1
|
Bollen C, Louwagie S, Deroover F, Duverger W, Khodaparast L, Khodaparast L, Hofkens D, Schymkowitz J, Rousseau F, Dewachter L, Michiels J. Composition and liquid-to-solid maturation of protein aggregates contribute to bacterial dormancy development and recovery. Nat Commun 2025; 16:1046. [PMID: 39865082 PMCID: PMC11770139 DOI: 10.1038/s41467-025-56387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
Recalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli. Here, we present further support for a direct relationship between both. Our experiments demonstrate that aggregates progressively sequester proteins involved in energy production, thereby likely causing ATP depletion and dormancy. Furthermore, we demonstrate that structural features of protein aggregates determine the cell's ability to exit dormancy and resume growth. Proteins were shown to first assemble in liquid-like condensates that solidify over time. This liquid-to-solid phase transition impedes aggregate dissolution, thereby preventing growth resumption. Our data support a model in which aggregate structure, rather than cellular activity, marks the transition from the persister to the VBNC state.
Collapse
Affiliation(s)
- Celien Bollen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Sofie Louwagie
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Femke Deroover
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Wouter Duverger
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Laleh Khodaparast
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dieter Hofkens
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
- de Duve institute, Université catholique de Louvain, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Campey A, Łapińska U, Chait R, Tsaneva-Atanasova K, Pagliara S. Antibiotic resistant bacteria survive treatment by doubling while shrinking. mBio 2024; 15:e0237524. [PMID: 39565111 PMCID: PMC11633386 DOI: 10.1128/mbio.02375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Many antibiotics that are used in healthcare, farming, and aquaculture end up in environments with different spatial structures that might promote heterogeneity in the emergence of antibiotic resistance. However, the experimental evolution of microbes at sub-inhibitory concentrations of antibiotics has been mainly carried out at the population level which does not allow capturing single-cell responses to antibiotics. Here, we investigate and compare the emergence of resistance to ciprofloxacin in Escherichia coli in well-mixed and structured environments using experimental evolution, genomics, and microfluidics-based time-lapse microscopy. We discover that resistance to ciprofloxacin and cross-resistance to other antibiotics is stronger in the well-mixed environment due to the emergence of target mutations, whereas efflux regulator mutations emerge in the structured environment. The latter mutants also harbor sub-populations of persisters that survive high concentrations of ciprofloxacin that inhibit bacterial growth at the population level. In contrast, genetically resistant bacteria that display target mutations also survive high concentrations of ciprofloxacin that inhibit their growth via population-level antibiotic tolerance. These resistant and tolerant bacteria keep doubling while shrinking in size in the presence of ciprofloxacin and regain their original size after antibiotic removal, which constitutes a newly discovered phenotypic response. This new knowledge sheds light on the diversity of strategies employed by bacteria to survive antibiotics and poses a stepping stone for understanding the link between mutations at the population level and phenotypic single-cell responses. IMPORTANCE The evolution of antimicrobial resistance poses a pressing challenge to global health with an estimated 5 million deaths associated with antimicrobial resistance every year globally. Here, we investigate the diversity of strategies employed by bacteria to survive antibiotics. We discovered that bacteria evolve genetic resistance to antibiotics while simultaneously displaying tolerance to very high doses of antibiotics by doubling while shrinking in size.
Collapse
Affiliation(s)
- Adrian Campey
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Remy Chait
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, Devon, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
3
|
Kollerová S, Jouvet L, Smelková J, Zunk-Parras S, Rodríguez-Rojas A, Steiner UK. Phenotypic resistant single-cell characteristics under recurring ampicillin antibiotic exposure in Escherichia coli. mSystems 2024; 9:e0025624. [PMID: 38920373 PMCID: PMC11264686 DOI: 10.1128/msystems.00256-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Non-heritable, phenotypic drug resistance toward antibiotics challenges antibiotic therapies. Characteristics of such phenotypic resistance have implications for the evolution of heritable resistance. Diverse forms of phenotypic resistance have been described, but phenotypic resistance characteristics remain less explored than genetic resistance. Here, we add novel combinations of single-cell characteristics of phenotypic resistant E. coli cells and compare those to characteristics of susceptible cells of the parental population by exposure to different levels of recurrent ampicillin antibiotic. Contrasting expectations, we did not find commonly described characteristics of phenotypic resistant cells that arrest growth or near growth. We find that under ampicillin exposure, phenotypic resistant cells reduced their growth rate by about 50% compared to growth rates prior to antibiotic exposure. The growth reduction is a delayed alteration to antibiotic exposure, suggesting an induced response and not a stochastic switch or caused by a predetermined state as frequently described. Phenotypic resistant cells exhibiting constant slowed growth survived best under ampicillin exposure and, contrary to expectations, not only fast-growing cells suffered high mortality triggered by ampicillin but also growth-arrested cells. Our findings support diverse modes of phenotypic resistance, and we revealed resistant cell characteristics that have been associated with enhanced genetically fixed resistance evolution, which supports claims of an underappreciated role of phenotypic resistant cells toward genetic resistance evolution. A better understanding of phenotypic resistance will benefit combatting genetic resistance by developing and engulfing effective anti-phenotypic resistance strategies. IMPORTANCE Antibiotic resistance is a major challenge for modern medicine. Aside from genetic resistance to antibiotics, phenotypic resistance that is not heritable might play a crucial role for the evolution of antibiotic resistance. Using a highly controlled microfluidic system, we characterize single cells under recurrent exposure to antibiotics. Fluctuating antibiotic exposure is likely experienced under common antibiotic therapies. These phenotypic resistant cell characteristics differ from previously described phenotypic resistance, highlighting the diversity of modes of resistance. The phenotypic characteristics of resistant cells we identify also imply that such cells might provide a stepping stone toward genetic resistance, thereby causing treatment failure.
Collapse
Affiliation(s)
- Silvia Kollerová
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Lionel Jouvet
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Julia Smelková
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | | | - Ulrich K. Steiner
- Department of Biology, University of Southern Denmark, Odense, Denmark
- Biological Institute, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Kraus S, Fletcher ML, Łapińska U, Chawla K, Baker E, Attrill EL, O'Neill P, Farbos A, Jeffries A, Galyov EE, Korbsrisate S, Barnes KB, Harding SV, Tsaneva-Atanasova K, Blaskovich MAT, Pagliara S. Phage-induced efflux down-regulation boosts antibiotic efficacy. PLoS Pathog 2024; 20:e1012361. [PMID: 38941361 PMCID: PMC11239113 DOI: 10.1371/journal.ppat.1012361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/11/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
The interactions between a virus and its host vary in space and time and are affected by the presence of molecules that alter the physiology of either the host or the virus. Determining the molecular mechanisms at the basis of these interactions is paramount for predicting the fate of bacterial and phage populations and for designing rational phage-antibiotic therapies. We study the interactions between stationary phase Burkholderia thailandensis and the phage ΦBp-AMP1. Although heterogeneous genetic resistance to phage rapidly emerges in B. thailandensis, the presence of phage enhances the efficacy of three major antibiotic classes, the quinolones, the beta-lactams and the tetracyclines, but antagonizes tetrahydrofolate synthesis inhibitors. We discovered that enhanced antibiotic efficacy is facilitated by reduced antibiotic efflux in the presence of phage. This new phage-antibiotic therapy allows for eradication of stationary phase bacteria, whilst requiring reduced antibiotic concentrations, which is crucial for treating infections in sites where it is difficult to achieve high antibiotic concentrations.
Collapse
Affiliation(s)
- Samuel Kraus
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Megan L Fletcher
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Krina Chawla
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Evan Baker
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Erin L Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Paul O'Neill
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Audrey Farbos
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Aaron Jeffries
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Thailand
| | - Kay B Barnes
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
5
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. Influence of N ε-Lysine Acetylation on the Formation of Protein Aggregates and Antibiotic Persistence in E. coli. Molecules 2024; 29:383. [PMID: 38257296 PMCID: PMC10819833 DOI: 10.3390/molecules29020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Numerous studies indicate that reversible Nε-lysine acetylation in bacteria may play a key role in the regulation of metabolic processes, transcription and translation, biofilm formation, virulence, and drug resistance. Using appropriate mutant strains deficient in non-enzymatic acetylation and enzymatic acetylation or deacetylation pathways, we investigated the influence of protein acetylation on cell viability, protein aggregation, and persister formation in Escherichia coli. Lysine acetylation was found to increase protein aggregation and cell viability under the late stationary phase. Moreover, increased lysine acetylation stimulated the formation of persisters. These results suggest that acetylation-dependent aggregation may improve the survival of bacteria under adverse conditions (such as the late stationary phase) and during antibiotic treatment. Further experiments revealed that acetylation-favorable conditions may increase persister formation in Klebsiella pneumoniae clinical isolate. However, the exact mechanisms underlying the relationship between acetylation and persistence in this pathogen remain to be elucidated.
Collapse
Affiliation(s)
| | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.S.-S.); (D.K.-W.)
| |
Collapse
|
6
|
Attrill EL, Łapińska U, Westra ER, Harding SV, Pagliara S. Slow growing bacteria survive bacteriophage in isolation. ISME COMMUNICATIONS 2023; 3:95. [PMID: 37684358 PMCID: PMC10491631 DOI: 10.1038/s43705-023-00299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
The interactions between bacteria and bacteriophage have important roles in the global ecosystem; in turn changes in environmental parameters affect the interactions between bacteria and phage. However, there is a lack of knowledge on whether clonal bacterial populations harbour different phenotypes that respond to phage in distinct ways and whether the abundance of such phenotypes within bacterial populations is affected by variations in environmental parameters. Here we study the impact of variations in nutrient availability, bacterial growth rate and phage abundance on the interactions between the phage T4 and individual Escherichia coli cells confined in spatial refuges. Surprisingly, we found that fast growing bacteria survive together with all of their clonal kin cells, whereas slow growing bacteria survive in isolation. We also discovered that the number of bacteria that survive in isolation decreases at increasing phage doses possibly due to lysis inhibition in the presence of secondary adsorptions. We further show that these changes in the phenotypic composition of the E. coli population have important consequences on the bacterial and phage population dynamics and should therefore be considered when investigating bacteria-phage interactions in ecological, health or food production settings in structured environments.
Collapse
Affiliation(s)
- Erin L Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK
| | - Edze R Westra
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, UK
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
7
|
Liu Z, Christensen SM, Capaldi X, Hosseini SI, Zeng L, Zhang Y, Reyes-Lamothe R, Reisner W. Characterizing interaction of multiple nanocavity confined plasmids in presence of large DNA model nucleoid. SOFT MATTER 2023; 19:6545-6555. [PMID: 37599597 DOI: 10.1039/d3sm00491k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Bacteria have numerous large dsDNA molecules that freely interact within the cell, including multiple plasmids, primary and secondary chromosomes. The cell membrane maintains a micron-scale confinement, ensuring that the dsDNA species are proximal at all times and interact strongly in a manner influenced by the cell morphology (e.g. whether cell geometry is spherical or anisotropic). These interactions lead to non-uniform spatial organization and complex dynamics, including segregation of plasmid DNA to polar and membrane proximal regions. However, exactly how this organization arises, how it depends on cell morphology and number of interacting dsDNA species are under debate. Here, using an in vitro nanofluidic model, featuring a cavity that can be opened and closed in situ, we address how plasmid copy number and confinement geometry alter plasmid spatial distribution and dynamics. We find that increasing the plasmid number alters the plasmid spatial distribution and shortens the plasmid polar dwell time; sharper cavity end curvature leads to longer plasmid dwell times.
Collapse
Affiliation(s)
- Zezhou Liu
- Department of Physics, McGill University, 3600 rue université, Montréal, Québec, H3A 2T8, Canada.
| | - Sarah M Christensen
- Department of Physics, McGill University, 3600 rue université, Montréal, Québec, H3A 2T8, Canada.
- Department of Physics, The University of Chicago, Eckhardt, 5720 S Ellis Ave, Chicago, IL 60637, USA
| | - Xavier Capaldi
- Department of Physics, McGill University, 3600 rue université, Montréal, Québec, H3A 2T8, Canada.
| | - Seyed Imman Hosseini
- Department of Bioengineering, McGill University, 3775 rue université, Montréal, Québec, H3A 2B4, Canada
| | - Lili Zeng
- Department of Physics, McGill University, 3600 rue université, Montréal, Québec, H3A 2T8, Canada.
| | - Yuning Zhang
- Department of Physics, McGill University, 3600 rue université, Montréal, Québec, H3A 2T8, Canada.
- BGI Research, Shenzhen, 518083, China
| | - Rodrigo Reyes-Lamothe
- Department of Biology, McGill University, 33649 Sir William Osler, Montréal, Québec, H3G 0B18, Canada
| | - Walter Reisner
- Department of Physics, McGill University, 3600 rue université, Montréal, Québec, H3A 2T8, Canada.
| |
Collapse
|
8
|
Bollen C, Louwagie E, Verstraeten N, Michiels J, Ruelens P. Environmental, mechanistic and evolutionary landscape of antibiotic persistence. EMBO Rep 2023; 24:e57309. [PMID: 37395716 PMCID: PMC10398667 DOI: 10.15252/embr.202357309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
Recalcitrant infections pose a serious challenge by prolonging antibiotic therapies and contributing to the spread of antibiotic resistance, thereby threatening the successful treatment of bacterial infections. One potential contributing factor in persistent infections is antibiotic persistence, which involves the survival of transiently tolerant subpopulations of bacteria. This review summarizes the current understanding of antibiotic persistence, including its clinical significance and the environmental and evolutionary factors at play. Additionally, we discuss the emerging concept of persister regrowth and potential strategies to combat persister cells. Recent advances highlight the multifaceted nature of persistence, which is controlled by deterministic and stochastic elements and shaped by genetic and environmental factors. To translate in vitro findings to in vivo settings, it is crucial to include the heterogeneity and complexity of bacterial populations in natural environments. As researchers continue to gain a more holistic understanding of this phenomenon and develop effective treatments for persistent bacterial infections, the study of antibiotic persistence is likely to become increasingly complex.
Collapse
Affiliation(s)
- Celien Bollen
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Elen Louwagie
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Jan Michiels
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Philip Ruelens
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
- Laboratory of Socioecology and Social EvolutionKU LeuvenLeuvenBelgium
| |
Collapse
|
9
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. New Strategies to Kill Metabolically-Dormant Cells Directly Bypassing the Need for Active Cellular Processes. Antibiotics (Basel) 2023; 12:1044. [PMID: 37370363 DOI: 10.3390/antibiotics12061044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic therapy failure is often caused by the presence of persister cells, which are metabolically-dormant bacteria capable of surviving exposure to antimicrobials. Under favorable conditions, persisters can resume growth leading to recurrent infections. Moreover, several studies have indicated that persisters may promote the evolution of antimicrobial resistance and facilitate the selection of specific resistant mutants; therefore, in light of the increasing numbers of multidrug-resistant infections worldwide, developing efficient strategies against dormant cells is of paramount importance. In this review, we present and discuss the efficacy of various agents whose antimicrobial activity is independent of the metabolic status of the bacteria as they target cell envelope structures. Since the biofilm-environment is favorable for the formation of dormant subpopulations, anti-persister strategies should also include agents that destroy the biofilm matrix or inhibit biofilm development. This article reviews examples of selected cell wall hydrolases, polysaccharide depolymerases and antimicrobial peptides. Their combination with standard antibiotics seems to be the most promising approach in combating persistent infections.
Collapse
Affiliation(s)
- Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
10
|
Zhang Y, Kepiro I, Ryadnov MG, Pagliara S. Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes. Microbiol Spectr 2023; 11:e0366722. [PMID: 36651776 PMCID: PMC9927147 DOI: 10.1128/spectrum.03667-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
With the spread of multidrug-resistant bacteria, there has been an increasing focus on molecular classes that have not yet yielded an antibiotic. A key capability for assessing and prescribing new antibacterial treatments is to compare the effects antibacterial agents have on bacterial growth at a phenotypic, single-cell level. Here, we combined time-lapse microscopy with microfluidics to investigate the concentration-dependent killing kinetics of stationary-phase Escherichia coli cells. We used antibacterial agents from three different molecular classes, β-lactams and fluoroquinolones, with the known antibiotics ampicillin and ciprofloxacin, respectively, and a new experimental class, protein Ψ-capsids. We found that bacterial cells elongated when treated with ampicillin and ciprofloxacin used at their minimum inhibitory concentration (MIC). This was in contrast to Ψ-capsids, which arrested bacterial elongation within the first two hours of treatment. At concentrations exceeding the MIC, all the antibacterial agents tested arrested bacterial growth within the first 2 h of treatment. Further, our single-cell experiments revealed differences in the modes of action of three different agents. At the MIC, ampicillin and ciprofloxacin caused the lysis of bacterial cells, whereas at higher concentrations, the mode of action shifted toward membrane disruption. The Ψ-capsids killed cells by disrupting their membranes at all concentrations tested. Finally, at increasing concentrations, ampicillin and Ψ-capsids reduced the fraction of the population that survived treatment in a viable but nonculturable state, whereas ciprofloxacin increased this fraction. This study introduces an effective capability to differentiate the killing kinetics of antibacterial agents from different molecular classes and offers a high content analysis of antibacterial mechanisms at the single-cell level. IMPORTANCE Antibiotics act against bacterial pathogens by inhibiting their growth or killing them directly. Different modes of action determine different antibacterial responses, whereas phenotypic differences in bacteria can challenge the efficacy of antibiotics. Therefore, it is important to be able to differentiate the concentration-dependent killing kinetics of antibacterial agents at a single-cell level, in particular for molecular classes which have not yielded an antibiotic before. Here, we measured single-cell responses using microfluidics-enabled imaging, revealing that a novel class of antibacterial agents, protein Ψ-capsids, arrests bacterial elongation at the onset of treatment, whereas elongation continues for cells treated with β-lactam and fluoroquinolone antibiotics. The study advances our current understanding of antibacterial function and offers an effective strategy for the comparative design of new antibacterial therapies, as well as clinical antibiotic susceptibility testing.
Collapse
Affiliation(s)
- Yuewen Zhang
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- National Physical Laboratory, Teddington, United Kingdom
| | - Ibolya Kepiro
- National Physical Laboratory, Teddington, United Kingdom
| | - Maxim G. Ryadnov
- National Physical Laboratory, Teddington, United Kingdom
- Department of Physics, King’s College London, London, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Manrique PD, López CA, Gnanakaran S, Rybenkov VV, Zgurskaya HI. New understanding of multidrug efflux and permeation in antibiotic resistance, persistence, and heteroresistance. Ann N Y Acad Sci 2023; 1519:46-62. [PMID: 36344198 PMCID: PMC9839546 DOI: 10.1111/nyas.14921] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antibiotics effective against Gram-negative ESKAPE pathogens are a critical area of unmet need. Infections caused by these pathogens are not only difficult to treat but finding new therapies to overcome Gram-negative resistance is also a challenge. There are not enough antibiotics in development that target the most dangerous pathogens and there are not enough novel drugs in the pipeline. The major obstacle in the antibiotic discovery pipeline is the lack of understanding of how to breach antibiotic permeability barriers of Gram-negative pathogens. These barriers are created by active efflux pumps acting across both the inner and the outer membranes. Overproduction of efflux pumps alone or together with either modification of the outer membrane or antibiotic-inactivating enzymes and target mutations contribute to clinical levels of antibiotics resistance. Recent efforts have generated significant advances in the rationalization of compound efflux and permeation across the cell envelopes of Gram-negative pathogens. Combined with earlier studies and novel mathematical models, these efforts have led to a multilevel understanding of how antibiotics permeate these barriers and how multidrug efflux and permeation contribute to the development of antibiotic resistance and heteroresistance. Here, we discuss the new developments in this area.
Collapse
Affiliation(s)
- Pedro D. Manrique
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
- Present address: Physics Department, George Washington University, Washington D.C. 20052, United States
| | - Cesar A. López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| |
Collapse
|
12
|
Singh G, Orman MA, Conrad JC, Nikolaou M. Systematic design of pulse dosing to eradicate persister bacteria. PLoS Comput Biol 2023; 19:e1010243. [PMID: 36649322 PMCID: PMC9882918 DOI: 10.1371/journal.pcbi.1010243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/27/2023] [Accepted: 11/29/2022] [Indexed: 01/18/2023] Open
Abstract
A small fraction of infectious bacteria use persistence as a strategy to survive exposure to antibiotics. Periodic pulse dosing of antibiotics has long been considered a potentially effective strategy towards eradication of persisters. Recent studies have demonstrated through in vitro experiments that it is indeed feasible to achieve such effectiveness. However, systematic design of periodic pulse dosing regimens to treat persisters is currently lacking. Here we rigorously develop a methodology for the systematic design of optimal periodic pulse dosing strategies for rapid eradication of persisters. A key outcome of the theoretical analysis, on which the proposed methodology is based, is that bactericidal effectiveness of periodic pulse dosing depends mainly on the ratio of durations of the corresponding on and off parts of the pulse. Simple formulas for critical and optimal values of this ratio are derived. The proposed methodology is supported by computer simulations and in vitro experiments.
Collapse
Affiliation(s)
- Garima Singh
- Chemical and Biomolecular Engineering Department, University of Houston, Houston, Texas, United States of America
| | - Mehmet A. Orman
- Chemical and Biomolecular Engineering Department, University of Houston, Houston, Texas, United States of America
| | - Jacinta C. Conrad
- Chemical and Biomolecular Engineering Department, University of Houston, Houston, Texas, United States of America
| | - Michael Nikolaou
- Chemical and Biomolecular Engineering Department, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
13
|
Shi X, Zarkan A. Bacterial survivors: evaluating the mechanisms of antibiotic persistence. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748698 DOI: 10.1099/mic.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin-antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Cambridge Centre for International Research, Cambridge CB4 0PZ, UK
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
14
|
Allard P, Papazotos F, Potvin-Trottier L. Microfluidics for long-term single-cell time-lapse microscopy: Advances and applications. Front Bioeng Biotechnol 2022; 10:968342. [PMID: 36312536 PMCID: PMC9597311 DOI: 10.3389/fbioe.2022.968342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are inherently dynamic, whether they are responding to environmental conditions or simply at equilibrium, with biomolecules constantly being made and destroyed. Due to their small volumes, the chemical reactions inside cells are stochastic, such that genetically identical cells display heterogeneous behaviors and gene expression profiles. Studying these dynamic processes is challenging, but the development of microfluidic methods enabling the tracking of individual prokaryotic cells with microscopy over long time periods under controlled growth conditions has led to many discoveries. This review focuses on the recent developments of one such microfluidic device nicknamed the mother machine. We overview the original device design, experimental setup, and challenges associated with this platform. We then describe recent methods for analyzing experiments using automated image segmentation and tracking. We further discuss modifications to the experimental setup that allow for time-varying environmental control, replicating batch culture conditions, cell screening based on their dynamic behaviors, and to accommodate a variety of microbial species. Finally, this review highlights the discoveries enabled by this technology in diverse fields, such as cell-size control, genetic mutations, cellular aging, and synthetic biology.
Collapse
Affiliation(s)
- Paige Allard
- Department of Biology, Concordia University, Montréal, QC, Canada
| | - Fotini Papazotos
- Department of Biology, Concordia University, Montréal, QC, Canada
| | - Laurent Potvin-Trottier
- Department of Biology, Concordia University, Montréal, QC, Canada
- Department of Physics, Concordia University, Montréal, QC, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, Canada
- *Correspondence: Laurent Potvin-Trottier,
| |
Collapse
|
15
|
Confinement anisotropy drives polar organization of two DNA molecules interacting in a nanoscale cavity. Nat Commun 2022; 13:4358. [PMID: 35902565 PMCID: PMC9334635 DOI: 10.1038/s41467-022-31398-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022] Open
Abstract
There is growing appreciation for the role phase transition based phenomena play in biological systems. In particular, self-avoiding polymer chains are predicted to undergo a unique confinement dependent demixing transition as the anisotropy of the confined space is increased. This phenomenon may be relevant for understanding how interactions between multiple dsDNA molecules can induce self-organized structure in prokaryotes. While recent in vivo experiments and Monte Carlo simulations have delivered essential insights into this phenomenon and its relation to bacteria, there are fundamental questions remaining concerning how segregated polymer states arise, the role of confinement anisotropy and the nature of the dynamics in the segregated states. To address these questions, we introduce an artificial nanofluidic model to quantify the interactions of multiple dsDNA molecules in cavities with controlled anisotropy. We find that two dsDNA molecules of equal size confined in an elliptical cavity will spontaneously demix and orient along the cavity poles as cavity eccentricity is increased; the two chains will then swap pole positions with a frequency that decreases with increasing cavity eccentricity. In addition, we explore a system consisting of a large dsDNA molecule and a plasmid molecule. We find that the plasmid is excluded from the larger molecule and will exhibit a preference for the ellipse poles, giving rise to a non-uniform spatial distribution in the cavity that may help explain the non-uniform plasmid distribution observed during in vivo imaging of high-copy number plasmids in bacteria.
Collapse
|
16
|
Tricomi J, Cacaci M, Biagiotti G, Caselli L, Niccoli L, Torelli R, Gabbani A, Di Vito M, Pineider F, Severi M, Sanguinetti M, Menna E, Lelli M, Berti D, Cicchi S, Bugli F, Richichi B. Ball milled glyco-graphene oxide conjugates markedly disrupted Pseudomonas aeruginosa biofilms. NANOSCALE 2022; 14:10190-10199. [PMID: 35796327 DOI: 10.1039/d2nr02027k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.
Collapse
Affiliation(s)
- Jacopo Tricomi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Margherita Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giacomo Biagiotti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Lucrezia Caselli
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Italian Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy
| | - Lorenzo Niccoli
- Magnetic Resonance Centre (CERM), Department of Chemistry 'Ugo Schiff', University of Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessio Gabbani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56132 Pisa, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesco Pineider
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56132 Pisa, Italy
| | - Mirko Severi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Menna
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Centre for Mechanics of Biological Materials - CMBM, Via Marzolo 9, 35131 Padova, Italy
| | - Moreno Lelli
- Magnetic Resonance Centre (CERM), Department of Chemistry 'Ugo Schiff', University of Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Debora Berti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Italian Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy
| | - Stefano Cicchi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| |
Collapse
|
17
|
Łapińska U, Voliotis M, Lee KK, Campey A, Stone MRL, Tuck B, Phetsang W, Zhang B, Tsaneva-Atanasova K, Blaskovich MAT, Pagliara S. Fast bacterial growth reduces antibiotic accumulation and efficacy. eLife 2022; 11:e74062. [PMID: 35670099 PMCID: PMC9173744 DOI: 10.7554/elife.74062] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/08/2022] [Indexed: 12/11/2022] Open
Abstract
Phenotypic variations between individual microbial cells play a key role in the resistance of microbial pathogens to pharmacotherapies. Nevertheless, little is known about cell individuality in antibiotic accumulation. Here, we hypothesise that phenotypic diversification can be driven by fundamental cell-to-cell differences in drug transport rates. To test this hypothesis, we employed microfluidics-based single-cell microscopy, libraries of fluorescent antibiotic probes and mathematical modelling. This approach allowed us to rapidly identify phenotypic variants that avoid antibiotic accumulation within populations of Escherichia coli, Pseudomonas aeruginosa, Burkholderia cenocepacia, and Staphylococcus aureus. Crucially, we found that fast growing phenotypic variants avoid macrolide accumulation and survive treatment without genetic mutations. These findings are in contrast with the current consensus that cellular dormancy and slow metabolism underlie bacterial survival to antibiotics. Our results also show that fast growing variants display significantly higher expression of ribosomal promoters before drug treatment compared to slow growing variants. Drug-free active ribosomes facilitate essential cellular processes in these fast-growing variants, including efflux that can reduce macrolide accumulation. We used this new knowledge to eradicate variants that displayed low antibiotic accumulation through the chemical manipulation of their outer membrane inspiring new avenues to overcome current antibiotic treatment failures.
Collapse
Affiliation(s)
- Urszula Łapińska
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Margaritis Voliotis
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Department of Mathematics, University of ExeterExeterUnited Kingdom
| | - Ka Kiu Lee
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Adrian Campey
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New JerseyPiscatawayUnited States
| | - Brandon Tuck
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Wanida Phetsang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Bing Zhang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Department of Mathematics, University of ExeterExeterUnited Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of ExeterExeterUnited Kingdom
- Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofiaBulgaria
| | - Mark AT Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Stefano Pagliara
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| |
Collapse
|
18
|
Glover G, Voliotis M, Łapińska U, Invergo BM, Soanes D, O'Neill P, Moore K, Nikolic N, Petrov PG, Milner DS, Roy S, Heesom K, Richards TA, Tsaneva-Atanasova K, Pagliara S. Nutrient and salt depletion synergistically boosts glucose metabolism in individual Escherichia coli cells. Commun Biol 2022; 5:385. [PMID: 35444215 PMCID: PMC9021252 DOI: 10.1038/s42003-022-03336-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
The interaction between a cell and its environment shapes fundamental intracellular processes such as cellular metabolism. In most cases growth rate is treated as a proximal metric for understanding the cellular metabolic status. However, changes in growth rate might not reflect metabolic variations in individuals responding to environmental fluctuations. Here we use single-cell microfluidics-microscopy combined with transcriptomics, proteomics and mathematical modelling to quantify the accumulation of glucose within Escherichia coli cells. In contrast to the current consensus, we reveal that environmental conditions which are comparatively unfavourable for growth, where both nutrients and salinity are depleted, increase glucose accumulation rates in individual bacteria and population subsets. We find that these changes in metabolic function are underpinned by variations at the translational and posttranslational level but not at the transcriptional level and are not dictated by changes in cell size. The metabolic response-characteristics identified greatly advance our fundamental understanding of the interactions between bacteria and their environment and have important ramifications when investigating cellular processes where salinity plays an important role.
Collapse
Affiliation(s)
- Georgina Glover
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
| | - Margaritis Voliotis
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
| | - Urszula Łapińska
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Brandon M Invergo
- Translational Research Exchange at Exeter, University of Exeter, Exeter, UK
| | - Darren Soanes
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Paul O'Neill
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Karen Moore
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Nela Nikolic
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Peter G Petrov
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
| | - David S Milner
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Sumita Roy
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Kate Heesom
- University of Bristol Proteomics Facility, University Walk, Bristol, BS8 1TD, UK
| | - Thomas A Richards
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
- Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK.
| |
Collapse
|
19
|
Cama J, Al Nahas K, Fletcher M, Hammond K, Ryadnov MG, Keyser UF, Pagliara S. An ultrasensitive microfluidic approach reveals correlations between the physico-chemical and biological activity of experimental peptide antibiotics. Sci Rep 2022; 12:4005. [PMID: 35256720 PMCID: PMC8901753 DOI: 10.1038/s41598-022-07973-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance challenges the ability of modern medicine to contain infections. Given the dire need for new antimicrobials, polypeptide antibiotics hold particular promise. These agents hit multiple targets in bacteria starting with their most exposed regions-their membranes. However, suitable approaches to quantify the efficacy of polypeptide antibiotics at the membrane and cellular level have been lacking. Here, we employ two complementary microfluidic platforms to probe the structure-activity relationships of two experimental series of polypeptide antibiotics. We reveal strong correlations between each peptide's physicochemical activity at the membrane level and biological activity at the cellular level. We achieve this knowledge by assaying the membranolytic activities of the compounds on hundreds of individual giant lipid vesicles, and by quantifying phenotypic responses within clonal bacterial populations with single-cell resolution. Our strategy proved capable of detecting differential responses for peptides with single amino acid substitutions between them, and can accelerate the rational design and development of peptide antimicrobials.
Collapse
Affiliation(s)
- Jehangir Cama
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter, EX4 4QF, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Kareem Al Nahas
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Marcus Fletcher
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
- Department of Physics, King's College London, Strand Lane, London, WC2R 2LS, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
20
|
Van den Bergh B, Schramke H, Michiels JE, Kimkes TEP, Radzikowski JL, Schimpf J, Vedelaar SR, Burschel S, Dewachter L, Lončar N, Schmidt A, Meijer T, Fauvart M, Friedrich T, Michiels J, Heinemann M. Mutations in respiratory complex I promote antibiotic persistence through alterations in intracellular acidity and protein synthesis. Nat Commun 2022; 13:546. [PMID: 35087069 PMCID: PMC8795404 DOI: 10.1038/s41467-022-28141-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 01/04/2022] [Indexed: 11/28/2022] Open
Abstract
Antibiotic persistence describes the presence of phenotypic variants within an isogenic bacterial population that are transiently tolerant to antibiotic treatment. Perturbations of metabolic homeostasis can promote antibiotic persistence, but the precise mechanisms are not well understood. Here, we use laboratory evolution, population-wide sequencing and biochemical characterizations to identify mutations in respiratory complex I and discover how they promote persistence in Escherichia coli. We show that persistence-inducing perturbations of metabolic homeostasis are associated with cytoplasmic acidification. Such cytoplasmic acidification is further strengthened by compromised proton pumping in the complex I mutants. While RpoS regulon activation induces persistence in the wild type, the aggravated cytoplasmic acidification in the complex I mutants leads to increased persistence via global shutdown of protein synthesis. Thus, we propose that cytoplasmic acidification, amplified by a compromised complex I, can act as a signaling hub for perturbed metabolic homeostasis in antibiotic persisters.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Hannah Schramke
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Joran Elie Michiels
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium
| | - Tom E P Kimkes
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Jakub Leszek Radzikowski
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Johannes Schimpf
- Molecular Bioenergetics, Institute of Biochemistry, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Silke R Vedelaar
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Sabrina Burschel
- Molecular Bioenergetics, Institute of Biochemistry, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Liselot Dewachter
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium
| | - Nikola Lončar
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Tim Meijer
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Thorsten Friedrich
- Molecular Bioenergetics, Institute of Biochemistry, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium.
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium.
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands.
| |
Collapse
|
21
|
Bugs on Drugs: A Drosophila melanogaster Gut Model to Study In Vivo Antibiotic Tolerance of E. coli. Microorganisms 2022; 10:microorganisms10010119. [PMID: 35056568 PMCID: PMC8780219 DOI: 10.3390/microorganisms10010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
With an antibiotic crisis upon us, we need to boost antibiotic development and improve antibiotics’ efficacy. Crucial is knowing how to efficiently kill bacteria, especially in more complex in vivo conditions. Indeed, many bacteria harbor antibiotic-tolerant persisters, variants that survive exposure to our most potent antibiotics and catalyze resistance development. However, persistence is often only studied in vitro as we lack flexible in vivo models. Here, I explored the potential of using Drosophila melanogaster as a model for antimicrobial research, combining methods in Drosophila with microbiology techniques: assessing fly development and feeding, generating germ-free or bacteria-associated Drosophila and in situ microscopy. Adult flies tolerate antibiotics at high doses, although germ-free larvae show impaired development. Orally presented E. coli associates with Drosophila and mostly resides in the crop. E. coli shows an overall high antibiotic tolerance in vivo potentially resulting from heterogeneity in growth rates. The hipA7 high-persistence mutant displays an increased antibiotic survival while the expected low persistence of ΔrelAΔspoT and ΔrpoS mutants cannot be confirmed in vivo. In conclusion, a Drosophila model for in vivo antibiotic tolerance research shows high potential and offers a flexible system to test findings from in vitro assays in a broader, more complex condition.
Collapse
|
22
|
Application of antibiotic-derived fluorescent probes to bacterial studies. Methods Enzymol 2022; 665:1-28. [DOI: 10.1016/bs.mie.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Meshaal AK, Hetta HF, Yahia R, Abualnaja KM, Mansour AT, Al-Kadmy IMS, Alghamdi S, Dablool AS, Emran TB, Sedky H, Batiha GES, El-Kazzaz W. In Vitro Antimicrobial Activity of Medicinal Plant Extracts against Some Bacterial Pathogens Isolated from Raw and Processed Meat. Life (Basel) 2021; 11:1178. [PMID: 34833054 PMCID: PMC8620572 DOI: 10.3390/life11111178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIM The poultry meat and its products are considered ideal media for bacterial growth and spoilage, as they are highly nutritive with a favorable pH. The food industry has focused its attention on a great diversity of plant species as food preservatives. The aim of this study was to investigate the presence of Staphylococcus aureus, Escherichia coli O157: H7, and Klebsiella pneumonia in food samples and to evaluate of the antibacterial activity of some medicinal plant extracts against these bacteria. METHODS Raw and processed meat samples (n = 60) were collected from abattoirs and local markets. S. aureus, E. coli O157: H7, and K. pneumonia were isolated, identified by phenotypic methods, and then confirmed by 16S rRNA gene sequencing. The antibacterial activity and spectrum of essential oils and spices powder of cumin, black seeds, cloves, cinnamon, and marjoram was determined against the isolated strains in this study by microbial count and well-diffusion techniques. RESULTS A total of 33 isolates have been identified as S. aureus, 30 isolates were identified as E. coli O157: H7, and 15 isolates were identified as K. pneumonia. S. aureus, E. coli O157: H7, and K. pneumonia could be detected in both fresh and processed food with higher prevalence in the processed meat. There was a significant decrease in microbial count in treated samples either with the spices powder or essential oils of the tested medicinal plants compared to control samples during storage time period. Furthermore, while the microbial count increased in the control samples, the microbial count decreased to reach zero in almost all treated samples with essential oils after 15 days of storage. CONCLUSION S. aureus, E. coli O157: H7, and K. pneumonia are associated with food from animal sources, in either fresh or processed meat samples. The prevalence of them was higher in the processed meat than in fresh meat. The essential oils and spices powder of cumin, black seeds, cloves, cinnamon, and marjoram have an in vitro wide spectrum antibacterial activity with the highest antibacterial activity for the black seeds.
Collapse
Affiliation(s)
- Ahmed Kh. Meshaal
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt
| | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 61512, Egypt;
| | - Khamael M. Abualnaja
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Israa M. S. Al-Kadmy
- Faculty of Science and Engineering, School of Engineering, University of Plymouth, Plymouth PL4 8AA, UK;
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, Baghdad 10244, Iraq
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Anas S. Dablool
- Department of Public Health, Health Sciences College at Al-Leith, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Haitham Sedky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhur 22511, Egypt;
| | - Waleed El-Kazzaz
- Molecular Microbiology Lab., Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
24
|
Mohiuddin SG, Ghosh S, Ngo HG, Sensenbach S, Karki P, Dewangan NK, Angardi V, Orman MA. Cellular Self-Digestion and Persistence in Bacteria. Microorganisms 2021; 9:2269. [PMID: 34835393 PMCID: PMC8626048 DOI: 10.3390/microorganisms9112269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients. However, self-digestion may also provide temporary protection from antibiotics until the self-digestion-mediated damage is repaired. In fact, many persistence mechanisms identified to date may be directly or indirectly related to self-digestion, as these processes are also mediated by many degradative enzymes, including proteases and ribonucleases (RNases). In this review article, we will discuss the potential roles of self-digestion in bacterial persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA; (S.G.M.); (S.G.); (H.G.N.); (S.S.); (P.K.); (N.K.D.); (V.A.)
| |
Collapse
|
25
|
Attrill EL, Claydon R, Łapińska U, Recker M, Meaden S, Brown AT, Westra ER, Harding SV, Pagliara S. Individual bacteria in structured environments rely on phenotypic resistance to phage. PLoS Biol 2021; 19:e3001406. [PMID: 34637438 PMCID: PMC8509860 DOI: 10.1371/journal.pbio.3001406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages represent an avenue to overcome the current antibiotic resistance crisis, but evolution of genetic resistance to phages remains a concern. In vitro, bacteria evolve genetic resistance, preventing phage adsorption or degrading phage DNA. In natural environments, evolved resistance is lower possibly because the spatial heterogeneity within biofilms, microcolonies, or wall populations favours phenotypic survival to lytic phages. However, it is also possible that the persistence of genetically sensitive bacteria is due to less efficient phage amplification in natural environments, the existence of refuges where bacteria can hide, and a reduced spread of resistant genotypes. Here, we monitor the interactions between individual planktonic bacteria in isolation in ephemeral refuges and bacteriophage by tracking the survival of individual cells. We find that in these transient spatial refuges, phenotypic resistance due to reduced expression of the phage receptor is a key determinant of bacterial survival. This survival strategy is in contrast with the emergence of genetic resistance in the absence of ephemeral refuges in well-mixed environments. Predictions generated via a mathematical modelling framework to track bacterial response to phages reveal that the presence of spatial refuges leads to fundamentally different population dynamics that should be considered in order to predict and manipulate the evolutionary and ecological dynamics of bacteria–phage interactions in naturally structured environments. Bacteriophages represent a promising avenue to overcome the current antibiotic resistance crisis, but evolution of phage resistance remains a concern. This study shows that in the presence of spatial refuges, genetic resistance to phage is less of a problem than commonly assumed, but the persistence of genetically susceptible bacteria suggests that eradicating bacterial pathogens from structured environments may require combined phage-antibiotic therapies.
Collapse
Affiliation(s)
- Erin L. Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rory Claydon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Sean Meaden
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aidan T. Brown
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Edze R. Westra
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
| | - Sarah V. Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|