1
|
Chen S, Mondile Q, Du X, Wang C, Mukim M, Wrenger C, Dömling ASS, Tastan Bishop Ö, Groves MR. Exploring Aspartate Transcarbamoylase: A Promising Broad-Spectrum Target for Drug Development. Chembiochem 2025; 26:e202401009. [PMID: 39937588 PMCID: PMC12002100 DOI: 10.1002/cbic.202401009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
Pyrimidine nucleotides are essential for a wide variety of cellular processes and are synthesized either via a salvage pathway or through de novo biosynthesis. The latter is particularly important in proliferating cells, such as infectious diseases and cancer cells. Aspartate transcarbamoylase (ATCase) catalyzes the first committed and rate-limiting step in the de novo pyrimidine biosynthesis pathway, making it an attractive therapeutic target for various diseases. This review summarizes the development of a series of allosteric ATCase inhibitors, advancing them as potential candidates for malarial, tuberculosis and cancer therapies. Furthermore, it explores the potential for these compounds to be expanded into drugs targeting neglected tropical diseases, antimicrobial-resistant infections caused by the ESKAPE pathogens, and their possible application as herbicides. We identify the likely equivalent allosteric pocket in these systems and perform a structure and sequence-based analysis of the residues comprising it, providing a rationale for continued exploration of this compound series as both specific and broad-range inhibitors. The review concludes by emphasizing the importance of continued research into ATCase inhibitors, given their potential broad applicability in treating diverse diseases to enhance both human health and agricultural practices.
Collapse
Affiliation(s)
- Siyao Chen
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenAntonius Deusinglaan 19731AVGroningenThe Netherlands
| | - Queenie Mondile
- Research Unit in Bioinformatics (RUBi)Department of BiochemistryMicrobiology and BiochemistryRhodes University
| | - XiaoChen Du
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenAntonius Deusinglaan 19731AVGroningenThe Netherlands
| | - Chao Wang
- NeurobiologyMRC-Laboratory of Molecular Biology Cambridge Biomedical CampusFrancis Crick Ave, TrumpingtonCambridgeCB2 0QH
| | - Mayur Mukim
- Czech Advanced Technology and Research Institute (CATRIN)and Institute of Molecular and Translational Medicine (IMTMFaculty of Medicine and DentistryPalacky UniversityŠlechtitelů 27779 00OlomoucCzech Republic
| | - Carsten Wrenger
- Unit for Drug DiscoveryDepartment of ParasitologyInstitute of Biomedical SciencesUniversity of São PauloAvenida Professor Lineu Prestes 137405508-000São Paulo-SPBrazil
| | - Alexander S. S. Dömling
- Czech Advanced Technology and Research Institute (CATRIN)and Institute of Molecular and Translational Medicine (IMTMFaculty of Medicine and DentistryPalacky UniversityŠlechtitelů 27779 00OlomoucCzech Republic
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi)Department of BiochemistryMicrobiology and BiochemistryRhodes University
- National Institute for Theoretical and Computational Sciences (NITheCS)South Africa
- Genomics for Health in Africa (GHA)Africa-Europe Cluster of Research Excellence (CoRE)
| | - Matthew R. Groves
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenAntonius Deusinglaan 19731AVGroningenThe Netherlands
- Genomics for Health in Africa (GHA)Africa-Europe Cluster of Research Excellence (CoRE)
| |
Collapse
|
2
|
Nie Z, Bonnert R, Tsien J, Deng X, Higgs C, El Mazouni F, Zhang X, Li R, Ho N, Feher V, Paulsen J, Shackleford DM, Katneni K, Chen G, Ng ACF, McInerney M, Wang W, Saunders J, Collins D, Yan D, Li P, Campbell M, Patil R, Ghoshal A, Mondal P, Kundu A, Chittimalla R, Mahadeva M, Kokkonda S, White J, Das R, Mukherjee P, Angulo-Barturen I, Jiménez-Díaz MB, Malmstrom R, Lawrenz M, Rodriguez-Granillo A, Rathod PK, Tomchick DR, Palmer MJ, Laleu B, Qin T, Charman SA, Phillips MA. Structure-Based Discovery and Development of Highly Potent Dihydroorotate Dehydrogenase Inhibitors for Malaria Chemoprevention. J Med Chem 2025; 68:590-637. [PMID: 39710971 PMCID: PMC11726676 DOI: 10.1021/acs.jmedchem.4c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
Malaria remains a serious global health challenge, yet treatment and control programs are threatened by drug resistance. Dihydroorotate dehydrogenase (DHODH) was clinically validated as a target for treatment and prevention of malaria through human studies with DSM265, but currently no drugs against this target are in clinical use. We used structure-based computational tools including free energy perturbation (FEP+) to discover highly ligand efficient, potent, and selective pyrazole-based Plasmodium DHODH inhibitors through a scaffold hop from a pyrrole-based series. Optimized pyrazole-based compounds were identified with low nM-to-pM Plasmodium falciparum cell potency and oral activity in a humanized SCID mouse malaria infection model. The lead compound DSM1465 is more potent and has improved absorption, distribution, metabolism and excretion/pharmacokinetic (ADME/PK) properties compared to DSM265 that support the potential for once-monthly chemoprevention at a low dose. This compound meets the objective of identifying compounds with potential to be used for monthly chemoprevention in Africa to support malaria elimination efforts.
Collapse
Affiliation(s)
- Zhe Nie
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | - Roger Bonnert
- MMV
Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Jet Tsien
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Xiaoyi Deng
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Christopher Higgs
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | - Farah El Mazouni
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Xiaoyu Zhang
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Renzhe Li
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Nhi Ho
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Victoria Feher
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | - Janet Paulsen
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | - David M. Shackleford
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kasiram Katneni
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gong Chen
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alice C. F. Ng
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Mitchell McInerney
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Wen Wang
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jessica Saunders
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Daniel Collins
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Dandan Yan
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Peng Li
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Campbell
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rahul Patil
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Atanu Ghoshal
- TCGLS, Block BN, Plot
7, Salt Lake Electronics
Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Pallab Mondal
- TCGLS, Block BN, Plot
7, Salt Lake Electronics
Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Abhijit Kundu
- TCGLS, Block BN, Plot
7, Salt Lake Electronics
Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Rajesh Chittimalla
- Syngene
Scientific Solutions Limited, KSP 9000 Campus, Plot No. 7, Neovantage, Synergy Square 2, Kolthur
Village, Shameerpet Mandal, Medchal Malkajgiri District, Hyderabad 500 078, Telangana, India
| | - Muralikumar Mahadeva
- Syngene
Scientific Solutions Limited, KSP 9000 Campus, Plot No. 7, Neovantage, Synergy Square 2, Kolthur
Village, Shameerpet Mandal, Medchal Malkajgiri District, Hyderabad 500 078, Telangana, India
| | - Sreekanth Kokkonda
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John White
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rishi Das
- TCGLS, Block BN, Plot
7, Salt Lake Electronics
Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Partha Mukherjee
- TCGLS, Block BN, Plot
7, Salt Lake Electronics
Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Iñigo Angulo-Barturen
- The
Art of Discovery, Biscay Science and Technology
Park, Astondo Bidea,
BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- The
Art of Discovery, Biscay Science and Technology
Park, Astondo Bidea,
BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Robert Malmstrom
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | - Morgan Lawrenz
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | | | - Pradipsinh K. Rathod
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Diana R. Tomchick
- Department
of Biophysics, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Michael J. Palmer
- MMV
Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Benoît Laleu
- MMV
Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Tian Qin
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Susan A. Charman
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Margaret A. Phillips
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
3
|
Bravo P, Bizzarri L, Steinbrunn D, Lohse J, Hirsch AKH, Mäser P, Rottmann M, Hahne H. Integral Solvent-Induced Protein Precipitation for Target-Engagement Studies in Plasmodium falciparum. ACS Infect Dis 2024; 10:4073-4086. [PMID: 39631773 DOI: 10.1021/acsinfecdis.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The limited understanding of the mechanism of action (MoA) of several antimalarials and the rise of drug resistance toward existing malaria therapies emphasizes the need for new strategies to uncover the molecular target of compounds in Plasmodium falciparum. Integral solvent-induced protein precipitation (iSPP) is a quantitative mass spectrometry-based (LC-MS/MS) proteomics technique. The iSPP leverages the change in solvent-induced denaturation of the drug-bound protein relative to its unbound state, allowing identification of the direct drug-protein target without the need to modify the drug. Here, we demonstrate proof-of-concept of iSPP in P. falciparum (Pf) lysate. At first, we profiled the solvent-induced denaturation behavior of the Pf proteome, generating denaturation curves and determining the melting concentration (CM) of 2712 proteins. We then assessed the extent of stabilization of three antimalarial target proteins in multiple organic solvent gradients, allowing for a rational selection of an optimal solvent gradient. Subsequently, we validated iSPP by successfully showing target-engagement of several standard antimalarials. The iSPP assay allows the testing of multiple conditions within reasonable LC-MS/MS measurement time. Furthermore, it requires a minimal amount of protein input, reducing culturing time and simplifying protein extraction. We envision that iSPP will be useful as a complementary tool for MoA studies for next-generation antimalarials.
Collapse
Affiliation(s)
- Patricia Bravo
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Lorenzo Bizzarri
- OmicScouts GmbH, Lise-Meitner-Straße 30, D-85354 Freising, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, D-66123 Saarbrücken, Germany
| | - Dominik Steinbrunn
- OmicScouts GmbH, Lise-Meitner-Straße 30, D-85354 Freising, Germany
- TUM School of Natural Sciences, Department of Bioscience, Technical University of Munich, Center for Functional Protein Assemblies (CPA), D-85748 Garching bei München, Germany
| | - Jonas Lohse
- OmicScouts GmbH, Lise-Meitner-Straße 30, D-85354 Freising, Germany
| | - Anna K H Hirsch
- Department of Pharmacy, Saarland University, Campus E8.1, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8.1, D-66123 Saarbrücken, Germany
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Hannes Hahne
- OmicScouts GmbH, Lise-Meitner-Straße 30, D-85354 Freising, Germany
| |
Collapse
|
4
|
Lima Costa AH, Bezerra KS, de Lima Neto JX, Oliveira JIN, Galvão DS, Fulco UL. Deciphering Interactions between Potential Inhibitors and the Plasmodium falciparum DHODH Enzyme: A Computational Perspective. J Phys Chem B 2023; 127:9461-9475. [PMID: 37897437 DOI: 10.1021/acs.jpcb.3c05738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Malaria is a parasitic disease that, in its most severe form, can even lead to death. Insect-resistant vectors, insufficiently effective vaccines, and drugs that cannot stop parasitic infestations are making the fight against the disease increasingly difficult. It is known that the enzyme dihydroorotate dehydrogenase (DHODH) is of paramount importance for the synthesis of pyrimidine from the Plasmodium precursor, that is, for its growth and reproduction. Therefore, its blockade can lead to disruption of the parasite's life cycle in the vertebrate host. In this scenario, PfDHODH inhibitors have been considered candidates for a new therapy to stop the parasitic energy source. Given what is known, in this work, we applied molecular fractionation with conjugated caps (MFCC) in the framework of the quantum formalism of density functional theory (DFT) to evaluate the energies of the interactions between the enzyme and the different triazolopyrimidines (DSM483, DMS557, and DSM1), including a complex carrying the mutation C276F. From these results, it was possible to identify the main features of each system, focusing on the wild-type and mutant PfDHODH and examining the major amino acid residues that are part of the four complexes. Our analysis provides new information that can be used to develop new drugs that could prove to be more effective alternatives to present antimalarial drugs.
Collapse
Affiliation(s)
- Aranthya Hevelly Lima Costa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Katyanna Sales Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
- Applied Physics Department, University of Campinas, 130838-59 Campinas, São Paulo, Brazil
| | - José Xavier de Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Jonas Ivan Nobre Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Douglas Soares Galvão
- Applied Physics Department, University of Campinas, 130838-59 Campinas, São Paulo, Brazil
| | - Umberto Laino Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| |
Collapse
|
5
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
6
|
Mandt REK, Luth MR, Tye MA, Mazitschek R, Ottilie S, Winzeler EA, Lafuente-Monasterio MJ, Gamo FJ, Wirth DF, Lukens AK. Diverse evolutionary pathways challenge the use of collateral sensitivity as a strategy to suppress resistance. eLife 2023; 12:e85023. [PMID: 37737220 PMCID: PMC10695565 DOI: 10.7554/elife.85023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
Drug resistance remains a major obstacle to malaria control and eradication efforts, necessitating the development of novel therapeutic strategies to treat this disease. Drug combinations based on collateral sensitivity, wherein resistance to one drug causes increased sensitivity to the partner drug, have been proposed as an evolutionary strategy to suppress the emergence of resistance in pathogen populations. In this study, we explore collateral sensitivity between compounds targeting the Plasmodium dihydroorotate dehydrogenase (DHODH). We profiled the cross-resistance and collateral sensitivity phenotypes of several DHODH mutant lines to a diverse panel of DHODH inhibitors. We focus on one compound, TCMDC-125334, which was active against all mutant lines tested, including the DHODH C276Y line, which arose in selections with the clinical candidate DSM265. In six selections with TCMDC-125334, the most common mechanism of resistance to this compound was copy number variation of the dhodh locus, although we did identify one mutation, DHODH I263S, which conferred resistance to TCMDC-125334 but not DSM265. We found that selection of the DHODH C276Y mutant with TCMDC-125334 yielded additional genetic changes in the dhodh locus. These double mutant parasites exhibited decreased sensitivity to TCMDC-125334 and were highly resistant to DSM265. Finally, we tested whether collateral sensitivity could be exploited to suppress the emergence of resistance in the context of combination treatment by exposing wildtype parasites to both DSM265 and TCMDC-125334 simultaneously. This selected for parasites with a DHODH V532A mutation which were cross-resistant to both compounds and were as fit as the wildtype parent in vitro. The emergence of these cross-resistant, evolutionarily fit parasites highlights the mutational flexibility of the DHODH enzyme.
Collapse
Affiliation(s)
- Rebecca EK Mandt
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Madeline R Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
| | - Mark A Tye
- Center for Systems Biology, Massachusetts General HospitalBostonUnited States
- Harvard Graduate School of Arts and SciencesCambridgeUnited States
| | - Ralph Mazitschek
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Center for Systems Biology, Massachusetts General HospitalBostonUnited States
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
| | - Elizabeth A Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
- Skaggs School of Pharmaceutical Sciences, University of California, San DiegoLa JollaUnited States
| | | | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKlineMadridSpain
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Infectious Disease and Microbiome Program, The Broad InstituteCambridgeUnited States
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Infectious Disease and Microbiome Program, The Broad InstituteCambridgeUnited States
| |
Collapse
|
7
|
Abstract
Apicomplexan parasites constitute more than 6,000 species infecting a wide range of hosts. These include important pathogens such as those causing malaria and toxoplasmosis. Their evolutionary emergence coincided with the dawn of animals. Mitochondrial genomes of apicomplexan parasites have undergone dramatic reduction in their coding capacity, with genes for only three proteins and ribosomal RNA genes present in scrambled fragments originating from both strands. Different branches of the apicomplexans have undergone rearrangements of these genes, with Toxoplasma having massive variations in gene arrangements spread over multiple copies. The vast evolutionary distance between the parasite and the host mitochondria has been exploited for the development of antiparasitic drugs, especially those used to treat malaria, wherein inhibition of the parasite mitochondrial respiratory chain is selectively targeted with little toxicity to the host mitochondria. We describe additional unique characteristics of the parasite mitochondria that are being investigated and provide greater insights into these deep-branching eukaryotic pathogens.
Collapse
Affiliation(s)
- Ian M Lamb
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| | - Ijeoma C Okoye
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| | - Michael W Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| | - Akhil B Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
8
|
Stadler E, Maiga M, Friedrich L, Thathy V, Demarta-Gatsi C, Dara A, Sogore F, Striepen J, Oeuvray C, Djimdé AA, Lee MCS, Dembélé L, Fidock DA, Khoury DS, Spangenberg T. Propensity of selecting mutant parasites for the antimalarial drug cabamiquine. Nat Commun 2023; 14:5205. [PMID: 37626093 PMCID: PMC10457284 DOI: 10.1038/s41467-023-40974-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
We report an analysis of the propensity of the antimalarial agent cabamiquine, a Plasmodium-specific eukaryotic elongation factor 2 inhibitor, to select for resistant Plasmodium falciparum parasites. Through in vitro studies of laboratory strains and clinical isolates, a humanized mouse model, and volunteer infection studies, we identified resistance-associated mutations at 11 amino acid positions. Of these, six (55%) were present in more than one infection model, indicating translatability across models. Mathematical modelling suggested that resistant mutants were likely pre-existent at the time of drug exposure across studies. Here, we estimated a wide range of frequencies of resistant mutants across the different infection models, much of which can be attributed to stochastic differences resulting from experimental design choices. Structural modelling implicates binding of cabamiquine to a shallow mRNA binding site adjacent to two of the most frequently identified resistance mutations.
Collapse
Affiliation(s)
- Eva Stadler
- The Kirby Institute, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Mohamed Maiga
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Lukas Friedrich
- Medicinal Chemistry & Drug Design Global Research & Development, Discovery Technologies, Merck Healthcare, 64293, Darmstadt, Germany
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Claudia Demarta-Gatsi
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland
| | - Antoine Dara
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Fanta Sogore
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Weill Cornell Medical College, New York, NY, 10021, USA
| | - Claude Oeuvray
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland
| | - Abdoulaye A Djimdé
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA, Hinxton, UK
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, DD1 4HN, Scotland, UK
| | - Laurent Dembélé
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali.
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - David S Khoury
- The Kirby Institute, UNSW Sydney, Kensington, NSW, 2052, Australia.
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland.
| |
Collapse
|
9
|
Vyas VK, Shukla T, Sharma M. Medicinal chemistry approaches for the discovery of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. Future Med Chem 2023; 15:1295-1321. [PMID: 37551689 DOI: 10.4155/fmc-2023-0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Malaria is a severe human disease and a global health problem because of drug-resistant strains. Drugs reported to prevent the growth of Plasmodium parasites target various phases of the parasites' life cycle. Antimalarial drugs can inhibit key enzymes that are responsible for the cellular growth and development of parasites. Plasmodium falciparum dihydroorotate dehydrogenase is one such enzyme that is necessary for de novo pyrimidine biosynthesis. This review focuses on various medicinal chemistry approaches used for the discovery and identification of selective P. falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. This comprehensive review discusses recent advances in the selective therapeutic activity of distinct chemical classes of compounds as P. falciparum dihydroorotate dehydrogenase inhibitors and antimalarial drugs.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Tanvi Shukla
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
10
|
Gehlot P, Vyas VK. Recent advances on patents of Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) inhibitors as antimalarial agents. Expert Opin Ther Pat 2023; 33:579-596. [PMID: 37942637 DOI: 10.1080/13543776.2023.2280596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Pyrimidine nucleotides are essential for the parasite's growth and replication. Parasites have only a de novo pathway for the biosynthesis of pyrimidine nucleotides. Dihydroorotate dehydrogenase (DHODH) enzyme is involved in the rate-limiting step of the pyrimidine biosynthesis pathway. DHODH is a biochemical target for the discovery of new antimalarial agents. AREA COVERED This review discussed the development of patented PfDHODH inhibitors published between 2007 and 2023 along with their chemical structures and activities. EXPERT OPINION PfDHODH enzyme is involved in the rate-limiting fourth step of the pyrimidine biosynthesis pathway. Thus, inhibition of PfDHODH using species-selective inhibitors has drawn much attention for treating malaria because they inhibit parasite growth without affecting normal human functions. Looking at the current scenario of antimalarial drug resistance with most of the available antimalarial drugs, there is a huge need for targeted newer agents. Newer agents with unique mechanisms of action may be devoid of drug toxicity, adverse effects, and the ability of parasites to quickly gain resistance, and PfDHODH inhibitors can be those newer agents. Many PfDHODH inhibitors were patented in the past, and the dependency of Plasmodium on de novo pyrimidine provided a new approach for the development of novel antimalarial agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
11
|
Kreutzfeld O, Tumwebaze PK, Okitwi M, Orena S, Byaruhanga O, Katairo T, Conrad MD, Rasmussen SA, Legac J, Aydemir O, Giesbrecht D, Forte B, Campbell P, Smith A, Kano H, Nsobya SL, Blasco B, Duffey M, Bailey JA, Cooper RA, Rosenthal PJ. Susceptibility of Ugandan Plasmodium falciparum Isolates to the Antimalarial Drug Pipeline. Microbiol Spectr 2023; 11:e0523622. [PMID: 37158739 PMCID: PMC10269555 DOI: 10.1128/spectrum.05236-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in <10% of isolates, but none were those previously selected in vitro with drug pressure, and none were associated with significantly decreased ex vivo drug susceptibility. Overall, Ugandan P. falciparum isolates were highly susceptible to 19 compounds under development as next-generation antimalarials, consistent with a lack of preexisting or novel resistance-conferring mutations in circulating Ugandan parasites. IMPORTANCE Drug resistance necessitates the development of new antimalarial drugs. It is important to assess the activities of compounds under development against parasites now causing disease in Africa, where most malaria cases occur, and to determine if mutations in these parasites may limit the efficacies of new agents. We found that African isolates were generally highly susceptible to the 19 studied lead antimalarials. Sequencing of the presumed drug targets identified multiple mutations in these genes, but these mutations were generally not associated with decreased antimalarial activity. These results offer confidence that the activities of the tested antimalarial compounds now under development will not be limited by preexisting resistance-mediating mutations in African malaria parasites.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- University of California, San Francisco, San Francisco, California, USA
| | | | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Melissa D. Conrad
- University of California, San Francisco, San Francisco, California, USA
| | | | - Jennifer Legac
- University of California, San Francisco, San Francisco, California, USA
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Peter Campbell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Alasdair Smith
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Hiroki Kano
- Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Deni I, Stokes BH, Ward KE, Fairhurst KJ, Pasaje CFA, Yeo T, Akbar S, Park H, Muir R, Bick DS, Zhan W, Zhang H, Liu YJ, Ng CL, Kirkman LA, Almaliti J, Gould AE, Duffey M, O'Donoghue AJ, Uhlemann AC, Niles JC, da Fonseca PCA, Gerwick WH, Lin G, Bogyo M, Fidock DA. Mitigating the risk of antimalarial resistance via covalent dual-subunit inhibition of the Plasmodium proteasome. Cell Chem Biol 2023; 30:470-485.e6. [PMID: 36963402 PMCID: PMC10198959 DOI: 10.1016/j.chembiol.2023.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
The Plasmodium falciparum proteasome constitutes a promising antimalarial target, with multiple chemotypes potently and selectively inhibiting parasite proliferation and synergizing with the first-line artemisinin drugs, including against artemisinin-resistant parasites. We compared resistance profiles of vinyl sulfone, epoxyketone, macrocyclic peptide, and asparagine ethylenediamine inhibitors and report that the vinyl sulfones were potent even against mutant parasites resistant to other proteasome inhibitors and did not readily select for resistance, particularly WLL that displays covalent and irreversible binding to the catalytic β2 and β5 proteasome subunits. We also observed instances of collateral hypersensitivity, whereby resistance to one inhibitor could sensitize parasites to distinct chemotypes. Proteasome selectivity was confirmed using CRISPR/Cas9-edited mutant and conditional knockdown parasites. Molecular modeling of proteasome mutations suggested spatial contraction of the β5 P1 binding pocket, compromising compound binding. Dual targeting of P. falciparum proteasome subunits using covalent inhibitors provides a potential strategy for restoring artemisinin activity and combating the spread of drug-resistant malaria.
Collapse
Affiliation(s)
- Ioanna Deni
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Barbara H Stokes
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kurt E Ward
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kate J Fairhurst
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tomas Yeo
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shirin Akbar
- School of Molecular Biosciences, University of Glasgow, Glasgow, Scotland, UK
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ryan Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniella S Bick
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenhu Zhan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Hao Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Jing Liu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Caroline L Ng
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biology, University of Nebraska Omaha, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura A Kirkman
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Jehad Almaliti
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA; Department of Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman, Jordan
| | | | | | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Challis MP, Devine SM, Creek DJ. Current and emerging target identification methods for novel antimalarials. Int J Parasitol Drugs Drug Resist 2022; 20:135-144. [PMID: 36410177 PMCID: PMC9771836 DOI: 10.1016/j.ijpddr.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
New antimalarial compounds with novel mechanisms of action are urgently needed to combat the recent rise in antimalarial drug resistance. Phenotypic high-throughput screens have proven to be a successful method for identifying new compounds, however, do not provide mechanistic information about the molecular target(s) responsible for antimalarial action. Current and emerging target identification methods such as in vitro resistance generation, metabolomics screening, chemoproteomic approaches and biophysical assays measuring protein stability across the whole proteome have successfully identified novel drug targets. This review provides an overview of these techniques, comparing their strengths and weaknesses and how they can be utilised for antimalarial target identification.
Collapse
Affiliation(s)
- Matthew P. Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Shane M. Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia,Corresponding author. Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
14
|
Vyas VK, Shukla T, Tulsian K, Sharma M, Patel S. Integrated structure-guided computational design of novel substituted quinolizin-4-ones as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. Comput Biol Chem 2022; 101:107787. [DOI: 10.1016/j.compbiolchem.2022.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
15
|
Genome-wide functional screening of drug-resistance genes in Plasmodium falciparum. Nat Commun 2022; 13:6163. [PMID: 36257944 PMCID: PMC9579134 DOI: 10.1038/s41467-022-33804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The global spread of drug resistance is a major obstacle to the treatment of Plasmodium falciparum malaria. The identification of drug-resistance genes is an essential step toward solving the problem of drug resistance. Here, we report functional screening as a new approach with which to identify drug-resistance genes in P. falciparum. Specifically, a high-coverage genomic library of a drug-resistant strain is directly generated in a drug-sensitive strain, and the resistance gene is then identified from this library using drug screening. In a pilot experiment using the strain Dd2, the known chloroquine-resistant gene pfcrt is identified using the developed approach, which proves our experimental concept. Furthermore, we identify multidrug-resistant transporter 7 (pfmdr7) as a novel candidate for a mefloquine-resistance gene from a field-isolated parasite; we suggest that its upregulation possibly confers the mefloquine resistance. These results show the usefulness of functional screening as means by which to identify drug-resistance genes.
Collapse
|
16
|
Chowdhary S, Shalini, Mosnier J, Fonta I, Pradines B, Cele N, Seboletswe P, Singh P, Kumar V. Synthesis, Anti-Plasmodial Activities, and Mechanistic Insights of 4-Aminoquinoline-Triazolopyrimidine Hybrids. ACS Med Chem Lett 2022; 13:1068-1076. [DOI: 10.1021/acsmedchemlett.2c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Shefali Chowdhary
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Pule Seboletswe
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
17
|
Identification of novel Plasmodium falciparum dihydroorotate dehydrogenase inhibitors for malaria using in silico studies. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
18
|
Stokes BH, Dhingra SK, Rubiano K, Mok S, Straimer J, Gnädig NF, Deni I, Schindler KA, Bath JR, Ward KE, Striepen J, Yeo T, Ross LS, Legrand E, Ariey F, Cunningham CH, Souleymane IM, Gansané A, Nzoumbou-Boko R, Ndayikunda C, Kabanywanyi AM, Uwimana A, Smith SJ, Kolley O, Ndounga M, Warsame M, Leang R, Nosten F, Anderson TJ, Rosenthal PJ, Ménard D, Fidock DA. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. eLife 2021; 10:66277. [PMID: 34279219 PMCID: PMC8321553 DOI: 10.7554/elife.66277] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/17/2021] [Indexed: 12/22/2022] Open
Abstract
The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.
Collapse
Affiliation(s)
- Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kelly Rubiano
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Jade R Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Leila S Ross
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Eric Legrand
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - Frédéric Ariey
- Institut Cochin, INSERM U1016, Université Paris Descartes, Paris, France
| | - Clark H Cunningham
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Issa M Souleymane
- Programme National de Lutte Contre le Paludisme au Tchad, Ndjamena, Chad
| | - Adama Gansané
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Romaric Nzoumbou-Boko
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, Bangui, Central African Republic
| | | | | | - Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Samuel J Smith
- National Malaria Control Program, Freetown, Sierra Leone
| | | | - Mathieu Ndounga
- Programme National de Lutte Contre le Paludisme, Brazzaville, Democratic Republic of the Congo
| | - Marian Warsame
- School of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rithea Leang
- National Center for Parasitology, Entomology & Malaria Control, Phnom Penh, Cambodia
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - David A Fidock
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
19
|
Okombo J, Kanai M, Deni I, Fidock DA. Genomic and Genetic Approaches to Studying Antimalarial Drug Resistance and Plasmodium Biology. Trends Parasitol 2021; 37:476-492. [PMID: 33715941 PMCID: PMC8162148 DOI: 10.1016/j.pt.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
Recent progress in genomics and molecular genetics has empowered novel approaches to study gene functions in disease-causing pathogens. In the human malaria parasite Plasmodium falciparum, the application of genome-based analyses, site-directed genome editing, and genetic systems that allow for temporal and quantitative regulation of gene and protein expression have been invaluable in defining the genetic basis of antimalarial resistance and elucidating candidate targets to accelerate drug discovery efforts. Using examples from recent studies, we review applications of some of these approaches in advancing our understanding of Plasmodium biology and illustrate their contributions and limitations in characterizing parasite genomic loci associated with antimalarial drug responses.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Kanai
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ioanna Deni
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Zhou Y, Tao L, Zhou X, Zuo Z, Gong J, Liu X, Zhou Y, Liu C, Sang N, Liu H, Zou J, Gou K, Yang X, Zhao Y. DHODH and cancer: promising prospects to be explored. Cancer Metab 2021; 9:22. [PMID: 33971967 PMCID: PMC8107416 DOI: 10.1186/s40170-021-00250-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
Human dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme catalyzing the fourth step in the de novo pyrimidine synthesis pathway. It is originally a target for the treatment of the non-neoplastic diseases involving in rheumatoid arthritis and multiple sclerosis, and is re-emerging as a validated therapeutic target for cancer therapy. In this review, we mainly unravel the biological function of DHODH in tumor progression, including its crucial role in de novo pyrimidine synthesis and mitochondrial respiratory chain in cancer cells. Moreover, various DHODH inhibitors developing in the past decades are also been displayed, and the specific mechanism between DHODH and its additional effects are illustrated. Collectively, we detailly discuss the association between DHODH and tumors in recent years here, and believe it will provide significant evidences and potential strategies for utilizing DHODH as a potential target in preclinical and clinical cancer therapies.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zeping Zuo
- The Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Chunqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Huan Liu
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaowei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Haase S, Condron M, Miller D, Cherkaoui D, Jordan S, Gulbis JM, Baum J. Identification and characterisation of a phospholipid scramblase in the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2021; 243:111374. [PMID: 33974939 PMCID: PMC8202325 DOI: 10.1016/j.molbiopara.2021.111374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Recent studies highlight the emerging role of lipids as important messengers in malaria parasite biology. In an attempt to identify interacting proteins and regulators of these dynamic and versatile molecules, we hypothesised the involvement of phospholipid translocases and their substrates in the infection of the host erythrocyte by the malaria parasite Plasmodium spp. Here, using a data base searching approach of the Plasmodium Genomics Resources (www.plasmodb.org), we have identified a putative phospholipid (PL) scramblase in P. falciparum (PfPLSCR) that is conserved across the genus and in closely related unicellular algae. By reconstituting recombinant PfPLSCR into liposomes, we demonstrate metal ion dependent PL translocase activity and substrate preference, confirming PfPLSCR as a bona fide scramblase. We show that PfPLSCR is expressed during asexual and sexual parasite development, localising to different membranous compartments of the parasite throughout the intra-erythrocytic life cycle. Two different gene knockout approaches, however, suggest that PfPLSCR is not essential for erythrocyte invasion and asexual parasite development, pointing towards a possible role in other stages of the parasite life cycle.
Collapse
Affiliation(s)
- Silvia Haase
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK.
| | - Melanie Condron
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - David Miller
- Division of Structural Biology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Dounia Cherkaoui
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Sarah Jordan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Jacqueline M Gulbis
- Division of Structural Biology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK.
| |
Collapse
|
22
|
Palmer MJ, Deng X, Watts S, Krilov G, Gerasyuto A, Kokkonda S, El Mazouni F, White J, White KL, Striepen J, Bath J, Schindler KA, Yeo T, Shackleford DM, Mok S, Deni I, Lawong A, Huang A, Chen G, Wang W, Jayaseelan J, Katneni K, Patil R, Saunders J, Shahi SP, Chittimalla R, Angulo-Barturen I, Jiménez-Díaz MB, Wittlin S, Tumwebaze PK, Rosenthal PJ, Cooper RA, Aguiar ACC, Guido RVC, Pereira DB, Mittal N, Winzeler EA, Tomchick DR, Laleu B, Burrows JN, Rathod PK, Fidock DA, Charman SA, Phillips MA. Potent Antimalarials with Development Potential Identified by Structure-Guided Computational Optimization of a Pyrrole-Based Dihydroorotate Dehydrogenase Inhibitor Series. J Med Chem 2021; 64:6085-6136. [PMID: 33876936 DOI: 10.1021/acs.jmedchem.1c00173] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dihydroorotate dehydrogenase (DHODH) has been clinically validated as a target for the development of new antimalarials. Experience with clinical candidate triazolopyrimidine DSM265 (1) suggested that DHODH inhibitors have great potential for use in prophylaxis, which represents an unmet need in the malaria drug discovery portfolio for endemic countries, particularly in areas of high transmission in Africa. We describe a structure-based computationally driven lead optimization program of a pyrrole-based series of DHODH inhibitors, leading to the discovery of two candidates for potential advancement to preclinical development. These compounds have improved physicochemical properties over prior series frontrunners and they show no time-dependent CYP inhibition, characteristic of earlier compounds. Frontrunners have potent antimalarial activity in vitro against blood and liver schizont stages and show good efficacy in Plasmodium falciparum SCID mouse models. They are equally active against P. falciparum and Plasmodium vivax field isolates and are selective for Plasmodium DHODHs versus mammalian enzymes.
Collapse
Affiliation(s)
| | - Xiaoyi Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Shawn Watts
- Schrodinger, Inc., 120 West 45th St, 17th Floor, New York, New York 100036-4041, United States
| | - Goran Krilov
- Schrodinger, Inc., 120 West 45th St, 17th Floor, New York, New York 100036-4041, United States
| | - Aleksey Gerasyuto
- Schrodinger, Inc., 120 West 45th St, 17th Floor, New York, New York 100036-4041, United States
| | - Sreekanth Kokkonda
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Farah El Mazouni
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - John White
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jade Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Ann Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Wen Wang
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jaya Jayaseelan
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rahul Patil
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jessica Saunders
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | | | | | - Iñigo Angulo-Barturen
- TAD, Biscay Science and Technology Park, Astondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- TAD, Biscay Science and Technology Park, Astondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, California 94143, United States
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | | | - Rafael V C Guido
- University of Sao Paulo, Sao Carlos Institute of Physics, Sáo Carlos, SP 13560-970, Brazil
| | - Dhelio B Pereira
- Tropical Medicine Research Center of Rondonia, Av. Guaporé, 215, Porto Velho, RO 76812-329, Brazil
| | - Nimisha Mittal
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Diana R Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Pradipsinh K Rathod
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| |
Collapse
|
23
|
Knaab TC, Held J, Burckhardt BB, Rubiano K, Okombo J, Yeo T, Mok S, Uhlemann AC, Lungerich B, Fischli C, Pessanha de Carvalho L, Mordmüller B, Wittlin S, Fidock DA, Kurz T. 3-Hydroxy-propanamidines, a New Class of Orally Active Antimalarials Targeting Plasmodium falciparum. J Med Chem 2021; 64:3035-3047. [PMID: 33666415 DOI: 10.1021/acs.jmedchem.0c01744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Hydroxypropanamidines are a new promising class of highly active antiplasmodial agents. The most active compound 22 exhibited excellent antiplasmodial in vitro activity with nanomolar inhibition of chloroquine-sensitive and multidrug-resistant parasite strains ofPlasmodium falciparum (with IC50 values of 5 and 12 nM against 3D7 and Dd2 strains, respectively) as well as low cytotoxicity in human cells. In addition, 22 showed strong in vivo activity in thePlasmodium berghei mouse model with a cure rate of 66% at 50 mg/kg and a cure rate of 33% at 30 mg/kg in the Peters test after once daily oral administration for 4 consecutive days. A quick onset of action was indicated by the fast drug absorption shown in mice. The new lead compound was also characterized by a high barrier to resistance and inhibited the heme detoxification machinery in P. falciparum.
Collapse
Affiliation(s)
- Tanja C Knaab
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstraße 1, Düsseldorf 40225, Germany
| | - Jana Held
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Wilhelmstraße 27, Tübingen 72074, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné B.P.: 242, Gabon
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University Düsseldorf, Universitaetsstraße 1, Düsseldorf 40225, Germany
| | - Kelly Rubiano
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - John Okombo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - Beate Lungerich
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstraße 1, Düsseldorf 40225, Germany
| | - Christoph Fischli
- Swiss Tropical and Public Health Institute, Socinstraße 57, Basel 4002, Switzerland.,University of Basel, Basel CH-4003, Switzerland
| | - Lais Pessanha de Carvalho
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Wilhelmstraße 27, Tübingen 72074, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Wilhelmstraße 27, Tübingen 72074, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné B.P.: 242, Gabon
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstraße 57, Basel 4002, Switzerland.,University of Basel, Basel CH-4003, Switzerland
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York 10032, New York, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York 10032, New York, United States
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
24
|
Lawong A, Gahalawat S, Okombo J, Striepen J, Yeo T, Mok S, Deni I, Bridgford JL, Niederstrasser H, Zhou A, Posner B, Wittlin S, Gamo FJ, Crespo B, Churchyard A, Baum J, Mittal N, Winzeler E, Laleu B, Palmer MJ, Charman SA, Fidock DA, Ready JM, Phillips MA. Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in Plasmodium falciparum. J Med Chem 2021; 64:2739-2761. [PMID: 33620219 DOI: 10.1021/acs.jmedchem.0c02022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria control programs continue to be threatened by drug resistance. To identify new antimalarials, we conducted a phenotypic screen and identified a novel tetrazole-based series that shows fast-kill kinetics and a relatively low propensity to develop high-level resistance. Preliminary structure-activity relationships were established including identification of a subseries of related amides with antiplasmodial activity. Assaying parasites with resistance to antimalarials led us to test whether the series had a similar mechanism of action to chloroquine (CQ). Treatment of synchronized Plasmodium falciparum parasites with active analogues revealed a pattern of intracellular inhibition of hemozoin (Hz) formation reminiscent of CQ's action. Drug selections yielded only modest resistance that was associated with amplification of the multidrug resistance gene 1 (pfmdr1). Thus, we have identified a novel chemical series that targets the historically druggable heme polymerization pathway and that can form the basis of future optimization efforts to develop a new malaria treatment.
Collapse
Affiliation(s)
- Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jessica L Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Anwu Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | | | - Benigno Crespo
- Medicines Development Campus, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Jake Baum
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Nimisha Mittal
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Elizabeth Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
25
|
Atypical Molecular Basis for Drug Resistance to Mitochondrial Function Inhibitors in Plasmodium falciparum. Antimicrob Agents Chemother 2021; 65:AAC.02143-20. [PMID: 33361312 DOI: 10.1128/aac.02143-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
The continued emergence of drug-resistant Plasmodium falciparum parasites hinders global attempts to eradicate malaria, emphasizing the need to identify new antimalarial drugs. Attractive targets for chemotherapeutic intervention are the cytochrome (cyt) bc 1 complex, which is an essential component of the mitochondrial electron transport chain (mtETC) required for ubiquinone recycling and mitochondrially localized dihydroorotate dehydrogenase (DHODH) critical for de novo pyrimidine synthesis. Despite the essentiality of this complex, resistance to a novel acridone class of compounds targeting cyt bc 1 was readily attained, resulting in a parasite strain (SB1-A6) that was panresistant to both mtETC and DHODH inhibitors. Here, we describe the molecular mechanism behind the resistance of the SB1-A6 parasite line, which lacks the common cyt bc 1 point mutations characteristic of resistance to mtETC inhibitors. Using Illumina whole-genome sequencing, we have identified both a copy number variation (∼2×) and a single-nucleotide polymorphism (C276F) associated with pfdhodh in SB1-A6. We have characterized the role of both genetic lesions by mimicking the copy number variation via episomal expression of pfdhodh and introducing the identified single nucleotide polymorphism (SNP) using CRISPR-Cas9 and assessed their contributions to drug resistance. Although both of these genetic polymorphisms have been previously identified as contributing to both DSM-1 and atovaquone resistance, SB1-A6 represents a unique genotype in which both alterations are present in a single line, suggesting that the combination contributes to the panresistant phenotype. This novel mechanism of resistance to mtETC inhibition has critical implications for the development of future drugs targeting the bc 1 complex or de novo pyrimidine synthesis that could help guide future antimalarial combination therapies and reduce the rapid development of drug resistance in the field.
Collapse
|
26
|
Blake TCA, Haase S, Baum J. Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum. PLoS Pathog 2020; 16:e1009007. [PMID: 33104759 PMCID: PMC7644091 DOI: 10.1371/journal.ppat.1009007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.
Collapse
Affiliation(s)
- Thomas C. A. Blake
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Silvia Haase
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
27
|
Ashdown GW, Dimon M, Fan M, Sánchez-Román Terán F, Witmer K, Gaboriau DCA, Armstrong Z, Ando DM, Baum J. A machine learning approach to define antimalarial drug action from heterogeneous cell-based screens. SCIENCE ADVANCES 2020; 6:6/39/eaba9338. [PMID: 32978158 PMCID: PMC7518791 DOI: 10.1126/sciadv.aba9338] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Drug resistance threatens the effective prevention and treatment of an ever-increasing range of human infections. This highlights an urgent need for new and improved drugs with novel mechanisms of action to avoid cross-resistance. Current cell-based drug screens are, however, restricted to binary live/dead readouts with no provision for mechanism of action prediction. Machine learning methods are increasingly being used to improve information extraction from imaging data. These methods, however, work poorly with heterogeneous cellular phenotypes and generally require time-consuming human-led training. We have developed a semi-supervised machine learning approach, combining human- and machine-labeled training data from mixed human malaria parasite cultures. Designed for high-throughput and high-resolution screening, our semi-supervised approach is robust to natural parasite morphological heterogeneity and correctly orders parasite developmental stages. Our approach also reproducibly detects and clusters drug-induced morphological outliers by mechanism of action, demonstrating the potential power of machine learning for accelerating cell-based drug discovery.
Collapse
Affiliation(s)
- George W Ashdown
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | | | - Kathrin Witmer
- Department of Life Sciences, Imperial College London, London, UK
| | - David C A Gaboriau
- Facility for Imaging by Light Microscopy, Imperial College London, London, UK
| | | | | | - Jake Baum
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
28
|
Kokkonda S, Deng X, White KL, El Mazouni F, White J, Shackleford DM, Katneni K, Chiu FCK, Barker H, McLaren J, Crighton E, Chen G, Angulo-Barturen I, Jimenez-Diaz MB, Ferrer S, Huertas-Valentin L, Martinez-Martinez MS, Lafuente-Monasterio MJ, Chittimalla R, Shahi SP, Wittlin S, Waterson D, Burrows JN, Matthews D, Tomchick D, Rathod PK, Palmer MJ, Charman SA, Phillips MA. Lead Optimization of a Pyrrole-Based Dihydroorotate Dehydrogenase Inhibitor Series for the Treatment of Malaria. J Med Chem 2020; 63:4929-4956. [PMID: 32248693 DOI: 10.1021/acs.jmedchem.0c00311] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Malaria puts at risk nearly half the world's population and causes high mortality in sub-Saharan Africa, while drug resistance threatens current therapies. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated target for malaria treatment based on our finding that triazolopyrimidine DSM265 (1) showed efficacy in clinical studies. Herein, we describe optimization of a pyrrole-based series identified using a target-based DHODH screen. Compounds with nanomolar potency versus Plasmodium DHODH and Plasmodium parasites were identified with good pharmacological properties. X-ray studies showed that the pyrroles bind an alternative enzyme conformation from 1 leading to improved species selectivity versus mammalian enzymes and equivalent activity on Plasmodium falciparum and Plasmodium vivax DHODH. The best lead DSM502 (37) showed in vivo efficacy at similar levels of blood exposure to 1, although metabolic stability was reduced. Overall, the pyrrole-based DHODH inhibitors provide an attractive alternative scaffold for the development of new antimalarial compounds.
Collapse
Affiliation(s)
- Sreekanth Kokkonda
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Xiaoyi Deng
- Departments of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Farah El Mazouni
- Departments of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - John White
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Francis C K Chiu
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Helena Barker
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jenna McLaren
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | | | - Santiago Ferrer
- GSK, Tres Cantos Medicines Development Campus, Severo Ochoa, Madrid 28760, Spain
| | | | | | | | | | | | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | | | | | - Dave Matthews
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Diana Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Pradipsinh K Rathod
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | | | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Margaret A Phillips
- Departments of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| |
Collapse
|
29
|
Batista FA, Gyau B, Vilacha JF, Bosch SS, Lunev S, Wrenger C, Groves MR. New directions in antimalarial target validation. Expert Opin Drug Discov 2020; 15:189-202. [PMID: 31959021 DOI: 10.1080/17460441.2020.1691996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Malaria is one of the most prevalent human infections worldwide with over 40% of the world's population living in malaria-endemic areas. In the absence of an effective vaccine, emergence of drug-resistant strains requires urgent drug development. Current methods applied to drug target validation, a crucial step in drug discovery, possess limitations in malaria. These constraints require the development of techniques capable of simplifying the validation of Plasmodial targets.Areas covered: The authors review the current state of the art in techniques used to validate drug targets in malaria, including our contribution - the protein interference assay (PIA) - as an additional tool in rapid in vivo target validation.Expert opinion: Each technique in this review has advantages and disadvantages, implying that future validation efforts should not focus on a single approach, but integrate multiple approaches. PIA is a significant addition to the current toolset of antimalarial validation. Validation of aspartate metabolism as a druggable pathway provided proof of concept of how oligomeric interfaces can be exploited to control specific activity in vivo. PIA has the potential to be applied not only to other enzymes/pathways of the malaria parasite but could, in principle, be extrapolated to other infectious diseases.
Collapse
Affiliation(s)
- Fernando A Batista
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands.,Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Benjamin Gyau
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Juliana F Vilacha
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Soraya S Bosch
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands.,Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sergey Lunev
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matthew R Groves
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Mandt REK, Lafuente-Monasterio MJ, Sakata-Kato T, Luth MR, Segura D, Pablos-Tanarro A, Viera S, Magan N, Ottilie S, Winzeler EA, Lukens AK, Gamo FJ, Wirth DF. In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model. Sci Transl Med 2019; 11:eaav1636. [PMID: 31801884 PMCID: PMC7444640 DOI: 10.1126/scitranslmed.aav1636] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/04/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
Abstract
Resistance has developed in Plasmodium malaria parasites to every antimalarial drug in clinical use, prompting the need to characterize the pathways mediating resistance. Here, we report a framework for assessing development of resistance of Plasmodium falciparum to new antimalarial therapeutics. We investigated development of resistance by P. falciparum to the dihydroorotate dehydrogenase (DHODH) inhibitors DSM265 and DSM267 in tissue culture and in a mouse model of P. falciparum infection. We found that resistance to these drugs arose rapidly both in vitro and in vivo. We identified 13 point mutations mediating resistance in the parasite DHODH in vitro that overlapped with the DHODH mutations that arose in the mouse infection model. Mutations in DHODH conferred increased resistance (ranging from 2- to ~400-fold) to DHODH inhibitors in P. falciparum in vitro and in vivo. We further demonstrated that the drug-resistant parasites carrying the C276Y mutation had mitochondrial energetics comparable to the wild-type parasite and also retained their fitness in competitive growth experiments. Our data suggest that in vitro selection of drug-resistant P. falciparum can predict development of resistance in a mouse model of malaria infection.
Collapse
Affiliation(s)
- Rebecca E K Mandt
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maria Jose Lafuente-Monasterio
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
| | - Tomoyo Sakata-Kato
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Madeline R Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Delfina Segura
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
| | - Alba Pablos-Tanarro
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
| | - Sara Viera
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
| | - Noemi Magan
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth A Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
31
|
Lee MCS, Lindner SE, Lopez-Rubio JJ, Llinás M. Cutting back malaria: CRISPR/Cas9 genome editing of Plasmodium. Brief Funct Genomics 2019; 18:281-289. [PMID: 31365053 PMCID: PMC6859820 DOI: 10.1093/bfgp/elz012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
CRISPR/Cas9 approaches are revolutionizing our ability to perform functional genomics across a wide range of organisms, including the Plasmodium parasites that cause malaria. The ability to deliver single point mutations, epitope tags and gene deletions at increased speed and scale is enabling our understanding of the biology of these complex parasites, and pointing to potential new therapeutic targets. In this review, we describe some of the biological and technical considerations for designing CRISPR-based experiments, and discuss potential future developments that broaden the applications for CRISPR/Cas9 interrogation of the malaria parasite genome.
Collapse
Affiliation(s)
- Marcus C S Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, Pennsylvania, USA
| | - Jose-Juan Lopez-Rubio
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université Montpellier, Montpellier, France
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, Pennsylvania, USA
- Department of Chemistry, The Pennsylvania State University, Pennsylvania, USA
| |
Collapse
|
32
|
Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem 2019; 183:111681. [PMID: 31557612 DOI: 10.1016/j.ejmech.2019.111681] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
Pyrimidines are essential for the cell survival and proliferation of living parasitic organisms, such as Helicobacter pylori, Plasmodium falciparum and Schistosoma mansoni, that are able to impact upon human health. Pyrimidine building blocks, in human cells, are synthesised via both de novo biosynthesis and salvage pathways, the latter of which is an effective way of recycling pre-existing nucleotides. As many parasitic organisms lack pyrimidine salvage pathways for pyrimidine nucleotides, blocking de novo biosynthesis is seen as an effective therapeutic means to selectively target the parasite without effecting the human host. Dihydroorotate dehydrogenase (DHODH), which is involved in the de novo biosynthesis of pyrimidines, is a validated target for anti-infective drug research. Recent advances in the DHODH microorganism field are discussed herein, as is the potential for the development of DHODH-targeted therapeutics.
Collapse
|
33
|
Ashton TD, Devine SM, Möhrle JJ, Laleu B, Burrows JN, Charman SA, Creek DJ, Sleebs BE. The Development Process for Discovery and Clinical Advancement of Modern Antimalarials. J Med Chem 2019; 62:10526-10562. [DOI: 10.1021/acs.jmedchem.9b00761] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Trent D. Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shane M. Devine
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jörg J. Möhrle
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Jeremy N. Burrows
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Susan A. Charman
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|