1
|
Stephens C, Goodey NM, Gubler U. A beginners guide to SELEX and DNA aptamers. Anal Biochem 2025; 703:115890. [PMID: 40320157 DOI: 10.1016/j.ab.2025.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/25/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
SELEX stands for "Systematic Evolution of Ligands by Exponential Enrichment." It is an in vitro, iterative, PCR-based, target-specific selection strategy used to generate single-stranded DNA (ssDNA) aptamers that bind a target of interest. Properly selected aptamers bind their targets with high affinity and specificity and have utility in a multitude of detection assays. They are thus similar to antibodies but have the advantage of being more stable and cheaper to produce. The SELEX process encompasses several steps, some of which are critical to the successful isolation of an aptamer. Careful analysis and optimization of the SELEX process are thus important. This review summarizes our own experience when we, as complete novices, were setting up the SELEX system in our lab. It is thus meant to give some general and practical but concise pointers for anyone interested in initiating their own SELEX experiments. As such, the review covers key elements of the SELEX process, including library design, target selection and immobilization strategies, aptamer binding conditions, partitioning techniques, and PCR optimization. We also discuss common pitfalls such as by-product formation and single-stranded DNA recovery challenges, along with practical strategies to overcome them. Emerging trends and post-SELEX considerations, such as sequencing, structure prediction, and chemical modifications, are included to guide beginners through every stage of aptamer development.
Collapse
Affiliation(s)
- Cameron Stephens
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA
| | - Nina M Goodey
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA.
| | - Ueli Gubler
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA.
| |
Collapse
|
2
|
Mauriz E. Trends and Challenges of SPR Aptasensors in Viral Diagnostics: A Systematic Review and Meta-Analysis. BIOSENSORS 2025; 15:245. [PMID: 40277558 PMCID: PMC12026110 DOI: 10.3390/bios15040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Surface plasmon resonance (SPR) aptasensors benefit from the SPR phenomenon in measuring aptamer interactions with specific targets. Integrating aptamers into SPR detection enables extensive applications in clinical analysis. Specifically, virus aptasensing platforms are highly desirable to face the ongoing challenges of virus outbreaks. This study systematically reviews the latest advances in SPR aptasensors for virus detection according to PRISMA guidelines. The literature search recovered 322 original articles from the Scopus (n = 152), Web of Science (n = 83), and PubMed (n = 87) databases. The selected articles (29) deal with the binding events between the aptamers immobilized on the sensor surface and their target molecule: virus proteins or intact viruses according to different SPR configurations. The methodological quality of each study was assessed using QUADAS-2, and a meta-analysis was conducted with the CochReview Manager (RevMan) Edition7.12.0 Data were analyzed, focusing on the types of viruses, the virus target, and the reference method. The pooled sensitivity was 1.89 (95%, CI 1.29, 2.78, I2 = 49%). The analysis of different types of plasmonic sensors showed the best diagnostic results with the least heterogeneity for SPR conventional configurations: 3.23 (95% CI [1.80, 5.79]; I2 = 0%, p = 0.65). These findings show that even though plasmonic biosensors effectively analyze viruses through aptamer approaches, there are still big challenges to using them regularly for diagnostics. Practical considerations for measuring label-free interactions revealed functional capabilities, technological boundaries, and future outlooks of SPR virus aptasensing.
Collapse
Affiliation(s)
- Elba Mauriz
- Department of Nursing and Physiotherapy, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; ; Tel.: +34-987-293617
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
| |
Collapse
|
3
|
Poimanova EY, Kretova EA, Keshek AK, Andreev EV, Nechaev AN, Prusakov KA, Aldarov KG, Basmanov DV, Akhmetova AI, Yaminsky IV, Ponomarenko SA, Zavyalova EG, Agina EV. A universal approach to the fabrication of reusable EGOFET-based aptasensors with track-etched membranes for biorecognition layers. J Mater Chem B 2025; 13:4681-4692. [PMID: 40134360 DOI: 10.1039/d4tb02536a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Nowadays, biosensor platforms based on various organic electrolytic transistors are in great demand due to their ability to specifically determine a wide range of biological analytes with extreme sensitivity. The main drawback of such platforms is their disposability at relatively high costs, preventing widespread application. In this work, we elaborate and successfully demonstrate a proof of concept for a universal approach for the fabrication of a reusable EGOFET-based aptasensor using polymer track-etched membranes as cheap disposable elements for biorecognition layers. We defined the most suitable pore size of track-etched membranes, which was enough for the penetration of viral particle and their capture near the current-carrying layer of EGOFET. The sensitivity of the fabricated EGOFET-based aptasensor to influenza A virus was comparable with disposal EGOFET-based biosensors having a biorecognition layer placed directly on the semiconducting layer. The limit of detection of the fabricated device was 8 × 104 VP mL-1, which was superior to those of antibody-based rapid analysis test systems (1 × 106-4 × 108 VP mL-1) but inferior to those of the PCR method (3 × 102-1.2 × 103 VP mL-1). The elaborated approach paves the way for the simple development of universal point-of-care tools consisting of rapid, non-invasive miniaturized sensors for the detection of a wide range of analytes, which are recognizable by aptamers.
Collapse
Affiliation(s)
- Elena Yu Poimanova
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
| | - Elena A Kretova
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
| | - Anna K Keshek
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
- Chemistry Department, Lomonosov Moscow State University, Leninskiye gory 1/3, 119991 Moscow, Russian Federation
| | - Evgeny V Andreev
- Joint Institute for Nuclear Research, Dubna, Joliot-Curie Str. 6, 14198 Dubna, Russian Federation
| | - Alexander N Nechaev
- Joint Institute for Nuclear Research, Dubna, Joliot-Curie Str. 6, 14198 Dubna, Russian Federation
| | - Kirill A Prusakov
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Center of Technologies and Microfabrication, Malaya Pirogovskaya Str. 1A, 119435 Moscow, Russian Federation
| | - Konstantin G Aldarov
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Center of Technologies and Microfabrication, Malaya Pirogovskaya Str. 1A, 119435 Moscow, Russian Federation
| | - Dmitriy V Basmanov
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Center of Technologies and Microfabrication, Malaya Pirogovskaya Str. 1A, 119435 Moscow, Russian Federation
| | - Assel I Akhmetova
- Physics Department, Lomonosov Moscow State University, Leninskiye gory 1/2, 119991 Moscow, Russian Federation
| | - Igor V Yaminsky
- Physics Department, Lomonosov Moscow State University, Leninskiye gory 1/2, 119991 Moscow, Russian Federation
| | - Sergey A Ponomarenko
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
- Chemistry Department, Lomonosov Moscow State University, Leninskiye gory 1/3, 119991 Moscow, Russian Federation
| | - Elena G Zavyalova
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
- Chemistry Department, Lomonosov Moscow State University, Leninskiye gory 1/3, 119991 Moscow, Russian Federation
| | - Elena V Agina
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
- Department of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, Leninskiye Gory 1/51, 119991 Moscow, Russia
| |
Collapse
|
4
|
Goto K, Amano R, Ichinose A, Michishita A, Hamada M, Nakamura Y, Takahashi M. Generation of RNA aptamers against chikungunya virus E2 envelope protein. J Virol 2025; 99:e0209524. [PMID: 39927773 PMCID: PMC11915788 DOI: 10.1128/jvi.02095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Nucleic acid aptamers are a promising drug modality, whereas the generation of virus-neutralizing aptamers has remained difficult due to the lack of a robust system for targeting the viral particles of interest. Here, we took advantage of our latest platform technology of Systematic Evolution of Ligands by EXponential enrichment (SELEX) with virus-like particles (VLPs) and targeted chikungunya virus (CHIKV) as a model, the pathogenic reemerging virus with an unmet need for control. The identified aptamer against CHIKV-VLPs, Apt#1, and its truncated derivatives showed neutralizing activity with nanomolar IC50 values in a cell-based assay system using a pseudoviral particle of CHIKV (CHIKVpp). An antiviral-based chemical genetics approach revealed significant competition of Apt#1 with suramin, a reported interactant with domain A of the E2 envelope protein (E2DA), in both CHIKVpp and surface plasmon resonance (SPR) analyses, predicting E2DA to be the Apt#1 interface. In addition, Apt#1 interfered with the attachment of CHIKVpp, collectively suggesting its property as an attachment inhibitor via E2DA of CHIKV. Thus, the generation of the VLP-targeted aptamers proved to contribute to anti-CHIKV strategies and confirmed the utility of the platform as a novel and viable option for the development of neutralizing agents against viral particles of interest.IMPORTANCEOur latest SELEX technology using VLPs has generated aptamers that bind the native conformation of the incorporated envelope protein and achieve the virus binding and neutralizing effects. Indeed, the aptamer-probed target E2DA is a representative neutralization site on the surface of the viral particle, validating the utility of the VLP-driven procedure. Simultaneously, the enhanced antiviral effects of the aptamer in combination with approved drugs using the CHIKVpp assay with human cells indicated potential therapeutic strategies that are expected to help address unmet needs in CHIKV control. The robust affinity of the aptamer to viral particles demonstrated by SPR analysis can also lead to conjugates with antivirals as guiding molecules and aptasensors for diagnostic tools. Overall, our VLP-based method provided anti-CHIKV as well as a versatile platform applicable to other emerging and reemerging viruses, in preparation for outbreaks with the need for rapid development of antiviral strategies as next-generation theranostics.
Collapse
Affiliation(s)
- Kaku Goto
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryo Amano
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Ichinose
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Akiya Michishita
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Michiaki Hamada
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoshikazu Nakamura
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- RIBOMIC Inc., Tokyo, Japan
| | - Masaki Takahashi
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Lu X, Li W, Li P, Li Y, Gou Y, Wang T, Liu Z, Wu Y. Selection and identification of an ssDNA aptamer against influenza B virus hemagglutinin protein. Virol J 2025; 22:64. [PMID: 40050943 PMCID: PMC11887071 DOI: 10.1186/s12985-025-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The influenza virus causes infectious respiratory disease with high morbidity and mortality worldwide. Influenza B typically goes unnoticed owing to its mild clinical symptoms and limitations. However, its increasing prevalence in recent years poses a significant health burden. Consequently, current diagnostic methods for the detection of influenza B virus are inadequate, highlighting the urgent need to develop accurate and sensitive techniques for early disease diagnosis. Aptamers, single-stranded deoxyribonucleic acid (ssDNA), or ribonucleic acid molecules primarily rely on their secondary structures, such as stem-loops and hairpins, to bind efficiently and specifically to the target through base complementary pairing, electrostatic interaction, hydrogen bonding, and van der Waals forces. Aptamers are superior to antibodies in their ability to bind targets. The objective of this study was to identify and develop aptamers against the hemagglutinin (HA) protein of influenza B virus. METHODS An enriched DNA library with strong binding to the influenza B virus HA protein was obtained using magnetic bead systematic evolution of ligands by exponential enrichment technology after nine rounds of selection. Five candidate aptamers were identified by high-throughput sequencing. The aptamers were characterized using surface plasmon resonance and enzyme-linked immunosorbent assay techniques, and the aptamer exhibiting the highest affinity and specificity for the target protein was selected. RESULTS We screened and characterized five ssDNA aptamer sequences that bind to influenza B virus HA. Among these, aptamer sequence A573 exhibited the highest sensitivity and binding affinity for the target protein. CONCLUSIONS The novel aptamer sequences selected in this study have the potential to be used as biorecognition molecules for the development of aptamer sensors to detect influenza B virus.
Collapse
Affiliation(s)
- Xing Lu
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, No.111, Liuhua Road, Yuexiu District, Guangzhou, 510010, Guangdong, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weifeng Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, No.111, Liuhua Road, Yuexiu District, Guangzhou, 510010, Guangdong, China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, No.111, Liuhua Road, Yuexiu District, Guangzhou, 510010, Guangdong, China
| | - Yongqiang Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, No.111, Liuhua Road, Yuexiu District, Guangzhou, 510010, Guangdong, China
| | - Yanni Gou
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Wang
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Yuexiu District, No.111, Liuhua Road, Guangzhou, 510010, Guangdong, China.
| | - Yuting Wu
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, No.111, Liuhua Road, Yuexiu District, Guangzhou, 510010, Guangdong, China.
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Lahiri H, Basu K. Sensing Microorganisms Using Rapid Detection Methods: Supramolecular Approaches. BIOSENSORS 2025; 15:130. [PMID: 40136927 PMCID: PMC11940469 DOI: 10.3390/bios15030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Supramolecular chemistry relies on the dynamic association/dissociation of molecules through non-covalent interactions. These interactions of a self-assembled system can be strategically exploited for sensing several microorganisms. Moreover, supramolecular systems can also be combined with other functional components like nanoparticles, self-assembled monolayers, and microarray systems to produce multicomponent sensors with higher sensitivity and lower detection time. In this review, we will discuss how cutting-edge supramolecular chemistry has enabled scientists to develop microbial biosensors with high reliability and rapid detection time. Moreover, they produce high-throughput operations, real-time monitoring, extensive operation platforms, and cost-effective production. This review can serve as a conceptual background for understanding state-of-the-art rapid detection methods of microbial biosensing.
Collapse
|
7
|
Chen X, Duan M, Chang Y, Ye M, Wang Z, Wu S, Duan N. Assembly of a multivalent aptamer for efficient inhibition of thermostable direct hemolysin toxicity induced by Vibrio parahaemolyticus. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135452. [PMID: 39121740 DOI: 10.1016/j.jhazmat.2024.135452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Thermostable direct hemolysin (TDH) is a key virulence factor of Vibrio parahaemolyticus, capable of causing seafood-mediated outbreaks of gastroenteritis, posing a threat to the aquatic environment and global public health. In the present study, we explored a multivalent aptamer-mediated inhibition strategy to mitigate TDH toxicity. Based on the characteristic structure of TDH, a stable multivalent aptamer, Ap3-5, was rationally designed by truncation, key fragment evolution, and end fixation. Ap3-5 exhibited strong affinity (Kd=39.24 nM), and thermal (Tm=57.6 °C) and enzymatic stability. In silico studies also revealed that Ap3-5 occupied more active sites of TDH and covered its central pore, indicating its potential as a blocking agent for inhibiting TDH toxicity. In the hemolysis assay, Ap3-5 significantly suppressed the hemolytic effect of TDH. A cellular study revealed a substantial (∼80 %) reduction in TDH cytotoxicity. Supporting these findings, in vivo trials confirmed the inhibitory action of Ap3-5 on both the acute and intestinal toxicity of TDH. Overall, benefiting from the strong binding affinity, high stability, and multisite occupation of the multivalent aptamer with TDH, Ap3-5 displayed robust potential against TDH toxicity by inhibiting membrane pore formation, providing a new approach for alleviating bacterial infections.
Collapse
Affiliation(s)
- Xiaowan Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mengxia Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingyue Ye
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Radrizzani M, Flores CY, Stupka J, D'Alessio C, Garate O, Mendoza Herrera LJ, Castello AA, Yakisich JS, Perandones C, Grasselli M. Aptamer-quantum dots platform for SARS-CoV-2 viral particle detection by fluorescence microscopy. Int J Biol Macromol 2024; 278:134839. [PMID: 39163959 DOI: 10.1016/j.ijbiomac.2024.134839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
The virus is the smallest known replicative unit, usually in nanometer-range sizes. The most simple and sensitive detection assay involves molecular amplification of nucleic acids. This work shows a novel, straightforward detection based on the interaction of viral particles with fluorescent nanoconstructs without using enzymatic amplification, washing or separation steps. Fluorescent nanoconstructs are prepared with individual quantum dots of different emitting green and red fluorescence as a core. They are decorated with aptamers developed to recognise the receptor-binding region of the SARS-CoV-2 spike protein. Nanoconstructs can recognise SARS-CoV-2 viral particles fixed onto a coverglass generating aggregates. Meanwhile, SARS-CoV-2 viral particles/nanoconstructs complexes in solution yield aggregates and complexes, which a fluorescence microscope can visualise. The multiple molecular recognition allowed the detection of SARS-CoV-2 viral particles from a few microliters of patient swabs. This specific SARS-CoV-2/nanoconstructs interaction generates insoluble and precipitating aggregates. By using a mixture of green and red fluorescent nanoconstructs, upon the viral particle interaction, they yield heterochromatic green, red and yellow spectral fluorescence, easily identifiable by a fluorescence microscope. Washing and separation steps are not required, and aggregates allow one to easily recognise them, offering a sensitive, simple, and cheap alternative for viral detection.
Collapse
Affiliation(s)
- M Radrizzani
- Neuro and Molecular Cytogenetics Laboratory, Institute of Emerging Technologies and Applied Sciences (ITECA-CONICET), School of Science and Technology, National University of San Martín, Av. Gral. Paz 5445, San Martín B1650WAB, Argentina; National Council for Scientific and Technical Research (CONICET), Argentina.
| | - C Y Flores
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, GBEyB, Grupo Vinculado IMBICE-CONICET, Roque Sáenz Peña 352, Buenos Aires B1876BXDl, Argentina
| | - J Stupka
- INEI-Administration Nacional de Laboratorios e Institutos de Salud Argentina (ANLIS) Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - C D'Alessio
- National Council for Scientific and Technical Research (CONICET), Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Ciudad Universitaria-Pabellón II, Buenos Aires 1428, Argentina; Argentinian AntiCovid Consortium, Argentina
| | - O Garate
- Nanomateriales Funcionales, INTI-Micro y Nanotecnología, Instituto Nacional de Tecnología Industrial, San Martín B1650, Argentina
| | - L J Mendoza Herrera
- Centro de Investigaciones Ópticas (CIOp),(CONICET La Plata-CIC), Gonnet, Buenos Aires, Argentina
| | - A A Castello
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Buenos Aires B1876BXDl, Argentina
| | - J S Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23693, USA
| | - C Perandones
- Unidad de Educación Superior, Administration Nacional de Laboratorios e Institutos de Salud Argentina (ANLIS) Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - M Grasselli
- National Council for Scientific and Technical Research (CONICET), Argentina; Laboratorio de Materiales Biotecnológicos (LaMaBio), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, GBEyB, Grupo Vinculado IMBICE-CONICET, Roque Sáenz Peña 352, Buenos Aires B1876BXDl, Argentina.
| |
Collapse
|
9
|
Hu C, Yang S, Li S, Liu X, Liu Y, Chen Z, Chen H, Li S, He N, Cui H, Deng Y. Viral aptamer screening and aptamer-based biosensors for virus detection: A review. Int J Biol Macromol 2024; 276:133935. [PMID: 39029851 DOI: 10.1016/j.ijbiomac.2024.133935] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Virus-induced infectious diseases have a detrimental effect on public health and exert significant influence on the global economy. Therefore, the rapid and accurate detection of viruses is crucial for effectively preventing and diagnosing infections. Aptamer-based detection technologies have attracted researchers' attention as promising solutions. Aptamers, small single-stranded DNA or RNA screened via systematic evolution of ligands by exponential enrichment (SELEX), possess a high affinity towards their target molecules. Numerous aptamers targeting viral marker proteins or virions have been developed and widely employed in aptamer-based biosensors (aptasensor) for virus detection. This review introduces SELEX schemes for screening aptamers and discusses distinctive SELEX strategies designed explicitly for viral targets. Furthermore, recent advances in aptamer-based biosensing methods for detecting common viruses using different virus-specific aptamers are summarized. Finally, limitations and prospects associated with developing of aptamer-based biosensors are discussed.
Collapse
Affiliation(s)
- Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuting Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Yuan Liu
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Haipo Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Peri Ibáñez ES, Mazzeo A, Silva C, Juncos MJ, Costa Navarro GS, Pallarés HM, Wolos VJ, Fiszman GL, Mundo SL, Caramelo JJ, Yanovsky MJ, Fingermann M, Castello AA, Gamarnik AV, Peinetti AS, Capdevila DA. Overcoming Limited Access to Virus Infection Rapid Testing: Development of a Lateral Flow Test for SARS-CoV-2 with Locally Available Resources. BIOSENSORS 2024; 14:416. [PMID: 39329791 PMCID: PMC11431090 DOI: 10.3390/bios14090416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
The COVID-19 pandemic highlighted testing inequities in developing countries. Lack of lateral flow test (LFT) manufacturing capacity was a major COVID-19 response bottleneck in low- and middle-income regions. Here we report the development of an open-access LFT for SARS-CoV-2 detection comparable to commercial tests that requires only locally available supplies. The main critical resource is a locally developed horse polyclonal antibody (pAb) whose sensitivity and selectivity are greatly enhanced by affinity purification. We demonstrate that these Abs can perform similarly to commercial monoclonal antibodies (mAbs), as well as mAbs and other pAbs developed against the same antigen. We report a workflow for test optimization using nasopharyngeal swabs collected for RT-qPCR, spiked with the inactivated virus to determine analytical performance characteristics as the limit of detection, among others. Our final prototype showed a performance similar to available tests (sensitivity of 83.3% compared to RT-qPCR, and 90.9% compared to commercial antigen tests). Finally, we discuss the possibility and the challenges of utilizing affinity-purified pAbs as an alternative for the local development of antigen tests in an outbreak context and as a tool to address inequalities in access to rapid tests.
Collapse
Affiliation(s)
- Estefanía S. Peri Ibáñez
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, B1876BXD Buenos Aires, Argentina (A.A.C.)
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Agostina Mazzeo
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Carolina Silva
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
- INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Juliana Juncos
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Guadalupe S. Costa Navarro
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Horacio M. Pallarés
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Virginia J. Wolos
- Universidad de Buenos Aires (UBA), Instituto de Oncología Ángel H. Roffo, Área Investigación, C1417DTB Ciudad Autónoma de Buenos Aires, Argentina; (V.J.W.); (G.L.F.)
| | - Gabriel L. Fiszman
- Universidad de Buenos Aires (UBA), Instituto de Oncología Ángel H. Roffo, Área Investigación, C1417DTB Ciudad Autónoma de Buenos Aires, Argentina; (V.J.W.); (G.L.F.)
| | - Silvia L. Mundo
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), C1427CWN Ciudad Autónoma de Buenos Aires, Argentina;
| | - Julio J. Caramelo
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Marcelo J. Yanovsky
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Matías Fingermann
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, C1282AFF Ciudad Autónoma de Buenos Aires, Argentina;
| | - Alejandro A. Castello
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, B1876BXD Buenos Aires, Argentina (A.A.C.)
- Centro de Medicina Traslacional, Hospital El Cruce Néstor C., Kirchner, B1888 Buenos Aires, Argentina
- Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, B1888 Buenos Aires, Argentina
| | - Andrea V. Gamarnik
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Ana S. Peinetti
- INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Daiana A. Capdevila
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| |
Collapse
|
11
|
Mondal R, Chakraborty J, Dam P, Shaw S, Gangopadhyay D, Ertas YN, Mandal AK. Development of Aptamer-Functionalized Gold Nanoparticles as Probes in Point-of-Care Diagnostic Device for Rapid Detection of Multidrug-Resistant Bacteria in Bombyx mori L. . ACS APPLIED BIO MATERIALS 2024; 7:5740-5753. [PMID: 39110486 DOI: 10.1021/acsabm.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The sericulture industry suffers severe crop losses due to various silkworm diseases, necessitating the development of further technologies for rapid pathogen detection. Here, we report an all-in-one portable biosensor that combines conjugated gold nanoparticles (Au NPs) with an aptamer-based lateral flow assay (LFA) platform for the real-time analysis of Mammaliicoccus sp. and Pseudomonas sp. Our platform enables sample-to-answer naked eye detection within 5 min without any cross-reactivity with other representatives of the silkworm pathogenic bacterial group. This assay was based on the sandwich-type format using a bacteria-specific primary aptamer (Apt1) conjugated with 23 nm ± 1.27 nm Au NPs as a signal probe and another bacteria-specific secondary aptamer (Apt2)-coated nitrocellulose membrane as a capture probe. The hybridization between the signal probe and the capture probe in the presence of bacteria develops a red band in the test line, whose intensity is directly proportional to the bacterial concentration. Under the optimal experimental conditions, the visual limit of detection of the strip for Mammaliicoccus sp. and Pseudomonas sp. was 1.5 × 104 CFU/mL and 1.5 × 103 CFU/mL, respectively. Additionally, the performance of the LFA device was validated by using a colorimetric assay, and the results from the colorimetric assay are consistent with those obtained from the LFA. Our findings indicate that the developed point-of-care diagnostic device has significant potential for providing a cost-effective, scalable alternative for the rapid detection of silkworm pathogens.
Collapse
Affiliation(s)
- Rittick Mondal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Paulami Dam
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Shubhajit Shaw
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, Baku AZ1001, Azerbaijan
| | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
- Center for Nanotechnology Sciences (CeNS), Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| |
Collapse
|
12
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
13
|
Ma Z, Chen H, Yang Y, Gao S, Yang J, Cui S, Zhou S, Jiang B, Zou B, Sun M, Wang L. Characterization of an ssDNA ligase and its application in aptamer circularization. Anal Biochem 2024; 685:115409. [PMID: 38006953 DOI: 10.1016/j.ab.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Aptamers are widely used in various biomedical areas as novel molecular recognition elements, however, short single-stranded DNA (ssDNA) or RNA oligonucleotides are easily degraded by nucleases in biological fluids. This problem can be solved by circularizing aptamers with circular ligases. Herein, a moderately thermostable ssDNA ligase was expressed and purified. The purified ligase showed good circularization activity for different length substrates and much higher circularization efficiency than T4 RNA ligase 1. Biochemical characterization revealed that the enzyme showed optimal circularization activity at pH 7.5 and 50 ᵒC. Mn2+ and Mg2+ increased enzyme circularization activity, with Mn2+ having higher activity than Mg2+. The optimal concentrations of Mn2+ and ligase were 1.25-2.5 mM and 0.02 nM, respectively. The kinetic parameters Km, Vmax and Kcat of ssDNA ligase were 1.16 μM, 10.71 μM/min, and 10.7 min-1, respectively. The ssDNA ligase efficiency was nucleotide-dependent, and 5'-G and 3'-T were the most ligase-favored terminal nucleotides. In addition, the affinity and stability of the circular aptamer were determined. The affinity constant (KD) was 4.9 μM, and the stability increased compared to its linear form. Molecular docking results showed that the circular aptamer bound to the target via two hydrogen bonds. This study provides a simple and efficient aptamer circularization modification method for improving aptamer stability and expanding its applications.
Collapse
Affiliation(s)
- Zhenxia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Han Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yao Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Siyi Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Jiaping Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Shihai Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Shiyuan Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Boyang Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Bin Zou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Wang M, Hao MC, Huangfu Y, Yang KZ, Zhang XQ, Zhang Y, Chen J, Zhang ZL. A Universal Aptamer for Influenza A Viruses: Selection, Recognition, and Infection Inhibition. ACS Pharmacol Transl Sci 2024; 7:249-258. [PMID: 38230279 PMCID: PMC10789145 DOI: 10.1021/acsptsci.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
It is crucial to develop universal inhibitors for viral inhibition due to the rapid mutation of viruses. Herein, a universal aptamer inhibitor was developed that enabled a single DNA molecule to recognize several hemeagglutinin (HA) protein subtypes, inducing broad neutralization against influenza A viruses (IAVs). Through a multi-channel enrichment (MCE) strategy, a high-affinity aptamer named UHA-2 was obtained, with its dissociation constants (Kd) for three different HA proteins being 1.5 ± 0.2 nM (H5N1), 3.7 ± 0.4 nM (H7N9), and 10.1 ± 1.1 nM (H9N2). The UHA-2 aptamer had a universal inhibition effect, by which it could broadly neutralize influenza A H5N1, H7N9, H9N2, H1N1, and H3N2 viruses. Universal aptamer inhibitors have the advantages of acquisition in vitro, stability, simple structure, small size, etc. This study not only develops a novel universal aptamer to achieve a broad inhibition effect on various IAVs, but also opens up an efficient strategy for the development of universal inhibitors against viruses.
Collapse
Affiliation(s)
- Meng Wang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| | - Meng-Chan Hao
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueyue Huangfu
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| | - Ke-Zhu Yang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| | - Xiao-Qing Zhang
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhang
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Chen
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Ling Zhang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| |
Collapse
|
15
|
Ning W, Hu S, Zhou C, Luo J, Li Y, Zhang C, Luo Z, Li Y. An ultrasensitive J-shaped optical fiber LSPR aptasensor for the detection of Helicobacter pylori. Anal Chim Acta 2023; 1278:341733. [PMID: 37709468 DOI: 10.1016/j.aca.2023.341733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
The development of label-free and sensitive detection of pathogenic bacteria is of great significance for disease prevention and public health protection. In this study, an originally bent structure, named as J-shaped optical fiber probe, was first designed to engineer a localized surface plasmon resonance (LSPR) aptamer biosensor for the rapid and ultrasensitive detection of Helicobacter pylori (H. pylori). The J-shaped optical fiber probe exhibited a significant improvement in refractive index sensitivity (RIS) and LSPR signal response. Meantime, the original sequence of aptamer was truncated in order to effectively capture H. pylori on the optical fiber surface. Besides, a spacer nucleic acid with short stem-loop structure was adopted to control the aptamer density on gold nanoparticles (AuNPs) on the surface of the J-shaped optical fiber probe, which displayed a further enhancement in LSPR signal response. Benefitting from these creative designs, the proposed LSPR biosensor can realize label-free and sensitive detection of H. pylori with a detection limit as low as 45 CFU/mL and a wide linear range from 1.0 × 102 CFU/mL to 1.0 × 108 CFU/mL. At the same time, the sensing strategy can detect the pathogenic bacteria from actual water samples in one step just in 30 min without any sample pretreatment. Due to the advantages of ease-to-preparation, high sensitivity, and rapid analysis, this proposed J-shaped optical fiber LSPR aptasensor can provide a potential strategy for point-of-caring detection of pathogenic bacteria in environmental monitoring and disease diagnosis.
Collapse
Affiliation(s)
- Wei Ning
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shunming Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Li
- Research Center of Analytical Instrumentation, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Chuyan Zhang
- Center for Med+X Manufacturing, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Chauhan N, Xiong Y, Ren S, Dwivedy A, Magazine N, Zhou L, Jin X, Zhang T, Cunningham BT, Yao S, Huang W, Wang X. Net-Shaped DNA Nanostructures Designed for Rapid/Sensitive Detection and Potential Inhibition of the SARS-CoV-2 Virus. J Am Chem Soc 2023; 145:20214-20228. [PMID: 35881910 PMCID: PMC9344894 DOI: 10.1021/jacs.2c04835] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 02/07/2023]
Abstract
We present a net-shaped DNA nanostructure (called "DNA Net" herein) design strategy for selective recognition and high-affinity capture of intact SARS-CoV-2 virions through spatial pattern-matching and multivalent interactions between the aptamers (targeting wild-type spike-RBD) positioned on the DNA Net and the trimeric spike glycoproteins displayed on the viral outer surface. Carrying a designer nanoswitch, the DNA Net-aptamers release fluorescence signals upon virus binding that are easily read with a handheld fluorimeter for a rapid (in 10 min), simple (mix-and-read), sensitive (PCR equivalent), room temperature compatible, and inexpensive (∼$1.26/test) COVID-19 test assay. The DNA Net-aptamers also impede authentic wild-type SARS-CoV-2 infection in cell culture with a near 1 × 103-fold enhancement of the monomeric aptamer. Furthermore, our DNA Net design principle and strategy can be customized to tackle other life-threatening and economically influential viruses like influenza and HIV, whose surfaces carry class-I viral envelope glycoproteins like the SARS-CoV-2 spikes in trimeric forms.
Collapse
Affiliation(s)
- Neha Chauhan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yanyu Xiong
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shaokang Ren
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhisek Dwivedy
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lifeng Zhou
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Brian T. Cunningham
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Xing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Mahmoudi A, Alavizadeh SH, Hosseini SA, Meidany P, Doagooyan M, Abolhasani Y, Saadat Z, Amani F, Kesharwani P, Gheybi F, Sahebkar A. Harnessing aptamers against COVID-19: A therapeutic strategy. Drug Discov Today 2023; 28:103663. [PMID: 37315763 PMCID: PMC10266562 DOI: 10.1016/j.drudis.2023.103663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
The novel coronavirus crisis caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) was a global pandemic. Although various therapeutic approaches were developed over the past 2 years, novel strategies with more efficient applicability are required to target new variants. Aptamers are single-stranded (ss)RNA or DNA oligonucleotides capable of folding into unique 3D structures with robust binding affinity to a wide variety of targets following structural recognition. Aptamer-based theranostics have proven excellent capability for diagnosing and treating various viral infections. Herein, we review the current status and future perspective of the potential of aptamers as COVID-19 therapies.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Atefeh Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Pouria Meidany
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maham Doagooyan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Yasaman Abolhasani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Zakieh Saadat
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Fatemeh Amani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Giroux E, Oake A, Lewis T, Martic S. Aptamer-, heparin- or cocktail-based inhibition of S1-ACE2 protein complexes. Anal Biochem 2023:115223. [PMID: 37385465 PMCID: PMC10299842 DOI: 10.1016/j.ab.2023.115223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
The Spike protein (S1) from the Severe acute respiratory syndrome 2 virus binds to angiotensin converting enzyme 2 (ACE2) receptor to initiate infection. Hence, antiviral therapeutic targeting the S1-ACE2 interface is of interest. Herein, we compare the inhibition efficacy of an aptamer to heparin or their cocktail, against wild-type (WT), Omicron, Delta, and Lambda S1-ACE2 complexes. The aptamer-protein complexes had the dissociation constant KD values in the 2-13 nM range. The aptamer half-maximal inhibitory concentration against WT S1-ACE was 17 nM, with the % inhibition in the 12-35% range. Several aptamer-S1 protein complexes were also stable at low pH with 60% inhibition. Despite the similarity in S1 sequences, the extent of inhibition (2-27%) with heparin was highly dependent on the type of S1 protein. More importantly, heparin did not inhibit the WT S1-ACE2 complex but was effective with mutants. The aptamer-heparin cocktail was less effective compared to aptamer or heparin, individually. Modelling data show that either a direct or proximal binding to RBD sites by aptamer or heparin prevents the ACE2 binding. Overall, heparin was as an effective inhibitor as aptamer against certain variants, and represents the more cost-effective neutralizing agent against emerging coronaviruses.
Collapse
Affiliation(s)
- E Giroux
- Department of Forensic Science, Trent University, Peterborough, Canada
| | - A Oake
- Flemming College, Peterborough, Canada
| | - T Lewis
- Environmental and Life Science Program, Trent University, Peterborough, Canada
| | - S Martic
- Department of Forensic Science, Trent University, Peterborough, Canada; Environmental and Life Science Program, Trent University, Peterborough, Canada.
| |
Collapse
|
19
|
Wang J, Chen D, Huang W, Yang N, Yuan Q, Yang Y. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring. EXPLORATION (BEIJING, CHINA) 2023; 3:20210027. [PMID: 37933385 PMCID: PMC10624392 DOI: 10.1002/exp.20210027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Nano-biosensors that are composed of recognition molecules and nanomaterials have been extensively utilized in disease diagnosis, health management, and environmental monitoring. As a type of nano-biosensors, molecular specificity field-effect transistor (FET) biosensors with signal amplification capability exhibit prominent advantages including fast response speed, ease of miniaturization, and integration, promising their high sensitivity for molecules detection and identification. With intrinsic characteristics of high stability and structural tunability, aptamer has become one of the most commonly applied biological recognition units in the FET sensing fields. This review summarizes the recent progress of FET biosensors based on aptamer functionalized nanomaterials in medical diagnosis and environmental monitoring. The structure, sensing principles, preparation methods, and functionalization strategies of aptamer modified FET biosensors were comprehensively summarized. The relationship between structure and sensing performance of FET biosensors was reviewed. Furthermore, the challenges and future perspectives of FET biosensors were also discussed, so as to provide support for the future development of efficient healthcare management and environmental monitoring devices.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Wanting Huang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Nianjun Yang
- Department of Chemistry, Insititute of Materials ResearchHasselt UniversityHasseltBelgium
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| |
Collapse
|
20
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
21
|
Delmiglio C, Waite DW, Lilly ST, Yan J, Elliott CE, Pattemore J, Guy PL, Thompson JR. New Virus Diagnostic Approaches to Ensuring the Ongoing Plant Biosecurity of Aotearoa New Zealand. Viruses 2023; 15:v15020418. [PMID: 36851632 PMCID: PMC9964515 DOI: 10.3390/v15020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
To protect New Zealand's unique ecosystems and primary industries, imported plant materials must be constantly monitored at the border for high-threat pathogens. Techniques adopted for this purpose must be robust, accurate, rapid, and sufficiently agile to respond to new and emerging threats. Polymerase chain reaction (PCR), especially real-time PCR, remains an essential diagnostic tool but it is now being complemented by high-throughput sequencing using both Oxford Nanopore and Illumina technologies, allowing unbiased screening of whole populations. The demand for and value of Point-of-Use (PoU) technologies, which allow for in situ screening, are also increasing. Isothermal PoU molecular diagnostics based on recombinase polymerase amplification (RPA) and loop-mediated amplification (LAMP) do not require expensive equipment and can reach PCR-comparable levels of sensitivity. Recent advances in PoU technologies offer opportunities for increased specificity, accuracy, and sensitivities which makes them suitable for wider utilization by frontline or border staff. National and international activities and initiatives are adopted to improve both the plant virus biosecurity infrastructure and the integration, development, and harmonization of new virus diagnostic technologies.
Collapse
Affiliation(s)
- Catia Delmiglio
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
- Correspondence: (C.D.); (J.R.T.)
| | - David W. Waite
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - Sonia T. Lilly
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - Juncong Yan
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - Candace E. Elliott
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia
| | - Julie Pattemore
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Fisheries and Forestry, Mickleham, VIC 3064, Australia
| | - Paul L. Guy
- Department of Botany, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Jeremy R. Thompson
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
- Correspondence: (C.D.); (J.R.T.)
| |
Collapse
|
22
|
Pawel GT, Ma Y, Wu Y, Lu Y, Peinetti AS. Binding Affinity Measurements Between DNA Aptamers and their Virus Targets Using ELONA and MST. Bio Protoc 2022; 12:e4548. [PMID: 36505027 PMCID: PMC9709635 DOI: 10.21769/bioprotoc.4548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/06/2022] Open
Abstract
Aptamers have been selected with strong affinity and high selectivity for a wide range of targets, as recently highlighted by the development of aptamer-based sensors that can differentiate infectious from non-infectious viruses, including human adenovirus and SARS-CoV-2. Accurate determination of the binding affinity between the DNA aptamers and their viral targets is the first step to understanding the molecular recognition of viral particles and the potential uses of aptamers in various diagnostics and therapeutic applications. Here, we describe protocols to obtain the binding curve of the DNA aptamers to SARS-CoV-2 using Enzyme-Linked Oligonucleotide Assay (ELONA) and MicroScale Thermophoresis (MST). These methods allow for the determination of the binding affinity of the aptamer to the infectious SARS-CoV-2 and the selectivity of this aptamer against the same SARS-CoV-2 that has been rendered non-infectious by UV inactivation, and other viruses. Compared to other techniques like Electrophoretic Mobility Shift Assay (EMSA), Surface Plasmon Resonance (SPR), and Isothermal Titration Calorimetry (ITC), these methods have advantages for working with larger particles like viruses and with samples that require biosafety level 2 facilities.
Collapse
Affiliation(s)
- Gregory T. Pawel
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Yuan Ma
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States
| | - Ana Sol Peinetti
- INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
23
|
Yang CH, Tsai CH. Aptamer against Aflatoxin B1 Obtained by SELEX and Applied in Detection. BIOSENSORS 2022; 12:848. [PMID: 36290985 PMCID: PMC9599246 DOI: 10.3390/bios12100848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Aflatoxins, especially aflatoxin B1 (AFB1), are the most prevalent mycotoxins in nature. They contaminate various crops and cause global food and feed safety concerns. Therefore, a simple, rapid, sensitive, and specific AFB1 detection tool is urgently needed. Aptamers generated by SELEX technology can specifically bind the desired targets with high affinity. The broad range of targets expands the scope of applications for aptamers. We used an AFB1-immobilized magnetic nanoparticle for SELEX to select AFB1-specific aptamers. One aptamer, fl-2CS1, revealed a dissociation constant (Kd = 2.5 μM) with AFB1 determined by isothermal titration calorimetry. Furthermore, no interaction was shown with other toxins (AFB2, AFG1, AFG2, OTA, and FB1). According to structural prediction and analysis, we identified a short version of the AFB1-specific aptamer, fl-2CS1/core, with a minimum length of 39-mer used in the AFB1-aptasensor system by real-time qPCR. The aptasensor showed a broad range of detection from 50 ppt to 50 ppb with an accuracy of 90% in the spiked peanut extract samples. With the application of the AFB1-aptasensor we have constructed, a wide range detection tool with high accuracy might be developed as a point-of-care testing tool in agriculture.
Collapse
Affiliation(s)
- Chung-Hsuan Yang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|