1
|
Young TW, Kappler MP, Call ED, Brown QJ, Jacobson SC. Integrated In-Plane Nanofluidic Devices for Resistive-Pulse Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:221-242. [PMID: 38608295 PMCID: PMC11636403 DOI: 10.1146/annurev-anchem-061622-030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Single-particle (or digital) measurements enhance sensitivity (10- to 100-fold improvement) and uncover heterogeneity within a population (one event in 100 to 10,000). Many biological systems are significantly influenced by rare or infrequent events, and determining what species is present, in what quantity, and the role of that species is critically important to unraveling many questions. To develop these measurement systems, resistive-pulse sensing is used as a label-free, single-particle detection technique and can be combined with a range of functional elements, e.g., mixers, reactors, filters, separators, and pores. Virtually, any two-dimensional layout of the micro- and nanofluidic conduits can be envisioned, designed, and fabricated in the plane of the device. Multiple nanopores in series lead to higher-precision measurements of particle size, shape, and charge, and reactions coupled directly with the particle-size measurements improve temporal response. Moreover, other detection techniques, e.g., fluorescence, are highly compatible with the in-plane format. These integrated in-plane nanofluidic devices expand the toolbox of what is possible with single-particle measurements.
Collapse
Affiliation(s)
- Tanner W Young
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Michael P Kappler
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Ethan D Call
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Quintin J Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | | |
Collapse
|
2
|
McFadden WM, Sarafianos SG. Biology of the hepatitis B virus (HBV) core and capsid assembly modulators (CAMs) for chronic hepatitis B (CHB) cure. Glob Health Med 2023; 5:199-207. [PMID: 37655181 PMCID: PMC10461335 DOI: 10.35772/ghm.2023.01065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) is a hepadnavirus, a small DNA virus that infects liver tissue, with some unusual replication steps that share similarities to retroviruses. HBV infection can lead to chronic hepatitis B (CHB), a life-long infection associated with significant risks of liver disease, especially if untreated. HBV is a significant global health problem, with hundreds of millions currently living with CHB. Currently approved strategies to prevent or inhibit HBV are highly effective, however, a cure for CHB has remained elusive. To achieve a cure, elimination of the functionally integrated HBV covalently closed chromosomal DNA (cccDNA) genome is required. The capsid core is an essential component of HBV replication, serving roles when establishing infection and in creating new virions. Over the last two and a half decades, significant efforts have been made to find and characterize antivirals that target the capsid, specifically the HBV core protein (Cp). The antivirals that interfere with the kinetics and morphology of the capsid, termed capsid assembly modulators (CAMs), are extremely potent, and clinical investigations indicate they are well tolerated and highly effective. Several CAMs offer the potential to cure CHB by decreasing the cccDNA pools. Here, we review the biology of the HBV capsid, focused on Cp, and the development of inhibitors that target it.
Collapse
Affiliation(s)
- William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
3
|
Mohajerani F, Tyukodi B, Schlicksup CJ, Hadden-Perilla JA, Zlotnick A, Hagan MF. Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism. ACS NANO 2022; 16:13845-13859. [PMID: 36054910 PMCID: PMC10273259 DOI: 10.1021/acsnano.2c02119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar-Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein-protein binding affinities.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| | - Botond Tyukodi
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
- Department of Physics, Babeş-Bolyai University, 400084Cluj-Napoca, Romania
| | - Christopher J Schlicksup
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware19716, United States
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| |
Collapse
|
4
|
Niklasch M, Zimmermann P, Nassal M. The Hepatitis B Virus Nucleocapsid-Dynamic Compartment for Infectious Virus Production and New Antiviral Target. Biomedicines 2021; 9:1577. [PMID: 34829806 PMCID: PMC8615760 DOI: 10.3390/biomedicines9111577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV's only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.
Collapse
Affiliation(s)
| | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany; (M.N.); (P.Z.)
| |
Collapse
|
5
|
Choi J, Jia Z, Riahipour R, McKinney CJ, Amarasekara CA, Weerakoon-Ratnayake KM, Soper SA, Park S. Label-Free Identification of Single Mononucleotides by Nanoscale Electrophoresis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102567. [PMID: 34558175 PMCID: PMC8542607 DOI: 10.1002/smll.202102567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Nanoscale electrophoresis allows for unique separations of single molecules, such as DNA/RNA nucleobases, and thus has the potential to be used as single molecular sensors for exonuclease sequencing. For this to be envisioned, label-free detection of the nucleotides to determine their electrophoretic mobility (i.e., time-of-flight, TOF) for highly accurate identification must be realized. Here, for the first time a novel nanosensor is shown that allows discriminating four 2-deoxyribonucleoside 5'-monophosphates, dNMPs, molecules in a label-free manner by nanoscale electrophoresis. This is made possible by positioning two sub-10 nm in-plane pores at both ends of a nanochannel column used for nanoscale electrophoresis and measuring the longitudinal transient current during translocation of the molecules. The dual nanopore TOF sensor with 0.5, 1, and 5 µm long nanochannel column lengths discriminates different dNMPs with a mean accuracy of 55, 66, and 94%, respectively. This nanosensor format can broadly be applicable to label-free detection and discrimination of other single molecules, vesicles, and particles by changing the dimensions of the nanochannel column and in-plane nanopores and integrating different pre- and postprocessing units to the nanosensor. This is simple to accomplish because the nanosensor is contained within a fluidic network made in plastic via replication.
Collapse
Affiliation(s)
- Junseo Choi
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
- Center of Bio-Modular Multiscale Systems for Precision Medicine, USA
| | - Zheng Jia
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
- Center of Bio-Modular Multiscale Systems for Precision Medicine, USA
| | - Ramin Riahipour
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
- Center of Bio-Modular Multiscale Systems for Precision Medicine, USA
| | - Collin J. McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Center of Bio-Modular Multiscale Systems for Precision Medicine, USA
| | - Charuni A. Amarasekara
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Center of Bio-Modular Multiscale Systems for Precision Medicine, USA
| | - Kumuditha M. Weerakoon-Ratnayake
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Center of Bio-Modular Multiscale Systems for Precision Medicine, USA
| | - Steven A. Soper
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Center of Bio-Modular Multiscale Systems for Precision Medicine, USA
- Bioengineering Program, University of Kansas, Lawrence, KS 66047, USA
- Department of Kansas Biology and KUCC, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sunggook Park
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
- Center of Bio-Modular Multiscale Systems for Precision Medicine, USA
| |
Collapse
|
6
|
Wang Y, Wang Z, Liu J, Wang Y, Wu R, Sheng R, Hou T. Discovery of novel HBV capsid assembly modulators by structure-based virtual screening and bioassays. Bioorg Med Chem 2021; 36:116096. [PMID: 33721800 DOI: 10.1016/j.bmc.2021.116096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022]
Abstract
HBV capsid assembly has been regarded as an attractive potential target for anti-HBV therapy. In this study, we discovery the Novel HBV capsid assembly modulators (CAMs) through structure-based virtual screening and bioassays. A total of 16 structurally diverse compounds were purchased and assayed, including three compounds with inhibition rate > 50% at 20 μM. Further lead optimization based on the most potent compound II-1-7 (EC50 = 5.6 ± 0.1 µM) were performed by using substructure searching strategy, resulting in compound II-2-9 with an EC50 value of 1.8 ± 0.6 μM. In bimolecular fluorescence complementation (BiFC) assay, compound II-2-9 inhibited the HBV by disrupting the HBV capsid interactions. In summary, this study provides a highly efficient way to discover novel CAMs, and 2-aryl-4-quinolyl amide derivatives could serve as the starting point for development of novel anti-HBV drugs.
Collapse
Affiliation(s)
- Yuan Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Zhe Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jiacheng Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yunwen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rui Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
7
|
Pérez-Segura C, Goh BC, Hadden-Perilla JA. All-Atom MD Simulations of the HBV Capsid Complexed with AT130 Reveal Secondary and Tertiary Structural Changes and Mechanisms of Allostery. Viruses 2021; 13:564. [PMID: 33810481 PMCID: PMC8065791 DOI: 10.3390/v13040564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
The hepatitis B virus (HBV) capsid is an attractive drug target, relevant to combating viral hepatitis as a major public health concern. Among small molecules known to interfere with capsid assembly, the phenylpropenamides, including AT130, represent an important antiviral paradigm based on disrupting the timing of genome packaging. Here, all-atom molecular dynamics simulations of an intact AT130-bound HBV capsid reveal that the compound increases spike flexibility and improves recovery of helical secondary structure in the spike tips. Regions of the capsid-incorporated dimer that undergo correlated motion correspond to established sub-domains that pivot around the central chassis. AT130 alters patterns of correlated motion and other essential dynamics. A new conformational state of the dimer is identified, which can lead to dramatic opening of the intradimer interface and disruption of communication within the spike tip. A novel salt bridge is also discovered, which can mediate contact between the spike tip and fulcrum even in closed conformations, revealing a mechanism of direct communication across these sub-domains. Altogether, results describe a dynamical connection between the intra- and interdimer interfaces and enable mapping of allostery traversing the entire core protein dimer.
Collapse
Affiliation(s)
- Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA;
| | - Boon Chong Goh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology Centre, Singapore 138602, Singapore;
| | - Jodi A. Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
8
|
Chevreuil M, Lecoq L, Wang S, Gargowitsch L, Nhiri N, Jacquet E, Zinn T, Fieulaine S, Bressanelli S, Tresset G. Nonsymmetrical Dynamics of the HBV Capsid Assembly and Disassembly Evidenced by Their Transient Species. J Phys Chem B 2020; 124:9987-9995. [PMID: 33135897 DOI: 10.1021/acs.jpcb.0c05024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
As with many protein multimers studied in biophysics, the assembly and disassembly dynamical pathways of hepatitis B virus (HBV) capsid proteins are not symmetrical. Using time-resolved small-angle X-ray scattering and singular value decomposition analysis, we have investigated these processes in vitro by a rapid change of salinity or chaotropicity. Along the assembly pathway, the classical nucleation-growth mechanism is followed by a slow relaxation phase during which capsid-like transient species self-organize in accordance with the theoretical prediction that the capture of the few last subunits is slow. By contrast, the disassembly proceeds through unexpected, fractal-branched clusters of subunits that eventually vanish over a much longer time scale. On the one hand, our findings confirm and extend previous views as to the hysteresis phenomena observed and theorized in capsid formation and dissociation. On the other hand, they uncover specifics that may directly relate to the functions of HBV subunits in the viral cycle.
Collapse
Affiliation(s)
- Maelenn Chevreuil
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Claude Bernard Lyon 1, CNRS, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Shishan Wang
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Claude Bernard Lyon 1, CNRS, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Naïma Nhiri
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Eric Jacquet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Thomas Zinn
- ESRF - The European Synchrotron, 71 avenue des Martyrs, 38043 Grenoble Cedex 9, France
| | - Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
9
|
Jia H, Yu J, Du X, Cherukupalli S, Zhan P, Liu X. Design, diversity-oriented synthesis and biological evaluation of novel heterocycle derivatives as non-nucleoside HBV capsid protein inhibitors. Eur J Med Chem 2020; 202:112495. [PMID: 32712535 DOI: 10.1016/j.ejmech.2020.112495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
The capsid assembly is a significant phase for the hepatitis B virus (HBV) lifespan and is an essential target for anti-HBV drug discovery and development. Herein, we used scaffold hopping, bioisosterism, and pharmacophore hybrid-based strategies to design and synthesize six series of various heterocycle derivatives (pyrazole, thiazole, pyrazine, pyrimidine, and pyridine) and screened for in vitro anti-HBV non-nucleoside activity. Drug candidate NZ-4 and AT-130 were used as lead compounds. Several compounds exhibited prominent anti-HBV activity compared to lead compound NZ-4 and positive drug Lamivudine, especially compound II-8b, showed the most prominent anti-HBV DNA replication activity (IC50 = 2.2 ± 1.1 μM). Also compounds IV-8e and VII-5b showed the best in vitro anti-HBsAg secretion (IC50 = 3.8 ± 0.7 μM, CC50 > 100 μM) and anti-HBeAg secretion (IC50 = 9.7 ± 2.8 μM, CC50 > 100 μM) respectively. Besides, II-8b can interact HBV capsid protein with good affinity constants (KD = 60.0 μM), which is equivalent to lead compound NZ-4 ((KD = 50.6 μM). The preliminary structure-activity relationships (SARs) of the newly synthesized compounds were summarized, which may help researchers to discover more potent anti-HBV agents.
Collapse
Affiliation(s)
- Haiyong Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; School of Pharmacy, Weifang Medical University, 261053, Weifang, Shandong, PR China
| | - Ji Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xianhong Du
- School of Pharmacy, Weifang Medical University, 261053, Weifang, Shandong, PR China; Department of Immunology, Key Laboratory for Experimental, Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, Shandong University School of Medicine, Jinan, 250012, Shandong Province, China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
10
|
Oliver RC, Potrzebowski W, Najibi SM, Pedersen MN, Arleth L, Mahmoudi N, André I. Assembly of Capsids from Hepatitis B Virus Core Protein Progresses through Highly Populated Intermediates in the Presence and Absence of RNA. ACS NANO 2020; 14:10226-10238. [PMID: 32672447 PMCID: PMC7458484 DOI: 10.1021/acsnano.0c03569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/16/2020] [Indexed: 05/17/2023]
Abstract
The genetic material of viruses is protected by protein shells that are assembled from a large number of subunits in a process that is efficient and robust. Many of the mechanistic details underpinning efficient assembly of virus capsids are still unknown. The assembly mechanism of hepatitis B capsids has been intensively researched using a truncated core protein lacking the C-terminal domain responsible for binding genomic RNA. To resolve the assembly intermediates of hepatitis B virus (HBV), we studied the formation of nucleocapsids and empty capsids from full-length hepatitis B core proteins, using time-resolved small-angle X-ray scattering. We developed a detailed structural model of the HBV capsid assembly process using a combination of analysis with multivariate curve resolution, structural modeling, and Bayesian ensemble inference. The detailed structural analysis supports an assembly pathway that proceeds through the formation of two highly populated intermediates, a trimer of dimers and a partially closed shell consisting of around 40 dimers. These intermediates are on-path, transient and efficiently convert into fully formed capsids. In the presence of an RNA oligo that binds specifically to the C-terminal domain the assembly proceeds via a similar mechanism to that in the absence of nucleic acids. Comparisons between truncated and full-length HBV capsid proteins reveal that the unstructured C-terminal domain has a significant impact on the assembly process and is required to obtain a more complete mechanistic understanding of HBV capsid formation. These results also illustrate how combining scattering information from different time-points during time-resolved experiments can be utilized to derive a structural model of protein self-assembly pathways.
Collapse
Affiliation(s)
- Ryan C. Oliver
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
| | - Wojciech Potrzebowski
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
- Data
Management and Software Centre, European
Spallation Source ERIC, Ole Maaloes Vej 3, 2200 Copenhagen, Denmark
| | - Seyed Morteza Najibi
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
| | - Martin Nors Pedersen
- Niels
Bohr Institute, Faculty of Science, University
of Copenhagen, Universitetsparken
5, 2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels
Bohr Institute, Faculty of Science, University
of Copenhagen, Universitetsparken
5, 2100 Copenhagen, Denmark
| | - Najet Mahmoudi
- ISIS
Neutron and Muon Source, STFC Rutherford
Appleton Laboratory, Chilton, Didcot OX11 0QX, U. K.
| | - Ingemar André
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
| |
Collapse
|
11
|
Chen W, Liu F, Zhao Q, Ma X, Lu D, Li H, Zeng Y, Tong X, Zeng L, Liu J, Yang L, Zuo J, Hu Y. Discovery of Phthalazinone Derivatives as Novel Hepatitis B Virus Capsid Inhibitors. J Med Chem 2020; 63:8134-8145. [PMID: 32692159 DOI: 10.1021/acs.jmedchem.0c00346] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HBV capsid assembly has been viewed as an attractive target for new antiviral therapies against HBV. On the basis of a lead compound 4r, we further investigated this target to identify novel active compounds with appropriate anti-HBV potencies and improved pharmacokinetic (PK) properties. Structure-activity relationship studies based on metabolic pathways of 4r led to the identification of a phthalazinone derivative 19f with appropriate anti-HBV potencies (IC50 = 0.014 ± 0.004 μM in vitro), which demonstrated high oral bioavailability and liver exposure. In the AAV-HBV/mouse model, administration of 19f resulted in a 2.67 log reduction of the HBV DNA viral load during a 4-week treatment with 150 mg/kg dosing twice daily.
Collapse
Affiliation(s)
- Wuhong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Feifei Liu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qiliang Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xinna Ma
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Heng Li
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanping Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiankun Tong
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Limin Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Jia Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Li Yang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|