was RZ. The optimized NPR formulation was stable, with a size of 263 nm, polydispersity index < 0.2, the zeta potential of -37 mV, and RZ encapsulation efficiency of 89 %. The NPR showed sustained release of RZ for 48 h with release percentages of 95 and 97 % at neutral and slightly acidic pH, respectively. Regarding in vitro antiherpetic activity, the optimized NPR showed a selectivity index for HSV-1 of ≈16 and for HSV-2 of 13.
Collapse
Affiliation(s)
- Guadalupe Y Solís-Cruz
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Rocío Alvarez-Roman
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Verónica M Rivas-Galindo
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Sergio Arturo Galindo-Rodríguez
- Autonomous University of Nuevo Leon, Faculty of Biological Sciences, Department of Chemistry San Nicolás de los Garza, Nuevo León, México
| | - David A Silva-Mares
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Iván A Marino-Martínez
- Autonomous University of Nuevo Leon, Center for Research and Development in Health Sciences Monterrey 66460, Nuevo León, México
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Pathology, Monterrey 66460, Nuevo León, México
| | - Magdalena Escobar-Saucedo
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Luis A Pérez-López
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| |
Collapse
|
5
|
Narayanan KB, Bhaskar R, Han SS. Recent Advances in the Biomedical Applications of Functionalized Nanogels. Pharmaceutics 2022; 14:2832. [PMID: 36559325 PMCID: PMC9782855 DOI: 10.3390/pharmaceutics14122832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol-ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Hoffmann M, Snyder NL, Hartmann L. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022; 55:7957-7973. [PMID: 36186574 PMCID: PMC9520969 DOI: 10.1021/acs.macromol.2c00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam Hoffmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Wang Z, Xu C, Zhang Y, Huo X, Su J. Dietary supplementation with nanoparticle CMCS-20a enhances the resistance to GCRV infection in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2022; 127:572-584. [PMID: 35798246 DOI: 10.1016/j.fsi.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Combination of antimicrobial proteins and nanomaterials provides a platform for the development of immunopotentiators. Oral administration of immunopotentiators can significantly enhance the immunity of organisms, which provides ideas for disease prevention. In this study, we confirmed that nanoparticles CMCS-20a can efficiently prevent grass carp reovirus (GCRV) infection. Firstly, we verified that CiCXCL20a is involved in the immune responses post GCRV challenge in vivo and alleviates the cell death post GCRV challenge in CIK cells. Then, we prepared nanoparticles CMCS-20a using carboxymethyl chitosan (CMCS) loaded with grass carp (Ctenopharyngodon idella) CXCL20a (CiCXCL20a). Meanwhile, we confirmed nanoparticles CMCS-20a can alleviate the degradation in intestine. Subsequently, we added it to the feed by low temperature vacuum drying method and high temperature spray drying method, respectively. Grass carp were oral administration for 28 days and challenged by GCRV. Low temperature vacuum drying group (LD-CMCS-20a) significantly improve grass carp survival rate, but not high temperature spray drying group (HD-CMCS-20a). To reveal the mechanisms, we investigated the serum biochemical indexes, intestinal mucus barrier, immune gene regulation and tissue damage. The complement component 3 content, lysozyme and total superoxide dismutase activities are highest in LD-CMCS-20a group. LD-CMCS-20a effectively attenuates the damage of GCRV to the number of intestinal villous goblet cells and mucin thickness. LD-CMCS-20a effectively regulates mRNA expressions of immune genes (IFN1, Mx2, Gig1 and IgM) in spleen and head kidney tissues. In addition, LD-CMCS-20a obviously alleviate tissue lesions and viral load in spleen. These results indicated that the nanoparticles CMCS-20a can enhance the disease resistance of fish by improving their immunity, which provides a new perspective for fish to prevent viral infections.
Collapse
Affiliation(s)
- Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Chuang Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
8
|
Akbari A, Bigham A, Rahimkhoei V, Sharifi S, Jabbari E. Antiviral Polymers: A Review. Polymers (Basel) 2022; 14:1634. [PMID: 35566804 PMCID: PMC9101550 DOI: 10.3390/polym14091634] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Polymers, due to their high molecular weight, tunable architecture, functionality, and buffering effect for endosomal escape, possess unique properties as a carrier or prophylactic agent in preventing pandemic outbreak of new viruses. Polymers are used as a carrier to reduce the minimum required dose, bioavailability, and therapeutic effectiveness of antiviral agents. Polymers are also used as multifunctional nanomaterials to, directly or indirectly, inhibit viral infections. Multifunctional polymers can interact directly with envelope glycoproteins on the viral surface to block fusion and entry of the virus in the host cell. Polymers can indirectly mobilize the immune system by activating macrophages and natural killer cells against the invading virus. This review covers natural and synthetic polymers that possess antiviral activity, their mechanism of action, and the effect of material properties like chemical composition, molecular weight, functional groups, and charge density on antiviral activity. Natural polymers like carrageenan, chitosan, fucoidan, and phosphorothioate oligonucleotides, and synthetic polymers like dendrimers and sialylated polymers are reviewed. This review discusses the steps in the viral replication cycle from binding to cell surface receptors to viral-cell fusion, replication, assembly, and release of the virus from the host cell that antiviral polymers interfere with to block viral infections.
Collapse
Affiliation(s)
- Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials—National Research Council (IPCB-CNR), Viale J.F. Kennedy 54—Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Vahid Rahimkhoei
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA;
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
9
|
Barboza CM, Pimenta DC, Vigerelli H, de Cássia Rodrigues da Silva A, Garcia JG, Zamudio RM, Castilho JG, Montanha JA, Roehe PM, de Carvalho Ruthner Batista HB. In vitro effects of bufotenine against RNA and DNA viruses. Braz J Microbiol 2021; 52:2475-2482. [PMID: 34562234 PMCID: PMC8475449 DOI: 10.1007/s42770-021-00612-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
Bufotenine, an alkaloid that can be found in plant extracts and skin secretions of amphibians, is reported to have potential antiviral activity. The present study evaluated the antiviral activity of bufotenine against different genetic lineages of rabies virus (RABV, a single-stranded, negative-sense RNA virus), canine coronavirus (CCoV, a positive-sense RNA virus) and two double-stranded DNA viruses (two strains of herpes simplex virus type 1/HSV-1 [KOS and the acyclovir-resistant HSV-1 strain 29R] and canine adenovirus 2, CAV-2). The maximal non-toxic bufotenine concentrations in Vero and BHK-21 cells were determined by MTT assays. The antiviral activity of bufotenine against each virus was assessed by examination of reductions in infectious virus titres and plaque assays. All experiments were performed with and without bufotenine, and the results were compared. Bufotenine demonstrated significant RABV inhibitory activity. No antiviral action was observed against CCoV, CAV-2 or HSV-1. These findings indicate that the antiviral activity of bufotenine is somewhat linked to the particular infectious dose used and the genetic lineage of the virus, although the mechanisms of its effects remain undetermined.
Collapse
Affiliation(s)
- Camila Mosca Barboza
- Instituto Pasteur, Av. Paulista, São Paulo, 393, Brazil.
- Universidade Federal Do ABC, Santo André, Brazil.
| | | | - Hugo Vigerelli
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Jaíne Gonçalves Garcia
- Instituto Pasteur, Av. Paulista, São Paulo, 393, Brazil
- Universidade Federal Do ABC, Santo André, Brazil
| | - Raphaela Mello Zamudio
- Instituto Pasteur, Av. Paulista, São Paulo, 393, Brazil
- Universidade Federal Do ABC, Santo André, Brazil
| | | | - Jarbas Alves Montanha
- Departamento de Produção E Matéria-Prima - Faculdade de Farmácia da Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Paulo Michel Roehe
- Instituto de Ciências Básicas da Saúde/Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
10
|
Tarasova O, Poroikov V. Machine Learning in Discovery of New Antivirals and Optimization of Viral Infections Therapy. Curr Med Chem 2021; 28:7840-7861. [PMID: 33949929 DOI: 10.2174/0929867328666210504114351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
Nowadays, computational approaches play an important role in the design of new drug-like compounds and optimization of pharmacotherapeutic treatment of diseases. The emerging growth of viral infections, including those caused by the Human Immunodeficiency Virus (HIV), Ebola virus, recently detected coronavirus, and some others, leads to many newly infected people with a high risk of death or severe complications. A huge amount of chemical, biological, clinical data is at the disposal of the researchers. Therefore, there are many opportunities to find the relationships between the particular features of chemical data and the antiviral activity of biologically active compounds based on machine learning approaches. Biological and clinical data can also be used for building models to predict relationships between viral genotype and drug resistance, which might help determine the clinical outcome of treatment. In the current study, we consider machine-learning approaches in the antiviral research carried out during the past decade. We overview in detail the application of machine-learning methods for the design of new potential antiviral agents and vaccines, drug resistance prediction, and analysis of virus-host interactions. Our review also covers the perspectives of using the machine-learning approaches for antiviral research, including Dengue, Ebola viruses, Influenza A, Human Immunodeficiency Virus, coronaviruses, and some others.
Collapse
Affiliation(s)
- Olga Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow. Russian Federation
| | - Vladimir Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow. Russian Federation
| |
Collapse
|
11
|
Pouyan P, Nie C, Bhatia S, Wedepohl S, Achazi K, Osterrieder N, Haag R. Inhibition of Herpes Simplex Virus Type 1 Attachment and Infection by Sulfated Polyglycerols with Different Architectures. Biomacromolecules 2021; 22:1545-1554. [PMID: 33706509 DOI: 10.1021/acs.biomac.0c01789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inhibition of herpes simplex virus type 1 (HSV-1) binding to the host cell surface by highly sulfated architectures is among the promising strategies to prevent virus entry and infection. However, the structural flexibility of multivalent inhibitors plays a major role in effective blockage and inhibition of virus receptors. In this study, we demonstrate the inhibitory effect of a polymer scaffold on the HSV-1 infection by using highly sulfated polyglycerols with different architectures (linear, dendronized, and hyperbranched). IC50 values for all synthesized sulfated polyglycerols and the natural sulfated polymer heparin were determined using plaque reduction infection assays. Interestingly, an increase in the IC50 value from 0.03 to 374 nM from highly flexible linear polyglycerol sulfate (LPGS) to less flexible scaffolds, namely, dendronized polyglycerol sulfate and hyperbranched polyglycerol sulfate was observed. The most potent LPGS inhibits HSV-1 infection 295 times more efficiently than heparin, and we show that LPGS has a much reduced anticoagulant capacity when compared to heparin as evidenced by measuring the activated partial thromboplastin time. Furthermore, prevention of infection by LPGS and the commercially available drug acyclovir were compared. All tested sulfated polymers do not show any cytotoxicity at concentrations of up to 1 mg/mL in different cell lines. We conclude from our results that more flexible polyglycerol sulfates are superior to less flexible sulfated polymers with respect to inhibition of HSV-1 infection and may constitute an alternative to the current antiviral treatments of this ubiquitous pathogen.
Collapse
Affiliation(s)
- Paria Pouyan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany.,Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Street 7-13, Berlin 14163, Germany
| | - Sumati Bhatia
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Stefanie Wedepohl
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee. 22, Berlin 14195, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee. 22, Berlin 14195, Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Street 7-13, Berlin 14163, Germany.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong TYB-1B-507, Hong Kong
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| |
Collapse
|