1
|
Powers RA, Wallar BJ, Jarvis HR, Ziegler ZX, June CM, Bethel CR, Hujer AM, Taracila MA, Rudin SD, Hujer KM, Prati F, Caselli E, Bonomo RA. Resistance to oxyimino-cephalosporins conferred by an alternative mechanism of hydrolysis by the Acinetobacter-derived cephalosporinase-33 (ADC-33), a class C β-lactamase present in carbapenem-resistant Acinetobacter baumannii (CR Ab). mBio 2025:e0028725. [PMID: 40377322 DOI: 10.1128/mbio.00287-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/07/2025] [Indexed: 05/18/2025] Open
Abstract
Antimicrobial resistance in Acinetobacter baumannii is partly mediated by chromosomal class C β-lactamases, the Acinetobacter-derived cephalosporinases (ADCs). Recently, a growing number of emerging variants were described, expanding this threat. Consistent with other β-lactamases, one of the main areas of variance exists in the Ω-loop region near the site of cephalosporin binding. Interestingly, a common alanine duplication (Adup) is found in this region. Herein, we studied specific Adup variants expressed in a uniform Escherichia coli genetic background that demonstrated high-level resistance to multiple oxyimino-cephalosporins. For ceftolozane and ceftazidime, the Adup ADCs significantly increased levels of resistance (minimum inhibitory concentration [MIC] ≥ 512 µg/mL and MIC ≥ 1,024 µg/mL, respectively). These observations were consistent with the increased kcat/KM for ceftazidime. For cefiderocol, three Adup variants exhibited increased MICs and increased kcat/KM for this compound. Timed electrospray ionization mass spectrometry demonstrated stable cephalosporin:ADC adducts with ADC-30 (non-Adup), but not with ADC-33 (Adup), consistent with turnover. The X-ray crystal structure of Adup variant ADC-33 in complex with ceftazidime was determined (1.57 Å resolution) and suggests that increased turnover is facilitated by conformational changes (shift in Tyr221 and orientation of the oxyimino portion of the R1 side chain) and repositioning of water in the active site. These changes appear to favor substrate-assisted catalysis as an alternative mechanism to base-assisted catalysis. These studies also provide unprecedented insight into the mechanism underlying oxyimino-cephalosporin hydrolysis by expanded-spectrum ADC β-lactamases and possibly other class C β-lactamases, which is of critical importance to future drug design.IMPORTANCEThe characterization of emerging Acinetobacter-derived cephalosporinase (ADC) variants is necessary to understand the increasing resistance to β-lactam antibiotics in Acinetobacter spp. In this study, cefiderocol retains effectiveness against ADC variants with and without an Ω-loop alanine duplication (Adup). However, the presence of the Adup appears to introduce loop flexibility and structural alterations resulting in increased resistance and steady-state turnover of larger cephalosporins. Further characterization provides unprecedented insight into the mechanism of cephalosporin hydrolysis by ADC β-lactamases and supports a concomitant increase in ADC structural flexibility and cephalosporin affinity that leads to more efficient hydrolysis. In addition, the crystal structure of ADC-33 in complex with ceftazidime is consistent with a substrate-assisted catalysis mechanism. The structural differences in the ADC-33 active site leading to ceftazidime catalysis provide a better understanding of β-lactamase Adup variants and open important opportunities for future drug design and development.
Collapse
Affiliation(s)
- Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Bradley J Wallar
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Hannah R Jarvis
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Zoe X Ziegler
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Cynthia M June
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Christopher R Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Magdalena A Taracila
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Susan D Rudin
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristine M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Emilia-Romagna, Italy
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Emilia-Romagna, Italy
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
2
|
Konaklieva MI, Plotkin BJ. Activity of Organoboron Compounds against Biofilm-Forming Pathogens. Antibiotics (Basel) 2024; 13:929. [PMID: 39452196 PMCID: PMC11504661 DOI: 10.3390/antibiotics13100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Bacteria have evolved and continue to change in response to environmental stressors including antibiotics. Antibiotic resistance and the ability to form biofilms are inextricably linked, requiring the continuous search for alternative compounds to antibiotics that affect biofilm formation. One of the latest drug classes is boron-containing compounds. Over the last several decades, boron has emerged as a prominent element in the field of medicinal chemistry, which has led to an increasing number of boron-containing compounds being considered as potential drugs. The focus of this review is on the developments in boron-containing organic compounds (BOCs) as antimicrobial/anti-biofilm probes and agents.
Collapse
Affiliation(s)
- Monika I. Konaklieva
- Department of Chemistry, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, USA
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, 555 31st St., Downers Grove, IL 60515, USA;
| |
Collapse
|
3
|
Kumar I, Sagar A, Dhiman K, Bethel CR, Hujer AM, Carifi J, Ashish, Bonomo RA. Insights into dynamic changes in ADC-7 and P99 cephalosporinases using small angle x-ray scattering (SAXS). J Biomol Struct Dyn 2024; 42:7541-7553. [PMID: 37578017 DOI: 10.1080/07391102.2023.2240427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
To counter the emergence of β-lactamase (BL) mediated resistance, design of new β-lactamase inhibitors (BLIs) is critical. Many high-resolution crystallographic structures of BL complexed with BLIs are available. However, their impact on BLI design is struggling to keep pace with novel and emerging variants. Small angle x-ray scattering (SAXS) in combination with molecular modeling is a useful tool to determine dynamic structures of macromolecules in solution. An important application of SAXS is to determine the conformational changes that occur when BLI bind to BL. To probe if conformational dynamics occur in class C cephalosporinases, we studied SAXS profiles of two clinically relevant class C β-lactamases, Acinetobacter baumannii ADC-7 and Enterobacter cloacae P99 in apo format complexed with BLIs. Importantly, SAXS data analysis demonstrated that in solution, these representative class C enzymes remain monomeric and did not show the associated assemblies that were seen in various crystal structures. SAXS data acquired for ADC-7 and P99, in apo and inhibitor bound states, clearly showed that these enzymes undergo detectable conformational changes, and these class C β-lactamases also close upon binding inhibitors as does BlaC. Further analysis revealed that addition of inhibitor led to the compacting of a range of residues around the active site, indicating that the conformational changes that both P99 and ADC-7 undergo are central to inhibitor recognition and efficacy. Our findings support the importance of exploring conformational changes using SAXS analysis in the design of future BLIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ish Kumar
- Department of Chemistry, Biochemistry & Physics, Fairleigh Dickinson University, Teaneck, NJ, USA
| | - Amin Sagar
- Centre de Biochimie Structurale (CBS), Montpellier, France
| | - Kanika Dhiman
- GNR Advanced Protein Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Christopher R Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Andrea M Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Justin Carifi
- Department of Chemistry, Biochemistry & Physics, Fairleigh Dickinson University, Teaneck, NJ, USA
| | - Ashish
- GNR Advanced Protein Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Departments of Biochemistry, Pharmacology, Molecular Biology and Microbiology, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES, Cleveland, OH, USA
| |
Collapse
|
4
|
Xu H, Tan C, Li C, Li J, Han Y, Tang Y, Lei C, Wang H. ESBL-Escherichia coli extracellular vesicles mediate bacterial resistance to β-lactam and mediate horizontal transfer of bla CTX-M-55. Int J Antimicrob Agents 2024; 63:107145. [PMID: 38494146 DOI: 10.1016/j.ijantimicag.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES Extracellular vesicles (EVs) have become the focus of research as an emerging method of horizontal gene transfer. In recent years, studies on the association between EVs and the spread of bacterial resistance have emerged, but there is a lack of research on the role of EVs secreted by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in the spread of β-lactam resistance. Therefore, the aim of this study was to investigate the role of EVs in the transmission of β-lactam resistance. METHODS In this study, the role of EVs in the transmission of β-lactam resistance in E. coli was evaluated by the EVs-mediated bacterial resistance to β-lactam antibiotics test and the EVs-mediated blaCTX-M-55 transfer experiments using EVs secreted by ESBL-E. coli. RESULTS The results showed that ESBL-EVs were protective against β-lactam antibiotic-susceptible bacteria, and this protective effect was dependent on the integrity of the EVs and showed dose- and time-dependent effects. At the same time, ESBL-EVs can also mediate the horizontal transmission of blaCTX-M-55, and EVs-mediated gene transfer is selective, preferring to transfer in more closely related species. CONCLUSIONS In this study, we demonstrated the important role of EVs in the transmission of β-lactam resistance in chicken ESBL-E. coli, and evaluated the risk of EVs-mediated horizontal gene transfer, which provided a theoretical basis for elucidating the mechanism of EVs-mediated resistance transmission.
Collapse
Affiliation(s)
- Heting Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Chang Tan
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China; Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650023, China.
| | - Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China.
| |
Collapse
|
5
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
6
|
Mack AR, Kumar V, Taracila MA, Mojica MF, O'Shea M, Schinabeck W, Silver G, Hujer AM, Papp-Wallace KM, Chen S, Haider S, Caselli E, Prati F, van den Akker F, Bonomo RA. Natural protein engineering in the Ω-loop: the role of Y221 in ceftazidime and ceftolozane resistance in Pseudomonas-derived cephalosporinase. Antimicrob Agents Chemother 2023; 67:e0079123. [PMID: 37850746 PMCID: PMC10648885 DOI: 10.1128/aac.00791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 10/19/2023] Open
Abstract
A wide variety of clinically observed single amino acid substitutions in the Ω-loop region have been associated with increased minimum inhibitory concentrations and resistance to ceftazidime (CAZ) and ceftolozane (TOL) in Pseudomonas-derived cephalosporinase and other class C β-lactamases. Herein, we demonstrate the naturally occurring tyrosine to histidine substitution of amino acid 221 (Y221H) in Pseudomonas-derived cephalosporinase (PDC) enables CAZ and TOL hydrolysis, leading to similar kinetic profiles (k cat = 2.3 ± 0.2 µM and 2.6 ± 0.1 µM, respectively). Mass spectrometry of PDC-3 establishes the formation of stable adducts consistent with the formation of an acyl enzyme complex, while spectra of E219K (a well-characterized, CAZ- and TOL-resistant comparator) and Y221H are consistent with more rapid turnover. Thermal denaturation experiments reveal decreased stability of the variants. Importantly, PDC-3, E219K, and Y221H are all inhibited by avibactam and the boronic acid transition state inhibitors (BATSIs) LP06 and S02030 with nanomolar IC50 values and the BATSIs stabilize all three enzymes. Crystal structures of PDC-3 and Y221H as apo enzymes and complexed with LP06 and S02030 (1.35-2.10 Å resolution) demonstrate ligand-induced conformational changes, including a significant shift in the position of the sidechain of residue 221 in Y221H (as predicted by enhanced sampling well-tempered metadynamics simulations) and extensive hydrogen bonding between the enzymes and BATSIs. The shift of residue 221 leads to the expansion of the active site pocket, and molecular docking suggests substrates orientate differently and make different intermolecular interactions in the enlarged active site compared to the wild-type enzyme.
Collapse
Affiliation(s)
- Andrew R. Mack
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Vijay Kumar
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Magdalena A. Taracila
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Margaret O'Shea
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - William Schinabeck
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Galen Silver
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Andrea M. Hujer
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Krisztina M. Papp-Wallace
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shuang Chen
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, England, United Kingdom
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, England, United Kingdom
- UCL Centre for Advanced Research Computing, University College London, London, England, United Kingdom
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Carlucci R, Lisa MN, Labadie GR. 1,2,3-Triazoles in Biomolecular Crystallography: A Geometrical Data-Mining Approach. J Med Chem 2023; 66:14377-14390. [PMID: 37903297 DOI: 10.1021/acs.jmedchem.3c01097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The 1,2,3-triazole scaffold has become very attractive to identify new chemical entities in drug discovery projects. Despite the widespread use of click chemistry to synthesize numerous 123Ts, there are few drugs on the market that incorporate this scaffold as a substructure. To investigate the true potential of 123Ts in protein-ligand interactions, we examined the noncovalent interactions between the 1,2,3-triazole ring and amino acids in protein-ligand cocrystals using a geometrical approach. For this purpose, we constructed a nonredundant database of 220 PDB IDs from available 123T-protein cocrystal structures. Subsequently, using the Protein Ligand Interaction Profiler web platform (PLIP), we determined whether 1,2,3-triazoles primarily act as linkers or if they can be considered interactive scaffolds. We then manually analyzed the geometrical descriptors from 333 interactions between 1,4-disubstituted 123T rings and amino acid residues in proteins. This study demonstrates that 1,2,3-triazoles exhibit diverse preferred interactions with amino acids, which contribute to protein-ligand binding.
Collapse
Affiliation(s)
- Renzo Carlucci
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
| | - María-Natalia Lisa
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
- Plataforma de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, ARGENTINA
| |
Collapse
|
8
|
Wu HJ, Xiao ZG, Lv XJ, Huang HT, Liao C, Hui CY, Xu Y, Li HF. Drug‑resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp Ther Med 2023; 25:209. [PMID: 37090073 PMCID: PMC10119666 DOI: 10.3892/etm.2023.11908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Bacterial drug resistance is increasingly becoming an important problem that needs to be solved urgently in modern clinical practices. Infection caused by Acinetobacter baumannii is a serious threat to the life and health of patients. The drug resistance rate of Acinetobacter baumannii strains is increasing, thus research on the drug resistance of Acinetobacter baumannii has also seen an increase. When patients are infected with drug-resistant Acinetobacter baumannii, the availability of suitable antibiotics commonly used in clinical practices is becoming increasingly limited and the prognosis of patients is worsening. Studying the molecular mechanism of the drug resistance of Acinetobacter baumannii is fundamental to solving the problem of drug-resistant Acinetobacter baumannii and potentially other 'super bacteria'. Drug resistance mechanisms primarily include enzymes, membrane proteins, efflux pumps and beneficial mutations. Research on the underlying mechanisms provides a theoretical basis for the use and development of antibiotics and the development of novel treatment methods.
Collapse
Affiliation(s)
- Hao-Jia Wu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhi-Gang Xiao
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Xiao-Juan Lv
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Hai-Tang Huang
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chu Liao
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chen-Yang Hui
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Yue Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Heng-Fei Li
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
- Correspondence to: Professor Heng-Fei Li, Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Room 4, Garden Hill, Wuchang, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
9
|
Introvigne ML, Beardsley TJ, Fernando MC, Leonard DA, Wallar BJ, Rudin SD, Taracila MA, Rather PN, Colquhoun JM, Song S, Fini F, Hujer KM, Hujer AM, Prati F, Powers RA, Bonomo RA, Caselli E. Sulfonamidoboronic Acids as "Cross-Class" Inhibitors of an Expanded-Spectrum Class C Cephalosporinase, ADC-33, and a Class D Carbapenemase, OXA-24/40: Strategic Compound Design to Combat Resistance in Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:antibiotics12040644. [PMID: 37107006 PMCID: PMC10135033 DOI: 10.3390/antibiotics12040644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative organism listed as an urgent threat pathogen by the World Health Organization (WHO). Carbapenem-resistant A. baumannii (CRAB), especially, present therapeutic challenges due to complex mechanisms of resistance to β-lactams. One of the most important mechanisms is the production of β-lactamase enzymes capable of hydrolyzing β-lactam antibiotics. Co-expression of multiple classes of β-lactamases is present in CRAB; therefore, the design and synthesis of "cross-class" inhibitors is an important strategy to preserve the efficacy of currently available antibiotics. To identify new, nonclassical β-lactamase inhibitors, we previously identified a sulfonamidomethaneboronic acid CR167 active against Acinetobacter-derived class C β-lactamases (ADC-7). The compound demonstrated affinity for ADC-7 with a Ki = 160 nM and proved to be able to decrease MIC values of ceftazidime and cefotaxime in different bacterial strains. Herein, we describe the activity of CR167 against other β-lactamases in A. baumannii: the cefepime-hydrolysing class C extended-spectrum β-lactamase (ESAC) ADC-33 and the carbapenem-hydrolyzing OXA-24/40 (class D). These investigations demonstrate CR167 as a valuable cross-class (C and D) inhibitor, and the paper describes our attempts to further improve its activity. Five chiral analogues of CR167 were rationally designed and synthesized. The structures of OXA-24/40 and ADC-33 in complex with CR167 and select chiral analogues were obtained. The structure activity relationships (SARs) are highlighted, offering insights into the main determinants for cross-class C/D inhibitors and impetus for novel drug design.
Collapse
Affiliation(s)
- Maria Luisa Introvigne
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Trevor J Beardsley
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Micah C Fernando
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Bradley J Wallar
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Susan D Rudin
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Magdalena A Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Philip N Rather
- Research Service, Atlanta Veterans Medical Center, Decatur, GA 30033, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30307, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Jennifer M Colquhoun
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Shaina Song
- Research Service, Atlanta Veterans Medical Center, Decatur, GA 30033, USA
| | - Francesco Fini
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Kristine M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Fabio Prati
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Emilia Caselli
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
10
|
Li R, Chen X, Zhou C, Dai QQ, Yang L. Recent advances in β-lactamase inhibitor chemotypes and inhibition modes. Eur J Med Chem 2022; 242:114677. [PMID: 35988449 DOI: 10.1016/j.ejmech.2022.114677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
The effectiveness of β-lactam antibiotics is increasingly influenced by serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which can hydrolyze β-lactam antibiotics. The development of effective β-lactamase inhibitors is an important direction to extend use of β-lactam antibiotics. Although six SBL inhibitors have been approved for clinical use, but no MBL inhibitors or MBL/SBL dual-action inhibitors are available so far. Broad-spectrum targeting clinically relevant MBLs and SBLs is currently desirable, while it is not easy to achieve such a purpose owing to structural and mechanistic differences between MBLs and SBLs. In this review, we summarized recent advances of inhibitor chemotypes targeting MBLs and SBLs and their inhibition mechanisms, particularly including lead discovery and structural optimization strategies, with the aim to provide useful information for future efforts to develop new MBL and SBL inhibitors.
Collapse
Affiliation(s)
- Rong Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Xi Chen
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Cong Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Qing-Qing Dai
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China.
| |
Collapse
|
11
|
Srikanth D, Vinayak Joshi S, Ghouse Shaik M, Pawar G, Bujji S, Kanchupalli V, Chopra S, Nanduri S. A Comprehensive Review on Potential Therapeutic Inhibitors of Nosocomial Acinetobacter baumannii Superbugs. Bioorg Chem 2022; 124:105849. [DOI: 10.1016/j.bioorg.2022.105849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
12
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
13
|
Abi-Ghaida F. The serendipitous integration of small boron-embedded molecules into medicinal chemistry. FUNDAMENTALS AND APPLICATIONS OF BORON CHEMISTRY 2022:321-410. [DOI: 10.1016/b978-0-12-822127-3.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Nowak MG, Skwarecki AS, Milewska MJ. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. ChemMedChem 2021; 16:3513-3544. [PMID: 34596961 PMCID: PMC9293202 DOI: 10.1002/cmdc.202100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state‐of‐the‐art and presenting perspectives fur further progress.
Collapse
Affiliation(s)
- Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
15
|
Structural Insights into Inhibition of the Acinetobacter-Derived Cephalosporinase ADC-7 by Ceftazidime and Its Boronic Acid Transition State Analog. Antimicrob Agents Chemother 2020; 64:AAC.01183-20. [PMID: 32988830 DOI: 10.1128/aac.01183-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023] Open
Abstract
Extended-spectrum class C β-lactamases have evolved to rapidly inactivate expanded-spectrum cephalosporins, a class of antibiotics designed to be resistant to hydrolysis by β-lactamase enzymes. To better understand the mechanism by which Acinetobacter-derived cephalosporinase-7 (ADC-7), a chromosomal AmpC enzyme, hydrolyzes these molecules, we determined the X-ray crystal structure of ADC-7 in an acyl-enzyme complex with the cephalosporin ceftazidime (2.40 Å) as well as in complex with a boronic acid transition state analog inhibitor that contains the R1 side chain of ceftazidime (1.67 Å). In the acyl-enzyme complex, the carbonyl oxygen is situated in the oxyanion hole where it makes key stabilizing interactions with the main chain nitrogens of Ser64 and Ser315. The boronic acid O1 hydroxyl group is similarly positioned in this area. Conserved residues Gln120 and Asn152 form hydrogen bonds with the amide group of the R1 side chain in both complexes. These complexes represent two steps in the hydrolysis of expanded-spectrum cephalosporins by ADC-7 and offer insight into the inhibition of ADC-7 by ceftazidime through displacement of the deacylating water molecule as well as blocking its trajectory to the acyl carbonyl carbon. In addition, the transition state analog inhibitor, LP06, was shown to bind with high affinity to ADC-7 (Ki , 50 nM) and was able to restore ceftazidime susceptibility, offering the potential for optimization efforts of this type of inhibitor.
Collapse
|
16
|
Lu LN, Liu C, Yang ZZ. Systematic Parameterization and Simulation of Boronic Acid-β-Lactamase Aqueous Solution in Developing the ABEEMσπ Polarizable Force Field. J Phys Chem A 2020; 124:8614-8632. [PMID: 32910648 DOI: 10.1021/acs.jpca.0c06806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Boronic acid, an inhibitor of β-lactamase, has begun to be applied to the treatment of biological infections and tumors. Scientists are working to develop new and more effective boronic acid. Molecular dynamics (MD) simulation provides a powerful auxiliary tool for drug design. However, the current force fields have no boron-related parameters. In this work, an atom-bond electronegativity equalization method at the σπ level (ABEEMσπ) polarizable force field (ABEEMσπ PFF) of boronic acid and β-lactamase has been developed to determine the potential functions and parameters. The interaction between boron and serine in β-lactamase is regarded as a bonded mode. The interaction between them is simulated by the Morse potential energy function, which is close to the experimental change of the stretching potential energy in a large range. The potential energy surfaces of the bond length, bond angle, and dihedral angle of boronic acid-β-lactamase have the same stability point and change trend as M06-2X/6-311G**. For 47 boronic acid-β-lactamase training molecules, the linear correlation coefficient (R) of the charge distribution between the ABEEMσπ PFF and HF/STO-3G is greater than 0.96. Attributed to the fact that the charge distribution of the ABEEMσπ PFF can fluctuate with the change of geometry and environment, the polarization effect and charge-transfer effect are well reflected. The binding ability of different boronic acids with the same β-lactamase is different. A total of 10 boronic acid-β-lactamase model molecules and 10 boronic acid-β-lactamase and water complexes are simulated. The order of binding energy of five large model molecules calculated by the ABEEMσπ PFF is consistent with that of the MP2 method. The binding energies of boronic acid-β-lactamase and water complexes are close to those of the MP2 method. The results of MD simulation of five aqueous boronic acid-β-lactamase complexes in the NVT ensemble verify the rationality of boron-related parameters of the ABEEMσπ PFF, which have a good application prospect. This study lays a solid theoretical foundation for further study of the inhibition of boronic acid on β-lactamase.
Collapse
Affiliation(s)
- Li-Nan Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| |
Collapse
|
17
|
Introvigne ML, Taracila MA, Prati F, Caselli E, Bonomo RA. α-Triazolylboronic Acids: A Promising Scaffold for Effective Inhibitors of KPCs. ChemMedChem 2020; 15:1283-1288. [PMID: 32459878 PMCID: PMC8256004 DOI: 10.1002/cmdc.202000126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/25/2020] [Indexed: 11/07/2022]
Abstract
Boronic acids are known reversible covalent inhibitors of serine β-lactamases. The selectivity and high potency of specific boronates bearing an amide side chain that mimics the β-lactam's amide side chain have been advanced in several studies. Herein, we describe a new class of boronic acids in which the amide group is replaced by a bioisostere triazole. The boronic acids were obtained in a two-step synthesis that relies on the solid and versatile copper-catalyzed azide-alkyne cycloaddition (CuAAC) followed by boronate deprotection. All of the compounds show very good inhibition of the Klebsiella pneumoniae carbapenemase KPC-2, with Ki values ranging from 1 nM to 1 μM, and most of them are able to restore cefepime activity against K. pneumoniae harboring blaKPC-2 . In particular, compound 1 e, bearing a sulfonamide substituted by a thiophene ring, proved to be an excellent KPC-2 inhibitor (Ki =30 nM); it restored cefepime susceptibility in KPC-Kpn cells (MIC=0.5 μg/mL) with values similar to that of vaborbactam (Ki =20 nM, MIC in KPC-Kpn 0.5 μg/mL). Our findings suggest that α-triazolylboronates might represent an effective scaffold for the treatment of KPC-mediated infections.
Collapse
Affiliation(s)
- Maria Luisa Introvigne
- Clinical and Experimental Medicine PhD Programme, University of Modena and Reggio Emilia, via Università 4, 41121, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Magdalena A Taracila
- Departments of Medicine
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Robert A Bonomo
- Departments of Medicine
- Pharmacology, Biochemistry and Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University, 2109 Adelbert Rd., Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Caselli E, Fini F, Introvigne ML, Stucchi M, Taracila MA, Fish ER, Smolen KA, Rather PN, Powers RA, Wallar BJ, Bonomo RA, Prati F. 1,2,3-Triazolylmethaneboronate: A Structure Activity Relationship Study of a Class of β-Lactamase Inhibitors against Acinetobacter baumannii Cephalosporinase. ACS Infect Dis 2020; 6:1965-1975. [PMID: 32502340 PMCID: PMC7458062 DOI: 10.1021/acsinfecdis.0c00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Boronic acid transition state inhibitors (BATSIs) are known reversible covalent
inhibitors of serine β-lactamases. The selectivity and high potency of specific
BATSIs bearing an amide side chain mimicking the β-lactam’s amide side
chain are an established and recognized synthetic strategy. Herein, we describe a new
class of BATSIs where the amide group is replaced by a bioisostere triazole; these
compounds were designed as molecular probes. To this end, a library of 26
α-triazolylmethaneboronic acids was synthesized and tested against the clinically
concerning Acinetobacter-derived cephalosporinase, ADC-7. In steady
state analyses, these compounds demonstrated
Ki values ranging from 90 nM to 38
μM (±10%). Five compounds were crystallized in complex with ADC-7
β-lactamase, and all the crystal structures reveal the triazole is in the putative
amide binding site, thus confirming the triazole–amide bioisosterism. The easy
synthetic access of these new inhibitors as prototype scaffolds allows the insertion of
a wide range of chemical groups able to explore the enzyme binding site and provides
insights on the importance of specific residues in recognition and catalysis. The best
inhibitor identified, compound 6q
(Ki 90 nM), places a tolyl group near
Arg340, making favorable cation−π interactions. Notably, the structure of
6q does not resemble the natural substrate of the β-lactamase yet
displays a pronounced inhibition activity, in addition to lowering the minimum
inhibitory concentration (MIC) of ceftazidime against three bacterial strains expressing
class C β-lactamases. In summary, these observations validate the
α-triazolylboronic acids as a promising template for further inhibitor design.
Collapse
Affiliation(s)
- Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Francesco Fini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Maria Luisa Introvigne
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Mattia Stucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Magdalena A. Taracila
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Erin R. Fish
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Kali A. Smolen
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Philip N. Rather
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia 30322 United States
| | - Rachel A. Powers
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Bradley J. Wallar
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service, Cleveland, Ohio 44106, United States
- Departments of Medicine, Pharmacology, Biochemistry and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106, United States
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
| |
Collapse
|
19
|
Lefurgy ST, Caselli E, Taracila MA, Malashkevich VN, Biju B, Papp-Wallace KM, Bonanno JB, Prati F, Almo SC, Bonomo RA. Structures of FOX-4 Cephamycinase in Complex with Transition-State Analog Inhibitors. Biomolecules 2020; 10:biom10050671. [PMID: 32349291 PMCID: PMC7277225 DOI: 10.3390/biom10050671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
Boronic acid transition-state analog inhibitors (BATSIs) are partners with β-lactam antibiotics for the treatment of complex bacterial infections. Herein, microbiological, biochemical, and structural findings on four BATSIs with the FOX-4 cephamycinase, a class C β-lactamase that rapidly hydrolyzes cefoxitin, are revealed. FOX-4 is an extended-spectrum class C cephalosporinase that demonstrates conformational flexibility when complexed with certain ligands. Like other β-lactamases of this class, studies on FOX-4 reveal important insights into structure–activity relationships. We show that SM23, a BATSI, shows both remarkable flexibility and affinity, binding similarly to other β-lactamases, yet retaining an IC50 value < 0.1 μM. Our analyses open up new opportunities for the design of novel transition-state analogs of class C enzymes.
Collapse
Affiliation(s)
- Scott T. Lefurgy
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Magdalena A. Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | | | - Beena Biju
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Krisztina M. Papp-Wallace
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +216-791-3800 (ext. 64801); Fax: +216-231-3482
| |
Collapse
|
20
|
González-Bello C. Recently developed synthetic compounds with anti-infective activity. Curr Opin Pharmacol 2019; 48:17-23. [DOI: 10.1016/j.coph.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
|
21
|
Pemberton OA, Jaishankar P, Akhtar A, Adams JL, Shaw LN, Renslo AR, Chen Y. Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine- and Metallocarbapenemases. J Med Chem 2019; 62:8480-8496. [PMID: 31483651 DOI: 10.1021/acs.jmedchem.9b00728] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gram-negative pathogens expressing serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), especially those with carbapenemase activity, threaten the clinical utility of almost all β-lactam antibiotics. Here we describe the discovery of a heteroaryl phosphonate scaffold that exhibits noncovalent cross-class inhibition of representative carbapenemases, specifically the SBL KPC-2 and the MBLs NDM-1 and VIM-2. The most potent lead, compound 16, exhibited low nM to low μM inhibition of KPC-2, NDM-1, and VIM-2. Compound 16 potentiated imipenem efficacy against resistant clinical and laboratory bacterial strains expressing carbapenemases while showing some cytotoxicity toward human HEK293T cells only at concentrations above 100 μg/mL. Complex structures with KPC-2, NDM-1, and VIM-2 demonstrate how these inhibitors achieve high binding affinity to both enzyme classes. These findings provide a structurally and mechanistically new scaffold for drug discovery targeting multidrug resistant Gram-negative pathogens and more generally highlight the active site features of carbapenemases that can be leveraged for lead discovery.
Collapse
Affiliation(s)
- Orville A Pemberton
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center , University of California, San Francisco , 600 16th Street, Genentech Hall N574 , San Francisco , California 94158 , United States
| | - Afroza Akhtar
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| | - Jessie L Adams
- Department of Cell Biology, Microbiology & Molecular Biology , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology & Molecular Biology , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center , University of California, San Francisco , 600 16th Street, Genentech Hall N574 , San Francisco , California 94158 , United States
| | - Yu Chen
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| |
Collapse
|
22
|
Fernandes GFS, Denny WA, Dos Santos JL. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur J Med Chem 2019; 179:791-804. [PMID: 31288128 DOI: 10.1016/j.ejmech.2019.06.092] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/21/2023]
Abstract
Advances in the field of boron chemistry have expanded the application of this element in Medicinal Chemistry. Boron-containing compounds represent a new class for medicinal chemists to use in their drug designs. Bortezomib (Velcade®), a dipeptide boronic acid approved by the FDA in 2003 for treatment of multiple myeloma, paved the way for the discovery of new boron-containing compounds. After its approval, two other boron-containing compounds have been approved, tavaborole (Kerydin®) for the treatment of onychomicosis and crisaborole (Eucrisa®) for the treatment of mild to moderate atopic dermatitis. A number of boron-containing compounds have been described and evaluated for a plethora of therapeutic applications. The present review is intended to highlight the recent advances related to boron-containing compounds and their therapeutic applications. Here, we focused only in those most biologically active compounds with proven in vitro and/or in vivo efficacy in the therapeutic area published in the last years.
Collapse
Affiliation(s)
- Guilherme Felipe Santos Fernandes
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil; Institute of Chemistry, São Paulo State University, Araraquara, 14800-060, Brazil; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - William Alexander Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil.
| |
Collapse
|
23
|
Torelli NJ, Akhtar A, DeFrees K, Jaishankar P, Pemberton OA, Zhang X, Johnson C, Renslo AR, Chen Y. Active-Site Druggability of Carbapenemases and Broad-Spectrum Inhibitor Discovery. ACS Infect Dis 2019; 5:1013-1021. [PMID: 30942078 DOI: 10.1021/acsinfecdis.9b00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Serine and metallo-carbapenemases are a serious health concern due to their capability to hydrolyze nearly all β-lactam antibiotics. However, the molecular basis for their unique broad-spectrum substrate profile is poorly understood, particularly for serine carbapenemases, such as KPC-2. Using substrates and newly identified small molecules, we compared the ligand binding properties of KPC-2 with the noncarbapenemase CTX-M-14, both of which are Class A β-lactamases with highly similar active sites. Notably, compared to CTX-M-14, KPC-2 was more potently inhibited by hydrolyzed β-lactam products (product inhibition), as well as by a series of novel tetrazole-based inhibitors selected from molecular docking against CTX-M-14. Together with complex crystal structures, these data suggest that the KPC-2 active site has an enhanced ability to form favorable interactions with substrates and small molecule ligands due to its increased hydrophobicity and flexibility. Such properties are even more pronounced in metallo-carbapenemases, such as NDM-1, which was also inhibited by some of the novel tetrazole compounds, including one displaying comparable low μM affinities against both KPC-2 and NDM-1. Our results suggest that carbapenemase activity confers an evolutionary advantage on producers via a broad β-lactam substrate scope but also a mechanistic Achilles' heel that can be exploited for new inhibitor discovery. The complex structures demonstrate, for the first time, how noncovalent inhibitors can be engineered to simultaneously target both serine and metallo-carbapenemases. Despite the relatively modest activity of the current compounds, these studies also demonstrate that hydrolyzed products and tetrazole-based chemotypes can provide valuable starting points for broad-spectrum inhibitor discovery against carbapenemases.
Collapse
Affiliation(s)
- Nicholas J. Torelli
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Afroza Akhtar
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Kyle DeFrees
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Orville A. Pemberton
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Cody Johnson
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| |
Collapse
|
24
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
25
|
Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa. mBio 2018; 9:mBio.02085-18. [PMID: 30538183 PMCID: PMC6299481 DOI: 10.1128/mbio.02085-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of β-lactamases (e.g., PDC-3) that have naturally evolved and acquired the ability to break down β-lactam antibiotics (e.g., ceftazidime and ceftolozane) leads to highly resistant and potentially lethal Pseudomonas aeruginosa infections. We show that wild-type PDC-3 β-lactamase forms an acyl enzyme complex with ceftazidime, but it cannot accommodate the structurally similar ceftolozane that has a longer R2 side chain with increased basicity. A single amino acid substitution from a glutamate to a lysine at position 221 in PDC-3 (E221K) causes the tyrosine residue at 223 to adopt a new position poised for efficient hydrolysis of both cephalosporins. The importance of the mechanism of action of the E221K variant, in particular, is underscored by its evolutionary recurrences in multiple bacterial species. Understanding the biochemical and molecular basis for resistance is key to designing effective therapies and developing new β-lactam/β-lactamase inhibitor combinations. Pseudomonas aeruginosa produces a class C β-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these β-lactamases are resistant to many β-lactam antibiotics. In response to this significant clinical threat, ceftolozane, a 3′ aminopyrazolium cephalosporin, was developed. Combined with tazobactam, ceftolozane promised to be effective against multidrug-resistant P. aeruginosa. Alarmingly, Ω-loop variants of the PDC β-lactamase (V213A, G216R, E221K, E221G, and Y223H) were identified in ceftolozane/tazobactam-resistant P. aeruginosa clinical isolates. Herein, we demonstrate that the Escherichia coli strain expressing the E221K variant of PDC-3 had the highest minimum inhibitory concentrations (MICs) against a panel of β-lactam antibiotics, including ceftolozane and ceftazidime, a cephalosporin that differs in structure largely in the R2 side chain. The kcat values of the E221K variant for both substrates were equivalent, whereas the Km for ceftolozane (341 ± 64 µM) was higher than that for ceftazidime (174 ± 20 µM). Timed mass spectrometry, thermal stability, and equilibrium unfolding studies revealed key mechanistic insights. Enhanced sampling molecular dynamics simulations identified conformational changes in the E221K variant Ω-loop, where a hidden pocket adjacent to the catalytic site opens and stabilizes ceftolozane for efficient hydrolysis. Encouragingly, the diazabicyclooctane β-lactamase inhibitor avibactam restored susceptibility to ceftolozane and ceftazidime in cells producing the E221K variant. In addition, a boronic acid transition state inhibitor, LP-06, lowered the ceftolozane and ceftazidime MICs by 8-fold for the E221K-expressing strain. Understanding these structural changes in evolutionarily selected variants is critical toward designing effective β-lactam/β-lactamase inhibitor therapies for P. aeruginosa infections.
Collapse
|
26
|
Tehrani KHME, Martin NI. β-lactam/β-lactamase inhibitor combinations: an update. MEDCHEMCOMM 2018; 9:1439-1456. [PMID: 30288219 PMCID: PMC6151480 DOI: 10.1039/c8md00342d] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance caused by β-lactamase production continues to present a growing challenge to the efficacy of β-lactams and their role as the most important class of clinically used antibiotics. In response to this threat however, only a handful of β-lactamase inhibitors have been introduced to the market over the past thirty years. The first-generation β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) are all β-lactam derivatives and work primarily by inactivating class A and some class C serine β-lactamases. The newer generations of β-lactamase inhibitors including avibactam and vaborbactam are based on non-β-lactam structures and their spectrum of inhibition is extended to KPC as an important class A carbapenemase. Despite these advances several class D and virtually all important class B β-lactamases are resistant to existing inhibitors. The present review provides an overview of recent FDA-approved β-lactam/β-lactamase inhibitor combinations as well as an update on research efforts aimed at the discovery and development of novel β-lactamase inhibitors.
Collapse
Affiliation(s)
- Kamaleddin H M E Tehrani
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
- Biological Chemistry Group , Institute of Biology Leiden , Leiden University , Sylvius Laboratories, Sylviusweg 72 , 2333 BE Leiden , The Netherlands . ; Tel: +31 (0)6 1878 5274
| |
Collapse
|
27
|
van den Akker F, Bonomo RA. Exploring Additional Dimensions of Complexity in Inhibitor Design for Serine β-Lactamases: Mechanistic and Intra- and Inter-molecular Chemistry Approaches. Front Microbiol 2018; 9:622. [PMID: 29675000 PMCID: PMC5895744 DOI: 10.3389/fmicb.2018.00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023] Open
Abstract
As a bacterial resistance strategy, serine β-lactamases have evolved from cell wall synthesizing enzymes known as penicillin-binding proteins (PBP), by not only covalently binding β-lactam antibiotics but, also acquiring mechanisms of deacylating these antibiotics. This critical deacylation step leads to release of hydrolyzed and inactivated β-lactams, thereby providing resistance for the bacteria against these antibiotics targeting the cell wall. To combat β-lactamase-mediated antibiotic resistance, numerous β-lactamase inhibitors were developed that utilize various strategies to inactivate the β-lactamase. Most of these compounds are “mechanism-based” inhibitors that in some manner mimic the β-lactam substrate, having a carbonyl moiety and a negatively charged carboxyl or sulfate group. These compounds form a covalent adduct with the catalytic serine via an initial acylation step. To increase the life-time of the inhibitory covalent adduct intermediates, a remarkable array of different strategies was employed to improve inhibition potency. Such approaches include post-acylation intra- and intermolecular chemical rearrangements as well as affecting the deacylation water. These approaches transform the inhibitor design process from a 3-dimensional problem (i.e., XYZ coordinates) to one with additional dimensions of complexity as the reaction coordinate and time spent at each chemical state need to be taken into consideration. This review highlights the mechanistic intricacies of the design efforts of the β-lactamase inhibitors which so far have resulted in the development of “two generations” and 5 clinically available inhibitors.
Collapse
Affiliation(s)
- Focco van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Robert A Bonomo
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Medicine, Pharmacology, Molecular Biology and Microbiology, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Medical Service and Geriatric Research, Education, and Clinical Centers (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Case Western Reserve University-VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
| |
Collapse
|