1
|
Deng Y, Yu YD, Song C, Xu GY, Xu Y, Ye CJ. Design, Synthesis, and Structure-Activity Relationship of 2-(Piperazin-1-yl)quinazolin-4(3 H)-one Derivatives as Active Agents against Toxoplasma gondii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40008850 DOI: 10.1021/acs.jafc.4c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A novel series of quinazolin-4(3H)-one derivatives were synthesized using a hybridization strategy that combined the quinazolin-4(3H)-one scaffold, the diarylether fragment, and the piperazine ring. The in vitro activity evaluation of these compounds against Toxoplasma gondii demonstrated that most of this series of compounds showed moderate to good effectiveness, with IC50 values ranging from 5.94 to 102.2 μM. Among the synthesized derivatives, compounds 11 and 18 emerged as the most potent inhibitors, significantly reducing the replication rate of T. gondii with IC50 values of 6.33 and 5.94 μM, as well as demonstrated low cytotoxicity with CC50 values of 285 and 59.2 μM, respectively. The structure-activity relationship investigation indicates that the substituent at the N-3 position of the quinazolin-4(3H)-one is important for anti-T. gondii activity while the replacements at the phenyl moiety of the quinazolin-4(3H)-one and at the diarylether fragment cannot improve activity. The invasion and proliferation assay demonstrated that compound 11 could inhibit both parasite invasion and replication ability. Further investigation of the in vitro efficacy revealed irreversible action of compound 11 against T. gondii. In vivo investigations conducted within a murine model of acute infection revealed that compounds 11 and 18 exhibited a remarkable capacity to significantly diminish the parasitic load in comparison to the control group while also extending the survival duration of the subjects. These results underscore the potential of compound 11 as a candidate for further exploration in the development of antitoxoplasmosis therapies.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Yuan-Di Yu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Chao Song
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Guo-Yang Xu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Yue Xu
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Chang-Ju Ye
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| |
Collapse
|
2
|
Cardillo NM, Villarino NF, Lacy PA, Doggett JS, Riscoe MK, Suarez CE, Ueti MW, Chung CJ. Enhanced Anti-Babesia Efficacy of Buparvaquone and Imidocarb When Combined with ELQ-316 In Vitro Culture of Babesia bigemina. Pharmaceuticals (Basel) 2025; 18:218. [PMID: 40006032 PMCID: PMC11858768 DOI: 10.3390/ph18020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives:B. bigemina is a highly pathogenic and widely distributed tick-borne disease parasite responsible for bovine babesiosis. The development of effective and safe therapies is urgently needed for global disease control. The aim of this study is to compare the effects of endochin-like quinolone (ELQ-316), buparvaquone (BPQ), imidocarb (ID), and the combinations of ID + ELQ-316 and BPQ + ELQ-316, on in vitro survival of B. bigemina.Methods: Parasites at a starting parasitemia level of 2%, were incubated with each single drug and a combination of drugs, ranging from 25 to 1200 nM of concentration over four consecutive days. The inhibitory concentrations, 50% (IC50%) and 99% (IC99%), were estimated. Parasitemia levels were evaluated daily using microscopic examination. Data were statistically compared using the non-parametrical Kruskall-Wallis test. Results: All drugs tested significantly inhibited (p < 0.05) the growth of B. bigemina at 2% parasitemia. The combination of ID + ELQ-316 exhibited a lower mean (IC50%: 9.2; confidence interval 95%: 8.7-9.9) than ID (IC50%: 61.5; confidence interval 95%: 59.54-63.46), ELQ-316 (IC50%: 48.10; confidence interval 95%: 42.76-58.83), BPQ (IC50%: 44.66; confidence interval 95%: 43.56-45.81), and BPQ + ELQ-316 (IC50%: 27.59; confidence interval: N/A). Parasites were no longer viable in cultures treated with the BPQ + ELQ-316 combination, as well as with BPQ alone at a concentration of 1200 nM, on days 2 and 3 of treatment, respectively. Conclusions: BPQ and ID increase the babesiacidal effect of ELQ-316. The efficacy of these combinations deserves to be evaluated in vivo, which could lead to a promising and safer treatment option for B. bigemina.
Collapse
Affiliation(s)
- Natalia M. Cardillo
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Nicolas F. Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Paul A. Lacy
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.)
| | - Joseph S. Doggett
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA; (J.S.D.); (M.K.R.)
- School of Medicine, Division of Infectious Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael K. Riscoe
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA; (J.S.D.); (M.K.R.)
- Department of Microbiology and Molecular Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Massaro W. Ueti
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Chungwon J. Chung
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
3
|
Liu S, Cai M, Liu Z, Gao W, Li J, Li Y, Abudouxukuer X, Zhang J. Comprehensive Insights into the Development of Antitoxoplasmosis Drugs: Current Advances, Obstacles, and Future Perspectives. J Med Chem 2024; 67:20740-20764. [PMID: 39589152 DOI: 10.1021/acs.jmedchem.4c01733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Current therapies for toxoplasmosis rely on a few drugs, most of which have severe side effects, and seeking ideal therapies for different types of toxoplasmosis is a long-term and challenging mission. Research and development (R&D) of novel drugs against Toxoplasma gondii (T. gondii) has focused on two main directions, the structural modification of lead compounds and natural products. Here we summarize the recent advances in the development of anti-T. gondii drugs from these two perspectives and provide comprehensive insights, reflecting on the advantages and selected molecules in each field. This review also focuses on the current obstacles to the development of novel anti-T. gondii agents, proposes comprehensive solutions, and facilitates future development.
Collapse
Affiliation(s)
- Siyang Liu
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Minghao Cai
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Zhendi Liu
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Weixin Gao
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Junjie Li
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Yuxueqing Li
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Xiayire Abudouxukuer
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Jili Zhang
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| |
Collapse
|
4
|
Cardillo NM, Villarino NF, Lacy PA, Riscoe MK, Doggett JS, Ueti MW, Chung CJ, Suarez CE. The Combination of Buparvaquone and ELQ316 Exhibit a Stronger Effect than ELQ316 and Imidocarb Against Babesia bovis In Vitro. Pharmaceutics 2024; 16:1402. [PMID: 39598526 PMCID: PMC11597495 DOI: 10.3390/pharmaceutics16111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Bovine babesiosis is a vector-borne disease transmitted by ticks that causes important losses in livestock worldwide. Recent research performed on the drugs currently used to control bovine babesiosis reported several issues including drug resistance, toxicity impact, and residues in edible tissue, suggesting the need for developing novel effective therapies. The endochin-like quinolones ELQ-316 and buparvaquone (BPQ) act as cytochrome bc1 inhibitors and have been proven to be safe and efficacious against related apicomplexans, such as Plasmodium spp. and Babesia microti, without showing toxicity in mammals. The objectives of this study are investigating whether ELQ-316, BPQ, and their combination treatment could be effective against Babesia bovis in an in vitro culture model and comparing with imidocarb (ID), the routinely used drug. Methods: In vitro cultured parasites starting at 2% percentage of parasitemia (PPE) were treated with BPQ, ELQ-316, ID, and the combinations of BPQ + ELQ-316 and ID + ELQ-316 at drug concentrations that ranged from 25 to 1200 nM, during four consecutive days. The IC50% and IC99% were reported. Parasitemia levels were evaluated daily using microscopic examination. Data were compared using the non-parametrical Mann-Whitney and Kruskall-Wallis test. Results: All drugs tested, whether used alone or in combination, significantly decreased the survival (p < 0.05) of B. bovis in in vitro cultures. The combination of BPQ + ELQ-316 had the lowest calculated inhibitory concentration 50% (IC50%) values, 31.21 nM (IC95%: 15.06-68.48); followed by BPQ, 77.06 nM (IC95%: 70.16-86.01); ID + ELQ316, 197 nM (IC95%:129.0-311.2); ID, 635.1 nM (IC95%: 280.9-2119); and ELQ316, 654.9 nM (IC95%: 362.3-1411). Conclusions: The results reinforce the higher efficacy of BPQ at affecting B. bovis survival and the potential synergistic effects of its combination with ELQ-316, providing a promising treatment option against B. bovis.
Collapse
Affiliation(s)
- Natalia M. Cardillo
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
- Estación Experimental INTA Paraná, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 2290, Argentina
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Nicolas F. Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Paul A. Lacy
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
| | - Michael K. Riscoe
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA (J.S.D.)
- Department of Microbiology and Molecular Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Joseph Stone Doggett
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA (J.S.D.)
- School of Medicine, Division of Infectious Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Massaro W. Ueti
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Chungwon J. Chung
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Pou S, Winter RW, Dodean RA, Liebman K, Li Y, Mather MW, Nepal B, Nilsen A, Handford MJ, Riscoe TM, Laxson S, Kirtley PJ, Aleshnick M, Zakharov LN, Kelly JX, Smilkstein MJ, Wilder BK, Kortagere S, Vaidya AB, Alday PH, Doggett JS, Riscoe MK. 3-Position Biaryl Endochin-like Quinolones with Enhanced Antimalarial Performance. ACS Infect Dis 2024; 10:2419-2442. [PMID: 38862127 PMCID: PMC11245370 DOI: 10.1021/acsinfecdis.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024]
Abstract
ELQ-300 is a potent antimalarial drug with activity against blood, liver, and vector stages of the disease. A prodrug, ELQ-331, exhibits reduced crystallinity and improved in vivo efficacy in preclinical testing, and currently, it is in the developmental pipeline for once-a-week dosing for oral prophylaxis against malaria. Because of the high cost of developing a new drug for human use and the high risk of drug failure, it is prudent to have a back-up plan in place. Here we describe ELQ-596, a member of a new subseries of 3-biaryl-ELQs, with enhanced potency in vitro against multidrug-resistant Plasmodium falciparum parasites. ELQ-598, a prodrug of ELQ-596 with diminished crystallinity, is more effective vs murine malaria than its progenitor ELQ-331 by 4- to 10-fold, suggesting that correspondingly lower doses could be used to protect and cure humans of malaria. With a longer bloodstream half-life in mice compared to its progenitor, ELQ-596 highlights a novel series of next-generation ELQs with the potential for once-monthly dosing for protection against malaria infection. Advances in the preparation of 3-biaryl-ELQs are presented along with preliminary results from experiments to explore key structure-activity relationships for drug potency, selectivity, pharmacokinetics, and safety.
Collapse
Affiliation(s)
- Sovitj Pou
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rolf W. Winter
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rozalia A. Dodean
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Katherine Liebman
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Yuexin Li
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Michael W. Mather
- Department
of Microbiology and Immunology, Drexel University
College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Binod Nepal
- Department
of Microbiology and Immunology, Drexel University
College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Aaron Nilsen
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Mason J. Handford
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Teresa M. Riscoe
- Department
of Microbiology and Molecular Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Sydney Laxson
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Payton J. Kirtley
- Vaccine
& Gene Therapy Institute (VGTI), Oregon
Health and Science University (West Campus), 505 NW 185th Avenue, #1, Beaverton, Oregon 97006, United States
| | - Maya Aleshnick
- Vaccine
& Gene Therapy Institute (VGTI), Oregon
Health and Science University (West Campus), 505 NW 185th Avenue, #1, Beaverton, Oregon 97006, United States
| | - Lev N. Zakharov
- Center
for Advanced Materials Characterization in Oregon (CAMCOR), 1443 E. 13th Avenue, Eugene, Oregon 97403, United States
| | - Jane X. Kelly
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Martin J. Smilkstein
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Brandon K. Wilder
- Vaccine
& Gene Therapy Institute (VGTI), Oregon
Health and Science University (West Campus), 505 NW 185th Avenue, #1, Beaverton, Oregon 97006, United States
| | - Sandhya Kortagere
- Department
of Microbiology and Immunology, Drexel University
College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Akhil B. Vaidya
- Department
of Microbiology and Immunology, Drexel University
College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - P. Holland Alday
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
- School of
Medicine Division of Infectious Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - J. Stone Doggett
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
- School of
Medicine Division of Infectious Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Michael K. Riscoe
- VA
Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
- Department
of Microbiology and Molecular Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
6
|
Pou S, Winter RW, Liebman KM, Dodean RA, Nilsen A, DeBarber A, Doggett JS, Riscoe MK. Synthesis of Deuterated Endochin-Like Quinolones. J Labelled Comp Radiopharm 2024; 67:186-196. [PMID: 38661253 PMCID: PMC11081819 DOI: 10.1002/jlcr.4092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Malaria continues to be a serious and debilitating disease. The emergence and spread of high-level resistance to multiple antimalarial drugs by Plasmodium falciparum has brought about an urgent need for new treatments that will be active against multidrug resistant malaria infections. One such treatment, ELQ-331 (MMV-167), an alkoxy carbonate prodrug of 4(1H)-quinolone ELQ-300, is currently in preclinical development with the Medicines for Malaria Venture. Clinical development of ELQ-331 or similar compounds will require the availability of isotopically labeled analogs. Unfortunately, a suitable method for the deuteration of these important compounds was not found in the literature. Here, we describe a facile and scalable method for the deuteration of 4(1H)-quinolone ELQ-300, its alkoxycarbonate prodrug ELQ-331, and their respective N-oxides using deuterated acetic acid.
Collapse
Affiliation(s)
- Sovitj Pou
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | - Rolf W Winter
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | | | - Rosie A Dodean
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | - Aaron Nilsen
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrea DeBarber
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - J Stone Doggett
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Division of Infectious Diseases, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael K Riscoe
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Esser L, Xia D. Mitochondrial Cytochrome bc1 Complex as Validated Drug Target: A Structural Perspective. Trop Med Infect Dis 2024; 9:39. [PMID: 38393128 PMCID: PMC10892539 DOI: 10.3390/tropicalmed9020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial respiratory chain Complex III, also known as cytochrome bc1 complex or cyt bc1, is a validated target not only for antibiotics but also for pesticides and anti-parasitic drugs. Although significant progress has been made in understanding the mechanisms of cyt bc1 function and inhibition by using various natural and synthetic compounds, important issues remain in overcoming drug resistance in agriculture and in evading cytotoxicity in medicine. In this review, we look at these issues from a structural perspective. After a brief description of the essential and common structural features, we point out the differences among various cyt bc1 complexes of different organisms, whose structures have been determined to atomic resolution. We use a few examples of cyt bc1 structures determined via bound inhibitors to illustrate both conformational changes observed and implications to the Q-cycle mechanism of cyt bc1 function. These structures not only offer views of atomic interactions between cyt bc1 complexes and inhibitors, but they also provide explanations for drug resistance when structural details are coupled to sequence changes. Examples are provided for exploiting structural differences in evolutionarily conserved enzymes to develop antifungal drugs for selectivity enhancement, which offer a unique perspective on differential interactions that can be exploited to overcome cytotoxicity in treating human infections.
Collapse
Affiliation(s)
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2122C, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Müller J, Hemphill A. In vitro screening technologies for the discovery and development of novel drugs against Toxoplasma gondii. Expert Opin Drug Discov 2024; 19:97-109. [PMID: 37921660 DOI: 10.1080/17460441.2023.2276349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Toxoplasmosis constitutes a challenge for public health, animal production and welfare. Since more than 60 years, only a limited panel of drugs has been in use for clinical applications. AREAS COVERED Herein, the authors describe the methodology and the results of library screening approaches to identify inhibitors of Toxoplasma gondii and related strains. The authors then provide the reader with their expert perspectives for the future. EXPERT OPINION Various library screening projects, in particular those using reporter strains, have led to the identification of numerous compounds with good efficacy and specificity in vitro. However, only few compounds are effective in suitable animal models such as rodents. Whereas no novel compound has cleared the hurdle to applications in humans, the few compounds with known indication and application profiles in human patients are of interest for further investigations. Taken together, drug repurposing as well as high-throughput screening of novel compound libraries may shorten the way to novel drugs against toxoplasmosis.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Ren R, Wang X, Leas DA, Scheurer C, Hoevel S, Cal M, Chen G, Zhong L, Katneni K, Pham T, Patil R, Sil D, Walters MJ, Schulze TT, Neville AJ, Dong Y, Wittlin S, Kaiser M, Davis PH, Charman SA, Vennerstrom JL. Antimalarial Dibenzannulated Medium-Ring Keto Lactams. ACS Infect Dis 2023; 9:1964-1980. [PMID: 37695781 PMCID: PMC10860121 DOI: 10.1021/acsinfecdis.3c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
We discovered dibenzannulated medium-ring keto lactams (11,12-dihydro-5H-dibenzo[b,g]azonine-6,13-diones) as a new antimalarial chemotype. Most of these had chromatographic LogD7.4 values ranging from <0 to 3 and good kinetic solubilities (12.5 to >100 μg/mL at pH 6.5). The more polar compounds in the series (LogD7.4 values of <2) had the best metabolic stability (CLint values of <50 μL/min/mg protein in human liver microsomes). Most of the compounds had relatively low cytotoxicity, with IC50 values >30 μM, and there was no correlation between antiplasmodial activity and cytotoxicity. The four most potent compounds had Plasmodium falciparum IC50 values of 4.2 to 9.4 nM and in vitro selectivity indices of 670 to >12,000. They were more than 4 orders-of-magnitude less potent against three other protozoal pathogens (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania donovani) but did have relatively high potency against Toxoplasma gondii, with IC50 values ranging from 80 to 200 nM. These keto lactams are converted into their poorly soluble 4(1H)-quinolone transannular condensation products in vitro in culture medium and in vivo in mouse blood. The similar antiplasmodial potencies of three keto lactam-quinolone pairs suggest that the quinolones likely contribute to the antimalarial activity of the lactams.
Collapse
Affiliation(s)
- Rongguo Ren
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Derek A Leas
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Christian Scheurer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Sarah Hoevel
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Monica Cal
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Longjin Zhong
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Thao Pham
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Rahul Patil
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Diptesh Sil
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Matthias J Walters
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge St., Omaha, Nebraska 68182, United States
| | - Thomas T Schulze
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge St., Omaha, Nebraska 68182, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Andrew J Neville
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge St., Omaha, Nebraska 68182, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Marcel Kaiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge St., Omaha, Nebraska 68182, United States
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jonathan L Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| |
Collapse
|
10
|
Hayward JA, Makota FV, Cihalova D, Leonard RA, Rajendran E, Zwahlen SM, Shuttleworth L, Wiedemann U, Spry C, Saliba KJ, Maier AG, van Dooren GG. A screen of drug-like molecules identifies chemically diverse electron transport chain inhibitors in apicomplexan parasites. PLoS Pathog 2023; 19:e1011517. [PMID: 37471441 PMCID: PMC10403144 DOI: 10.1371/journal.ppat.1011517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
Apicomplexans are widespread parasites of humans and other animals, and include the causative agents of malaria (Plasmodium species) and toxoplasmosis (Toxoplasma gondii). Existing anti-apicomplexan therapies are beset with issues around drug resistance and toxicity, and new treatment options are needed. The mitochondrial electron transport chain (ETC) is one of the few processes that has been validated as a drug target in apicomplexans. To identify new inhibitors of the apicomplexan ETC, we developed a Seahorse XFe96 flux analyzer approach to screen the 400 compounds contained within the Medicines for Malaria Venture 'Pathogen Box' for ETC inhibition. We identified six chemically diverse, on-target inhibitors of the ETC in T. gondii, at least four of which also target the ETC of Plasmodium falciparum. Two of the identified compounds (MMV024937 and MMV688853) represent novel ETC inhibitor chemotypes. MMV688853 belongs to a compound class, the aminopyrazole carboxamides, that were shown previously to target a kinase with a key role in parasite invasion of host cells. Our data therefore reveal that MMV688853 has dual targets in apicomplexans. We further developed our approach to pinpoint the molecular targets of these inhibitors, demonstrating that all target Complex III of the ETC, with MMV688853 targeting the ubiquinone reduction (Qi) site of the complex. Most of the compounds we identified remain effective inhibitors of parasites that are resistant to Complex III inhibitors that are in clinical use or development, indicating that they could be used in treating drug resistant parasites. In sum, we have developed a versatile, scalable approach to screen for compounds that target the ETC in apicomplexan parasites, and used this to identify and characterize novel inhibitors.
Collapse
Affiliation(s)
- Jenni A. Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - F. Victor Makota
- Research School of Biology, Australian National University, Canberra, Australia
| | - Daniela Cihalova
- Research School of Biology, Australian National University, Canberra, Australia
| | - Rachel A. Leonard
- Research School of Biology, Australian National University, Canberra, Australia
| | - Esther Rajendran
- Research School of Biology, Australian National University, Canberra, Australia
| | - Soraya M. Zwahlen
- Research School of Biology, Australian National University, Canberra, Australia
| | - Laura Shuttleworth
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ursula Wiedemann
- Research School of Biology, Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, Australian National University, Canberra, Australia
| | - Alexander G. Maier
- Research School of Biology, Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
11
|
Alday PH, Nilsen A, Doggett JS. Structure-activity relationships of Toxoplasma gondii cytochrome bc1 inhibitors. Expert Opin Drug Discov 2022; 17:997-1011. [PMID: 35772172 PMCID: PMC9561756 DOI: 10.1080/17460441.2022.2096588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Toxoplasma gondii is a prolific apicomplexan parasite that infects human and nonhuman animals worldwide and can cause severe brain and eye disease. Safer, more effective therapies for toxoplasmosis are needed. Cytochrome bc1 inhibitors are remarkably effective against toxoplasmosis and other apicomplexan-caused diseases. AREAS COVERED This work reviews T. gondii cytochrome bc1 inhibitors. Emphasis is placed on the structure-activity relationships of these inhibitors with regard to efficacy, pharmacokinetics, selectivity of T. gondii cytochrome bc1 over host, safety, and potential therapeutic strategies. EXPERT OPINION Cytochrome bc1 inhibitors are highly promising compounds for toxoplasmosis that have been effective in clinical and preclinical studies. Clinical experience with atovaquone previously validated cytochrome bc1 as a tractable drug target and, over the past decade, optimization of cytochrome bc1 inhibitors has resulted in improved bioavailability, metabolic stability, potency, blood-brain barrier penetration, and selectivity for the T. gondii cytochrome bc1 over the mammalian bc1. Recent studies have demonstrated preclinical safety, identified novel therapeutic strategies for toxoplasmosis using synergistic combinations or long-acting administration and provided insight into their role in chronic infection. This research has identified drug candidates that are more effective than clinically used drugs in preclinical measures of efficacy.
Collapse
Affiliation(s)
- Phil Holland Alday
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron Nilsen
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
12
|
Chaudhry S, Zurbriggen R, Preza M, Kämpfer T, Kaethner M, Memedovski R, Scorrano N, Hemphill A, Doggett JS, Lundström-Stadelmann B. Dual inhibition of the Echinococcus multilocularis energy metabolism. Front Vet Sci 2022; 9:981664. [PMID: 35990276 PMCID: PMC9388906 DOI: 10.3389/fvets.2022.981664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Alveolar echinococcosis is caused by the metacestode stage of the zoonotic parasite Echinococcus multilocularis. Current chemotherapeutic treatment options rely on benzimidazoles, which have limited curative capabilities and can cause severe side effects. Thus, novel treatment options are urgently needed. In search for novel targetable pathways we focused on the mitochondrial energy metabolism of E. multilocularis. The parasite relies hereby on two pathways: The classical oxidative phosphorylation including the electron transfer chain (ETC), and the anaerobic malate dismutation (MD). We screened 13 endochin-like quinolones (ELQs) in vitro for their activities against two isolates of E. multilocularis metacestodes and isolated germinal layer cells by the phosphoglucose isomerase (PGI) assay and the CellTiter Glo assay. For the five most active ELQs (ELQ-121, ELQ-136, ELQ-271, ELQ-400, and ELQ-437), EC50 values against metacestodes were assessed by PGI assay, and IC50 values against mammalian cells were measured by Alamar Blue assay. Further, the gene sequence of the proposed target, the mitochondrial cytochrome b, was analyzed. This allowed for a limited structure activity relationship study of ELQs against E. multilocularis, including analyses of the inhibition of the two functional sites of the cytochrome b. By applying the Seahorse XFp Extracellular Flux Analyzer, oxygen consumption assays showed that ELQ-400 inhibits the E. multilocularis cytochrome bc1 complex under normoxic conditions. When tested under anaerobic conditions, ELQ-400 was hardly active against E. multilocularis metacestodes. These results were confirmed by transmission electron microscopy. ELQ-400 treatment increased levels of parasite-released succinate, the final electron acceptor of the MD. This suggests that the parasite switched to MD for energy generation. Therefore, MD was inhibited with quinazoline, which did not induce damage to metacestodes under anaerobic conditions. However, it reduced the production of succinate compared to control treated parasites (i.e., inhibited the MD). The combination treatment with quinazoline strongly improved the activity of the bc1 inhibitor ELQ-400 against E. multilocularis metacestodes under anaerobic conditions. We conclude that simultaneous targeting of the ETC and the MD of E. multilocularis is a possible novel treatment approach for alveolar echinococcosis, and possibly also other foodborne diseases inflicted by platyhelminths, which cause substantial economic losses in livestock industry.
Collapse
Affiliation(s)
- Sheena Chaudhry
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Raphael Zurbriggen
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matías Preza
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tobias Kämpfer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marc Kaethner
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Roman Memedovski
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nathalie Scorrano
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joseph Stone Doggett
- Department of Infectious Diseases and Pathobiology, Oregon Health and Science University, Portland, OR, United States
- Department of Infectious Diseases and Pathobiology, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Britta Lundström-Stadelmann
| |
Collapse
|
13
|
Komatsuya K, Sakura T, Shiomi K, Ōmura S, Hikosaka K, Nozaki T, Kita K, Inaoka DK. Siccanin Is a Dual-Target Inhibitor of Plasmodium falciparum Mitochondrial Complex II and Complex III. Pharmaceuticals (Basel) 2022; 15:ph15070903. [PMID: 35890202 PMCID: PMC9319939 DOI: 10.3390/ph15070903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum contains several mitochondrial electron transport chain (ETC) dehydrogenases shuttling electrons from the respective substrates to the ubiquinone pool, from which electrons are consecutively transferred to complex III, complex IV, and finally to the molecular oxygen. The antimalarial drug atovaquone inhibits complex III and validates this parasite’s ETC as an attractive target for chemotherapy. Among the ETC dehydrogenases from P. falciparum, dihydroorotate dehydrogenase, an essential enzyme used in de novo pyrimidine biosynthesis, and complex III are the two enzymes that have been characterized and validated as drug targets in the blood-stage parasite, while complex II has been shown to be essential for parasite survival in the mosquito stage; therefore, these enzymes and complex II are considered candidate drug targets for blocking parasite transmission. In this study, we identified siccanin as the first (to our knowledge) nanomolar inhibitor of the P. falciparum complex II. Moreover, we demonstrated that siccanin also inhibits complex III in the low-micromolar range. Siccanin did not inhibit the corresponding complexes from mammalian mitochondria even at high concentrations. Siccanin inhibited the growth of P. falciparum with IC50 of 8.4 μM. However, the growth inhibition of the P. falciparum blood stage did not correlate with ETC inhibition, as demonstrated by lack of resistance to siccanin in the yDHODH-3D7 (EC50 = 10.26 μM) and Dd2-ELQ300 strains (EC50 = 18.70 μM), suggesting a third mechanism of action that is unrelated to mitochondrial ETC inhibition. Hence, siccanin has at least a dual mechanism of action, being the first potent and selective inhibitor of P. falciparum complexes II and III over mammalian enzymes and so is a potential candidate for the development of a new class of antimalarial drugs.
Collapse
Affiliation(s)
- Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan;
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo 108-8641, Japan;
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (K.K.); (D.K.I.); Tel.: +81-95-819-7575 (K.K.); +81-95-819-7230 (D.K.I.)
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Correspondence: (K.K.); (D.K.I.); Tel.: +81-95-819-7575 (K.K.); +81-95-819-7230 (D.K.I.)
| |
Collapse
|
14
|
Usey MM, Huet D. Parasite powerhouse: A review of the Toxoplasma gondii mitochondrion. J Eukaryot Microbiol 2022; 69:e12906. [PMID: 35315174 PMCID: PMC9490983 DOI: 10.1111/jeu.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a member of the apicomplexan phylum, a group of single-celled eukaryotic parasites that cause significant human morbidity and mortality around the world. T. gondii harbors two organelles of endosymbiotic origin: a non-photosynthetic plastid, known as the apicoplast, and a single mitochondrion derived from the ancient engulfment of an α-proteobacterium. Due to excitement surrounding the novelty of the apicoplast, the T. gondii mitochondrion was, to a certain extent, overlooked for about two decades. However, recent work has illustrated that the mitochondrion is an essential hub of apicomplexan-specific biology. Development of novel techniques, such as cryo-electron microscopy, complexome profiling, and next-generation sequencing have led to a renaissance in mitochondrial studies. This review will cover what is currently known about key features of the T. gondii mitochondrion, ranging from its genome to protein import machinery and biochemical pathways. Particular focus will be given to mitochondrial features that diverge significantly from the mammalian host, along with discussion of this important organelle as a drug target.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgiaUSA,Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Diego Huet
- Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGeorgiaUSA,Department of Pharmaceutical and Biomedical SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
15
|
Wu RZ, Zhou HY, Song JF, Xia QH, Hu W, Mou XD, Li X. Chemotherapeutics for Toxoplasma gondii: Molecular Biotargets, Binding Modes, and Structure-Activity Relationship Investigations. J Med Chem 2021; 64:17627-17655. [PMID: 34894691 DOI: 10.1021/acs.jmedchem.1c01569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxoplasmosis, an infectious zoonotic disease caused by the apicomplexan parasite Toxoplasma gondii (T. gondii), is a major worldwide health problem. However, there are currently no effective options (chemotherapeutic drugs or prophylactic vaccines) for treating chronic latent toxoplasmosis infection. Accordingly, seeking more effective and safer chemotherapeutics for combating this disease remains a long-term and challenging objective. In this paper, we summarize possible molecular biotargets, with an emphasis on those that are druggable and promising, including, without limitation, calcium-dependent protein kinase 1, bifunctional thymidylate synthase-dihydrofolate reductase, and farnesyl diphosphate synthase. Meanwhile, as important components of medicinal chemistry, the binding modes and structure-activity relationship profiles of the corresponding inhibitors were also illuminated. We anticipate that this information will be helpful for further identification of more effective chemotherapeutic interventions to prevent and treat zoonotic infections caused by T. gondii.
Collapse
Affiliation(s)
- Rong-Zhen Wu
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China
| | - Huai-Yu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, no. 44 Wenhua Xi Road, Ji'nan, Shandong 250012, PR China
| | - Jing-Feng Song
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, no. 1168 Chunrong Xi Road, Kunming, Yunnan 650500, PR China
| | - Qiao-Hong Xia
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, no. 44 Wenhua Xi Road, Ji'nan, Shandong 250012, PR China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, no. 72 Binhai Road of JiMo, Qingdao, Shandong 266237, PR China
| | - Xiao-Dong Mou
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China
| | - Xun Li
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China.,Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, PR China
| |
Collapse
|
16
|
Hajj RE, Tawk L, Itani S, Hamie M, Ezzeddine J, El Sabban M, El Hajj H. Toxoplasmosis: Current and Emerging Parasite Druggable Targets. Microorganisms 2021; 9:microorganisms9122531. [PMID: 34946133 PMCID: PMC8707595 DOI: 10.3390/microorganisms9122531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a prevalent disease affecting a wide range of hosts including approximately one-third of the human population. It is caused by the sporozoan parasite Toxoplasma gondii (T. gondii), which instigates a range of symptoms, manifesting as acute and chronic forms and varying from ocular to deleterious congenital or neuro-toxoplasmosis. Toxoplasmosis may cause serious health problems in fetuses, newborns, and immunocompromised patients. Recently, associations between toxoplasmosis and various neuropathies and different types of cancer were documented. In the veterinary sector, toxoplasmosis results in recurring abortions, leading to significant economic losses. Treatment of toxoplasmosis remains intricate and encompasses general antiparasitic and antibacterial drugs. The efficacy of these drugs is hindered by intolerance, side effects, and emergence of parasite resistance. Furthermore, all currently used drugs in the clinic target acute toxoplasmosis, with no or little effect on the chronic form. In this review, we will provide a comprehensive overview on the currently used and emergent drugs and their respective parasitic targets to combat toxoplasmosis. We will also abridge the repurposing of certain drugs, their targets, and highlight future druggable targets to enhance the therapeutic efficacy against toxoplasmosis, hence lessening its burden and potentially alleviating the complications of its associated diseases.
Collapse
Affiliation(s)
- Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut 1107 2809, Lebanon;
| | - Lina Tawk
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Shaymaa Itani
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Jana Ezzeddine
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon;
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
- Correspondence: ; Tel.: +961–1-350000 (ext. 4897)
| |
Collapse
|
17
|
Wani MA, Dhaked DK. Targeting the cytochrome bc 1 complex for drug development in M. tuberculosis: review. Mol Divers 2021; 26:2949-2965. [PMID: 34762234 DOI: 10.1007/s11030-021-10335-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The terminal oxidases of the oxidative phosphorylation pathway play a significant role in the survival and growth of M. tuberculosis, targeting these components lead to inhibition of M. tuberculosis. Many drug candidates targeting various components of the electron transport chain in M. tuberculosis have recently been discovered. The cytochrome bc1-aa3 supercomplex is one of the most important components of the electron transport chain in M. tuberculosis, and it has emerged as the novel target for several promising candidates. There are two cryo-electron microscopy structures (PDB IDs: 6ADQ and 6HWH) of the cytochrome bc1-aa3 supercomplex that aid in the development of effective and potent inhibitors for M. tuberculosis. In recent years, a number of potential candidates targeting the QcrB subunit of the cytochrome bc1 complex have been developed. In this review, we describe the recently identified inhibitors that target the electron transport chain's terminal oxidase enzyme in M. tuberculosis, specifically the QcrB subunit of the cytochrome bc1 complex.
Collapse
Affiliation(s)
- Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
18
|
da Silva M, Teixeira C, Gomes P, Borges M. Promising Drug Targets and Compounds with Anti- Toxoplasma gondii Activity. Microorganisms 2021; 9:1960. [PMID: 34576854 PMCID: PMC8471693 DOI: 10.3390/microorganisms9091960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Toxoplasmosis is a parasitic disease caused by the globally distributed protozoan parasite Toxoplasma gondii, which infects around one-third of the world population. This disease may result in serious complications for fetuses, newborns, and immunocompromised individuals. Current treatment options are old, limited, and possess toxic side effects. Long treatment durations are required since the current therapeutic system lacks efficiency against T. gondii tissue cysts, promoting the establishment of latent infection. This review highlights the most promising drug targets involved in anti-T. gondii drug discovery, including the mitochondrial electron transport chain, microneme secretion pathway, type II fatty acid synthesis, DNA synthesis and replication and, DNA expression as well as others. A description of some of the most promising compounds demonstrating antiparasitic activity, developed over the last decade through drug discovery and drug repurposing, is provided as a means of giving new perspectives for future research in this field.
Collapse
Affiliation(s)
- Marco da Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal;
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Margarida Borges
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
19
|
Anghel N, Imhof D, Winzer P, Balmer V, Ramseier J, Haenggeli K, Choi R, Hulverson MA, Whitman GR, Arnold SL, Ojo KK, Van Voorhis WC, Doggett JS, Ortega-Mora LM, Hemphill A. Endochin-like quinolones (ELQs) and bumped kinase inhibitors (BKIs): Synergistic and additive effects of combined treatments against Neospora caninum infection in vitro and in vivo. Int J Parasitol Drugs Drug Resist 2021; 17:92-106. [PMID: 34482255 PMCID: PMC8416643 DOI: 10.1016/j.ijpddr.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022]
Abstract
The apicomplexan parasite Neospora caninum is an important causative agent of congenital neosporosis, resulting in abortion, birth of weak offspring and neuromuscular disorders in cattle, sheep, and many other species. Among several compound classes that are currently being developed, two have been reported to limit the effects of congenital neosporosis: (i) bumped kinase inhibitors (BKIs) target calcium dependent protein kinase 1 (CDPK1), an enzyme that is encoded by an apicoplast-derived gene and found only in apicomplexans and plants. CDPK1 is essential for host cell invasion and egress; (ii) endochin-like quinolones (ELQs) are inhibitors of the cytochrome bc1 complex of the mitochondrial electron transport chain and thus inhibit oxidative phosphorylation. We here report on the in vitro and in vivo activities of BKI-1748, and of ELQ-316 and its respective prodrugs ELQ-334 and ELQ-422, applied either as single-compounds or ELQ-BKI-combinations. In vitro, BKI-1748 and ELQ-316, as well as BKI-1748 and ELQ-334, acted synergistically, while this was not observed for the BKI-1748/ELQ-422 combination treatment. In a N. caninum-infected pregnant BALB/c mouse model, the synergistic effects observed in vitro were not entirely reproduced, but 100% postnatal survival and 100% inhibition of vertical transmission was noted in the group treated with the BKI-1748/ELQ-334 combination. In addition, the combined drug applications resulted in lower neonatal mortality compared to treatments with single drugs.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland,Corresponding author. Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland.
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Pablo Winzer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Vreni Balmer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Jessica Ramseier
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Kai Haenggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew A. Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Grant R. Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Samuel L.M. Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA,Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kayode K. Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA,Departments of Global Health and Microbiology, University of Washington, Seattle, WA, USA
| | - J. Stone Doggett
- VA Portland Health Care System, Research and Development Service, Portland, OR, USA
| | - Luis M. Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Corresponding author.
| |
Collapse
|
20
|
Pou S, Dodean RA, Frueh L, Liebman KM, Gallagher RT, Jin H, Jacobs RT, Nilsen A, Stuart DR, Doggett JS, Riscoe MK, Winter RW. A New Scalable Synthesis of ELQ-300, ELQ-316, and other Antiparasitic Quinolones. Org Process Res Dev 2021; 25:1841-1852. [PMID: 35110959 DOI: 10.1021/acs.oprd.1c00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Endochin-Like Quinolone (ELQ) compound class may yield effective, safe treatments for a range of important human and animal afflictions. However, to access the public health potential of this compound series, a synthetic route needed to be devised that lowers costs and is amenable to large scale production. In the new synthetic route described here, a substituted β-keto ester, formed by an Ullmann reaction and subsequent acylation, is reacted with an aniline via a Conrad-Limpach reaction to produce 3-substituted 4(1H)-quinolones such as ELQ-300 and ELQ-316. This synthetic route, the first described to be truly amenable to industrial scale production, is relatively short (5 reaction steps), does not require palladium, chromatographic separation or protecting group chemistry, and may be performed without high vacuum distillation.
Collapse
Affiliation(s)
- Sovitj Pou
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rozalia A Dodean
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Lisa Frueh
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Katherine M Liebman
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rory T Gallagher
- Department of Chemistry, Portland State University, 1719 SW 10 Avenue, Portland, Oregon 97201, United States
| | - Haihong Jin
- Medicinal Chemistry Core, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Robert T Jacobs
- Medicines for Malaria Venture, ICC, route de Pré-Bois 20, P.O. Box 1826, 1215 Geneva 15, Switzerland
| | - Aaron Nilsen
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States.,Medicinal Chemistry Core, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, 1719 SW 10 Avenue, Portland, Oregon 97201, United States
| | - J Stone Doggett
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States.,School of Medicine Division of Infectious Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Michael K Riscoe
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States.,Department of Microbiology and Molecular Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Rolf W Winter
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| |
Collapse
|
21
|
Alday PH, McConnell EV, Boitz Zarella JM, Dodean RA, Kancharla P, Kelly JX, Doggett JS. Acridones Are Highly Potent Inhibitors of Toxoplasma gondii Tachyzoites. ACS Infect Dis 2021; 7:1877-1884. [PMID: 33723998 DOI: 10.1021/acsinfecdis.1c00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acridone derivatives, which have been shown to have in vitro and in vivo activity against Plasmodium spp, inhibit Toxoplasma gondii proliferation at picomolar concentrations. Using enzymatic assays, we show that acridones inhibit both T. gondii cytochrome bc1 and dihydroorotate dehydrogenase and identify acridones that bind preferentially to the Qi site of cytochrome bc1. We identify acridones that have efficacy in a murine model of systemic toxoplasmosis. Acridones have potent activity against T. gondii and represent a promising new class of preclinical compounds.
Collapse
Affiliation(s)
- P. Holland Alday
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Erin V. McConnell
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Jan M. Boitz Zarella
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rozalia A. Dodean
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Papireddy Kancharla
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Jane X. Kelly
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - J. Stone Doggett
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| |
Collapse
|
22
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
23
|
Silva MG, Bastos RG, Stone Doggett J, Riscoe MK, Pou S, Winter R, Dodean RA, Nilsen A, Suarez CE. Endochin-like quinolone-300 and ELQ-316 inhibit Babesia bovis, B. bigemina, B. caballi and Theileria equi. Parasit Vectors 2020; 13:606. [PMID: 33272316 PMCID: PMC7712603 DOI: 10.1186/s13071-020-04487-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background The most common apicomplexan parasites causing bovine babesiosis are Babesia bovis and B. bigemina, while B. caballi and Theileria equi are responsible for equine piroplasmosis. Treatment and control of these diseases are usually achieved using potentially toxic chemotherapeutics, such as imidocarb diproprionate, but drug-resistant parasites are emerging, and alternative effective and safer drugs are needed. The endochin-like quinolones (ELQ)-300 and ELQ-316 have been proven to be safe and efficacious against related apicomplexans, such as Plasmodium spp., with ELQ-316 also being effective against Babesia microti, without showing toxicity in mammals. Methods The inhibitory effects of ELQ-300 and ELQ-316 were assessed on the growth of cultured B. bovis, B. bigemina, B. caballi and T. equi. The percentage of parasitized erythrocytes was measured by flow cytometry, and the effect of the ELQ compounds on the viability of horse and bovine peripheral blood mononuclear cells (PBMC) was assessed by monitoring cell metabolic activity using a colorimetric assay. Results We calculated the half maximal inhibitory concentration (IC50) at 72 h, which ranged from 0.04 to 0.37 nM for ELQ-300, and from 0.002 to 0.1 nM for ELQ-316 among all cultured parasites tested at 72 h. None of the parasites tested were able to replicate in cultures in the presence of ELQ-300 and ELQ-316 at the maximal inhibitory concentration (IC100), which ranged from 1.3 to 5.7 nM for ELQ-300 and from 1.0 to 6.0 nM for ELQ-316 at 72 h. Neither ELQ-300 nor ELQ-316 altered the viability of equine and bovine PBMC at their IC100 in in vitro testing. Conclusions The compounds ELQ-300 and ELQ-316 showed significant inhibitory activity on the main parasites responsible for bovine babesiosis and equine piroplasmosis at doses that are tolerable to host cells. These ELQ drugs may be viable candidates for developing alternative protocols for the treatment of bovine babesiosis and equine piroplasmosis. ![]()
Collapse
Affiliation(s)
- Marta G Silva
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | - Reginaldo G Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - J Stone Doggett
- Oregon Health and Science University, 3181 SW Sam Jackson Blvd., Portland, Oregon, 97239, USA
| | - Michael K Riscoe
- Oregon Health and Science University, 3181 SW Sam Jackson Blvd., Portland, Oregon, 97239, USA
| | - Sovitj Pou
- VA Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Rolf Winter
- VA Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Rozalia A Dodean
- VA Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Aaron Nilsen
- Oregon Health and Science University, 3181 SW Sam Jackson Blvd., Portland, Oregon, 97239, USA.,VA Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA. .,Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, USA.
| |
Collapse
|
24
|
Tan S, Tong WH, Vyas A. Urolithin-A attenuates neurotoxoplasmosis and alters innate response towards predator odor. Brain Behav Immun Health 2020; 8:100128. [PMID: 34589880 PMCID: PMC8474456 DOI: 10.1016/j.bbih.2020.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/29/2022] Open
Abstract
Neurotoxoplasmosis, also known as cerebral toxoplasmosis, is an opportunistic chronic infection caused by the persistence of parasite Toxoplasma gondii cysts in the brain. In wild animals, chronic infection is associated with behavioral manipulation evident by an altered risk perception towards predators. In humans, reactivation of cysts and conversion of quiescent parasites into highly invasive tachyzoites is a significant cause of mortality in immunocompromised patients. However, the current standard therapy for toxoplasmosis is not well tolerated and is ineffective against the parasite cysts. In recent years, the concept of dietary supplementation with natural products derived from plants has gained popularity as a natural remedy for brain disorders. Notably, urolithin-A, a metabolite produced in the gut following consumption of ellagitannins-enriched food such as pomegranate, is reported to be blood-brain barrier permeable and exhibits neuroprotective effects in-vivo. In this study, we investigated the potential of pomegranate extract and urolithin-A as anti-neurotoxoplasmosis agents in-vitro and in-vivo. Treatment with pomegranate extract and urolithin-A reduced the parasite tachyzoite load and interfered with cyst development in differentiated human neural culture. Administration of urolithin-A also resulted in the formation of smaller brain cysts in chronically infected mice. Interestingly, this phenomenon was mirrored by an enhanced risk perception of the UA-treated infected mice towards predatory cues. Together, our findings demonstrate the potential of dietary supplementation with urolithin-A-enriched food as a novel natural remedy for the treatment of acute and chronic neurotoxoplasmosis. Pomegranate extract reduces T. gondii tachyzoite load and cyst formation in-vitro. Urolithin-A, in part, underlies the anti-T. gondii effect of pomegranate extract. Urolithin-A perturbs cyst development in the brain of chronically infected mice. The reduction in brain cyst burden associates with enhanced fear of infected mice towards cat odor. Dietary supplementation with urolithin-A is a potential therapy for neurotoxoplasmosis.
Collapse
Affiliation(s)
- Sijie Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Wen Han Tong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
25
|
Doggett JS, Schultz T, Miller AJ, Bruzual I, Pou S, Winter R, Dodean R, Zakharov LN, Nilsen A, Riscoe MK, Carruthers VB. Orally Bioavailable Endochin-Like Quinolone Carbonate Ester Prodrug Reduces Toxoplasma gondii Brain Cysts. Antimicrob Agents Chemother 2020; 64:e00535-20. [PMID: 32540978 PMCID: PMC7449172 DOI: 10.1128/aac.00535-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/03/2020] [Indexed: 11/20/2022] Open
Abstract
Toxoplasmosis is a potentially fatal infection for immunocompromised people and the developing fetus. Current medicines for toxoplasmosis have high rates of adverse effects that interfere with therapeutic and prophylactic regimens. Endochin-like quinolones (ELQs) are potent inhibitors of Toxoplasma gondii proliferation in vitro and in animal models of acute and latent infection. ELQ-316, in particular, was found to be effective orally against acute toxoplasmosis in mice and highly selective for T. gondii cytochrome b over human cytochrome b Despite its oral efficacy, the high crystallinity of ELQ-316 limits oral absorption, plasma concentrations, and therapeutic potential. A carbonate ester prodrug of ELQ-316, ELQ-334, was created to decrease crystallinity and increase oral bioavailability, which resulted in a 6-fold increase in both the maximum plasma concentration (Cmax) and the area under the curve (AUC) of ELQ-316. The increased bioavailability of ELQ-316, when administered as ELQ-334, resulted in efficacy against acute toxoplasmosis greater than that of an equivalent dose of ELQ-316 and had efficacy against latent toxoplasmosis similar to that of ELQ-316 administered intraperitoneally. Treatment with carbonate ester prodrugs is a successful strategy to overcome the limited oral bioavailability of ELQs for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- J Stone Doggett
- Division of Infectious Diseases, Oregon Health and Science University School of Medicine, Portland, Oregon, USA
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Tracey Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Igor Bruzual
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Sovitj Pou
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Rolf Winter
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Rozalia Dodean
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Lev N Zakharov
- Department of Chemistry, University of Oregon, Eugene, Oregon, USA
| | - Aaron Nilsen
- Division of Infectious Diseases, Oregon Health and Science University School of Medicine, Portland, Oregon, USA
| | - Michael K Riscoe
- Division of Infectious Diseases, Oregon Health and Science University School of Medicine, Portland, Oregon, USA
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Efficacy of Guanabenz Combination Therapy against Chronic Toxoplasmosis across Multiple Mouse Strains. Antimicrob Agents Chemother 2020; 64:AAC.00539-20. [PMID: 32540979 DOI: 10.1128/aac.00539-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii, an obligate intracellular parasite that can cause life-threatening acute disease, differentiates into a quiescent cyst stage to establish lifelong chronic infections in animal hosts, including humans. This tissue cyst reservoir, which can reactivate into an acute infection, is currently refractory to clinically available therapeutics. Recently, we and others have discovered drugs capable of significantly reducing the brain cyst burden in latently infected mice, but not to undetectable levels. In this study, we examined the use of novel combination therapies possessing multiple mechanisms of action in mouse models of latent toxoplasmosis. Our drug regimens included combinations of pyrimethamine, clindamycin, guanabenz, and endochin-like quinolones (ELQs) and were administered to two different mouse strains in an attempt to eradicate brain tissue cysts. We observed mouse strain-dependent effects with these drug treatments: pyrimethamine-guanabenz showed synergistic efficacy in C57BL/6 mice yet did not improve upon guanabenz monotherapy in BALB/c mice. Contrary to promising in vitro results demonstrating toxicity to bradyzoites, we observed an antagonistic effect between guanabenz and ELQ-334 in vivo While we were unable to completely eliminate the brain cyst burden, we found that a combination treatment with ELQ-334 and pyrimethamine impressively reduced the brain cyst burden by 95% in C57BL/6 mice, which approached the limit of detection. These analyses highlight the importance of evaluating anti-infective drugs in multiple mouse strains and will help inform further preclinical studies of cocktail therapies designed to treat chronic toxoplasmosis.
Collapse
|
27
|
Secrieru A, Costa ICC, O’Neill PM, Cristiano MLS. Antimalarial Agents as Therapeutic Tools Against Toxoplasmosis-A Short Bridge between Two Distant Illnesses. Molecules 2020; 25:E1574. [PMID: 32235463 PMCID: PMC7181032 DOI: 10.3390/molecules25071574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
Toxoplasmosis is an infectious disease with paramount impact worldwide, affecting many vulnerable populations and representing a significant matter of concern. Current therapies used against toxoplasmosis are based essentially on old chemotypes, which fail in providing a definitive cure for the disease, placing the most sensitive populations at risk for irreversible damage in vital organs, culminating in death in the most serious cases. Antimalarial drugs have been shown to possess key features for drug repurposing, finding application in the treatment of other parasite-borne illnesses, including toxoplasmosis. Antimalarials provide the most effective therapeutic solutions against toxoplasmosis and make up for the majority of currently available antitoxoplasmic drugs. Additionally, other antiplasmodial drugs have been scrutinized and many promising candidates have emanated in recent developments. Available data demonstrate that it is worthwhile to explore the activity of classical and most recent antimalarial chemotypes, such as quinolines, endoperoxides, pyrazolo[1,5-a]pyrimidines, and nature-derived peptide-based parasiticidal agents, in the context of toxoplasmosis chemotherapy, in the quest for encountering more effective and safer tools for toxoplasmosis control or eradication.
Collapse
Affiliation(s)
- Alina Secrieru
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Inês C. C. Costa
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Maria L. S. Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| |
Collapse
|
28
|
Eberhard N, Balmer V, Müller J, Müller N, Winter R, Pou S, Nilsen A, Riscoe M, Francisco S, Leitao A, Doggett JS, Hemphill A. Activities of Endochin-Like Quinolones Against in vitro Cultured Besnoitia besnoiti Tachyzoites. Front Vet Sci 2020; 7:96. [PMID: 32161765 PMCID: PMC7054222 DOI: 10.3389/fvets.2020.00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Endochin-like quinolones (ELQs) potently inhibit the proliferation of Plasmodium, Toxoplasma, Neospora, and Babesia by targeting the cytochrome b Qo and Qi sites and interfering with oxidative phosphorylation and pyrimidine biosynthesis. The activities of 14 different ELQs were assessed against B. besnoiti tachyzoites grown in human foreskin fibroblasts (HFF) by quantitative real time PCR. The values for 50% proliferation inhibition (IC50) of five ELQs were determined in a 3-days growth assay after an initial screen of 12 ELQs at 0.01, 0.1, and 1 μM. The IC50s of ELQ-121, -136, and -316 were 0.49, 2.36, and 7.97 nM, respectively. The IC50s of ELQs tested against B. besnoiti were higher than IC50s previously observed for P. falciparum and T. gondii. However, the B. besnoiti cytochrome b sequence and the predicted Qo and Qi ELQ binding sites in the Toxoplasma, Neospora, and Besnoitia cytochrome b are virtually identical, suggesting that the differences in ELQ susceptibility are not due to variations in the substrate binding sites. TEM of ELQ-treated parasites primarily demonstrated alterations within the parasite mitochondrion, profound thickening of the nuclear membrane, as well as increased vacuolization within the tachyzoite cytoplasm. Long-term treatment assays of intracellular B. besnoiti with ELQs for up to 20 days followed by the release of drug pressure caused a substantial delay in parasite growth and proliferation while ELQs were present, but parasite proliferation resumed days after ELQs were removed. Interestingly, structural alterations persisted after ELQ removal and parasite proliferation was slowed. These findings provide a basis for further in vivo studies of ELQs as therapeutic options against B. besnoiti infection.
Collapse
Affiliation(s)
- Naja Eberhard
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Vreni Balmer
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Norbert Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Rolf Winter
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Soviti Pou
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Aaron Nilsen
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Mike Riscoe
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Samuel Francisco
- Faculdade de Medicina Veterinária, CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandre Leitao
- Faculdade de Medicina Veterinária, CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| | - J. Stone Doggett
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Andrew Hemphill
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Hulverson MA, Bruzual I, McConnell EV, Huang W, Vidadala RSR, Choi R, Arnold SLM, Whitman GR, McCloskey MC, Barrett LK, Rivas KL, Scheele S, DeRocher AE, Parsons M, Ojo KK, Maly DJ, Fan E, Van Voorhis WC, Doggett JS. Pharmacokinetics and In Vivo Efficacy of Pyrazolopyrimidine, Pyrrolopyrimidine, and 5-Aminopyrazole-4-Carboxamide Bumped Kinase Inhibitors against Toxoplasmosis. J Infect Dis 2020; 219:1464-1473. [PMID: 30423128 DOI: 10.1093/infdis/jiy664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
Bumped kinase inhibitors (BKIs) have been shown to be potent inhibitors of Toxoplasma gondii calcium-dependent protein kinase 1. Pyrazolopyrimidine and 5-aminopyrazole-4-carboxamide scaffold-based BKIs are effective in acute and chronic experimental models of toxoplasmosis. Through further exploration of these 2 scaffolds and a new pyrrolopyrimidine scaffold, additional compounds have been identified that are extremely effective against acute experimental toxoplasmosis. The in vivo efficacy of these BKIs demonstrates that the cyclopropyloxynaphthyl, cyclopropyloxyquinoline, and 2-ethoxyquinolin-6-yl substituents are associated with efficacy across scaffolds. In addition, a broad range of plasma concentrations after oral dosing resulted from small structural changes to the BKIs. These select BKIs include anti-Toxoplasma compounds that are effective against acute experimental toxoplasmosis and are not toxic in human cell assays, nor to mice when administered for therapy. The BKIs described here are promising late leads for improving anti-Toxoplasma therapy.
Collapse
Affiliation(s)
- Matthew A Hulverson
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-Emerging Infectious Diseases
| | - Igor Bruzual
- Veterans Affairs Portland Health Care System, Oregon
| | | | - Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle
| | | | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-Emerging Infectious Diseases
| | - Samuel L M Arnold
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-Emerging Infectious Diseases
| | - Grant R Whitman
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-Emerging Infectious Diseases
| | - Molly C McCloskey
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-Emerging Infectious Diseases
| | - Lynn K Barrett
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-Emerging Infectious Diseases
| | - Kasey L Rivas
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-Emerging Infectious Diseases
| | | | - Amy E DeRocher
- Center for Infectious Disease Research, Seattle, Washington
| | | | - Kayode K Ojo
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-Emerging Infectious Diseases
| | - Dustin J Maly
- Department of Biochemistry, University of Washington, Seattle.,Department of Chemistry, University of Washington, Seattle
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle
| | - Wesley C Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-Emerging Infectious Diseases
| | | |
Collapse
|
30
|
Enkai S, Inaoka DK, Kouguchi H, Irie T, Yagi K, Kita K. Mitochondrial complex III in larval stage of Echinococcus multilocularis as a potential chemotherapeutic target and in vivo efficacy of atovaquone against primary hydatid cysts. Parasitol Int 2019; 75:102004. [PMID: 31678356 DOI: 10.1016/j.parint.2019.102004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Echinococcus multilocularis employs aerobic and anaerobic respiration pathways for its survival in the specialized environment of the host. Under anaerobic conditions, fumarate respiration has been identified as a promising target for drug development against E. multilocularis larvae, although the relevance of oxidative phosphorylation in its survival remains unclear. Here, we focused on the inhibition of mitochondrial cytochrome bc1 complex (complex III) and evaluated aerobic respiratory activity using mitochondrial fractions from E. multilocularis protoscoleces. An enzymatic assay revealed that the mitochondrial fractions possessed NADH-cytochrome c reductase (mitochondrial complexes I and III) and succinate-cytochrome c reductase (mitochondrial complexes II and III) activities in the aerobic pathway. Enzymatic analysis showed that atovaquone, a commercially available anti-malarial drug, inhibited mitochondrial complex III at 1.5 nM (IC50). In addition, culture experiments revealed the ability of atovaquone to kill protoscoleces under aerobic conditions, but not under anaerobic conditions, indicating that protoscoleces altered their respiration system to oxidative phosphorylation or fumarate respiration depending on the oxygen supply. Furthermore, combined administration of atovaquone with atpenin A5, a quinone binding site inhibitor of complex II, completely killed protoscoleces in the culture. Thus, inhibition of both complex II and complex III was essential for strong antiparasitic effect on E. multilocularis. Additionally, we demonstrated that oral administration of atovaquone significantly reduced primary alveolar hydatid cyst development in the mouse liver, compared with the untreated control, indicating that complex III is a promising target for development of anti-echinococcal drug.
Collapse
Affiliation(s)
- Shigehiro Enkai
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Host-Defense Biochemistry, Institute of tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hirokazu Kouguchi
- Department of Infectious Diseases, Hokkaido Institute of Public Health, N19 W12, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan
| | - Takao Irie
- Department of Infectious Diseases, Hokkaido Institute of Public Health, N19 W12, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan
| | - Kinpei Yagi
- Department of Infectious Diseases, Hokkaido Institute of Public Health, N19 W12, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Host-Defense Biochemistry, Institute of tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
31
|
Deng Y, Wu T, Zhai SQ, Li CH. Recent progress on anti-Toxoplasma drugs discovery: Design, synthesis and screening. Eur J Med Chem 2019; 183:111711. [PMID: 31585276 DOI: 10.1016/j.ejmech.2019.111711] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 01/30/2023]
Abstract
Toxoplasma gondii severely threaten the health of immunocompromised patients and pregnant women as this parasite can cause several disease, including brain and eye disease. Current treatment for toxoplasmosis commonly have high cytotoxic side effects on host and require long durations ranging from one week to more than one year. The regiments lack efficacy to eradicate T. gondii tissue cysts to cure chromic infection results in the needs for long treatment and relapsing disease. In addition, there has not been approved drugs for treating the pregnant women infected by T. gondii. Moreover, Toxoplasma vaccine researches face a wide variety of challenges. Developing high efficient and low toxic agents against T. gondii is urgent and important. Over the last decade, tremendous progress have been made in identifying and developing novel compounds for the treatment of toxoplasmosis. This review summarized and discussed recent advances between 2009 and 2019 in exploring effective agents against T. gondii from five aspects of drug discovery.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Tao Wu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Shao-Qin Zhai
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Cheng-Hong Li
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China.
| |
Collapse
|
32
|
Anghel N, Balmer V, Müller J, Winzer P, Aguado-Martinez A, Roozbehani M, Pou S, Nilsen A, Riscoe M, Doggett JS, Hemphill A. Endochin-Like Quinolones Exhibit Promising Efficacy Against Neospora Caninum in vitro and in Experimentally Infected Pregnant Mice. Front Vet Sci 2018; 5:285. [PMID: 30510935 PMCID: PMC6252379 DOI: 10.3389/fvets.2018.00285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
We report on the efficacy of selected endochin-like quinolones (ELQs) against N. caninum tachyzoites grown in human foreskin fibroblasts (HFF), and in a pregnant BALB/c mouse model. Fourteen ELQs were screened against transgenic N. caninum tachyzoites expressing β-galactosidase (Nc-βgal). Drugs were added concomitantly to infection and the values for 50% proliferation inhibition (IC50) were determined after 3 days. Three compounds exhibited IC50 values below 0.1 nM, 3 ELQs had IC50s between 0.1 and 1 nM, for 7 compounds values between 1 and 10 nM were noted, and one compound had an IC50 of 22.4 nM. Two compounds, namely ELQ-316 and its prodrug ELQ-334 with IC50s of 0.66 and 3.33 nM, respectively, were previously shown to display promising activities against experimental toxoplasmosis and babesiosis caused by Babesia microti in mice, and were thus further studied. They were assessed in long-term treatment assays by exposure of infected HFF to ELQs at 0.5 μM concentration, starting 3 h after infection and lasting for up to 17 days followed by release of drug pressure. Results showed that the compounds substantially delayed parasite proliferation, but did not exert parasiticidal activities. TEM of drug treated parasites detected distinct alterations within the parasite mitochondria, but not in other parasite organelles. Assessment of safety of ELQ-334 in the pregnant mouse model showed that the compound did not interfere in fertility or pregnancy outcome. In N. caninum infected pregnant mice treated with ELQ-334 at 10 mg/kg/day for 5 days, neonatal mortality (within 2 days post partum) was found in 7 of 44 pups (15.9%), but no postnatal mortality was noted, and vertical transmission was reduced by 49% compared to the placebo group, which exhibited 100% vertical transmission, neonatal mortality in 15 of 34 pups (44%), and postnatal mortality for 18 of the residual 19 pups during the 4 weeks follow-up. These findings encourage more research on the use of ELQs for therapeutic options against N. caninum infection.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Vreni Balmer
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Pablo Winzer
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | | | - Mona Roozbehani
- Department of Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sovitj Pou
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Aaron Nilsen
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Michael Riscoe
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - J Stone Doggett
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Andrew Hemphill
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| |
Collapse
|