1
|
Beech MJ, Toma EC, Smith HG, Trush MM, Ang JHJ, Wong MY, Wong CHJ, Ali HS, Butt Z, Goel V, Duarte F, Farley AJM, Walsh TR, Schofield CJ. Binding assays enable discovery of Tet(X) inhibitors that combat tetracycline destructase resistance. Chem Sci 2025:d5sc00964b. [PMID: 40342919 PMCID: PMC12056667 DOI: 10.1039/d5sc00964b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
The Tet(X) flavin-dependent monooxygenases enable tetracycline antibiotic resistance by catalysing inactivating hydroxylation, so preventing inhibition of bacterial ribosomes. Tet(X) resistance is growing rapidly, threatening the efficacy of important last-resort tetracyclines such as tigecycline. Tet(X) inhibitors have potential to protect tetracyclines in combination therapies, but their discovery has been hampered by lack of high-throughput assays. We report the development of an efficient fluorescence polarisation Tet(X) binding assay employing a tetramethylrhodamine-glycyl-minocycline conjugate that enables inhibitor discovery. The assay was applied to tetracycline substrates and reported inhibitors, providing insight into their binding modes. Screening of a bioactive molecule library identified novel Tet(X) inhibitors, including psychoactive phenothiazine derivatives and the 5-HT4 agonist tegaserod, the activities of which were validated by turnover assays. Crystallographic studies of Tet(X4)-inhibitor complexes reveal two new inhibitor binding modes, importantly providing evidence for active site binding of Tet(X) inhibitors that do not share structural similarity with tetracycline substrates. In some cases, potentiation of tigecycline activity was observed in bacteria expressing Tet(X4). The combined results provide non-tetracycline scaffolds for development of potent Tet(X) inhibitors and highlight the need to evaluate the impact of non-antibiotics on antimicrobial resistance.
Collapse
Affiliation(s)
- Matthew J Beech
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Edmond C Toma
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Helen G Smith
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Maria M Trush
- Department of Biology and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3RE UK
| | - Jit H J Ang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR) 10, Biopolis Road Singapore 138670 Singapore
| | - Mei Y Wong
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR) 10, Biopolis Road Singapore 138670 Singapore
| | - Chung H J Wong
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR) 10, Biopolis Road Singapore 138670 Singapore
| | - Hafiz S Ali
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Zakia Butt
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Viha Goel
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Alistair J M Farley
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Timothy R Walsh
- Department of Biology and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3RE UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| |
Collapse
|
2
|
Pei Y, Lei A, Wang M, Sun M, Yang S, Liu X, Liu L, Chen H. Novel tetracycline-degrading enzymes from the gut microbiota of black soldier fly: Discovery, performance, degradation pathways, mechanisms, and application potential. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137286. [PMID: 39854991 DOI: 10.1016/j.jhazmat.2025.137286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The antibiotic tetracycline (TC) is an emerging pollutant frequently detected in various environments. Although enzymatic remediation is a promising strategy for mitigating TC contamination, the availability of effective TC-degrading enzymes remains limited, and their mechanisms and applications are not fully understood. This study developed a comprehensive TC-degrading enzyme library from the gut microbiome of the highly TC-resistant saprophagous insect, black soldier fly larvae (BSFL), using an integrated metagenomic and comparative metatranscriptomic approach, identifying 105 potential novel TC-degradation genes. Bioinformatics analysis of 10 selected genes underscored the novelty of the identified enzymes. Among these, Trg2 demonstrated strong binding affinity and significant degradation capacity for TC. Key functional amino acid residues, including Thr231, Ala64, Ala82, Gly68, Gly79, and Ser81, were identified as essential for the interaction between TC and Trg2. Six TC degradation pathways were proposed, involving the transformation of TC into 19 metabolites through de-grouping, ring opening, oxidation, reduction, and addition reactions, effectively reducing TC toxicity. Furthermore, Trg2 exhibited resilience under harsh conditions, maintaining the capacity to remove about 45 % of the total TC in mariculture wastewater across eight successive batches. This study advances the understanding of TC degradation mechanisms and highlights the potential application of novel enzymes for bioremediation purposes.
Collapse
Affiliation(s)
- Yaxin Pei
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China.
| | - Aojie Lei
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Mengyao Wang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Mengxiao Sun
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Sen Yang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Xinyu Liu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Liangwei Liu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Hongge Chen
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| |
Collapse
|
3
|
Wang Y, Wu H, Yang G, Selvaraj K, Chen G. Synthesis and antibacterial study of anhydrotetracycline derivatives. Bioorg Med Chem Lett 2025; 118:130090. [PMID: 39736277 DOI: 10.1016/j.bmcl.2024.130090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
A novel and new type of tetracycline with a different mechanism of action was necessary, due to the drug resistance of existing tetracyclines. This study outlines the synthesis and antibacterial evaluation of anhydro-tetracycline derivatives, which are unconventional tetracyclines with unique mechanisms of action. These derivatives include C4-NH2, C4-OH, and C9-substituted variations, and our synthetic approach focuses on semi-synthesis using natural tetracyclines as the starting precursors. Several derivatives of C4-NH2, C4-OH, and C9-substituted compounds have demonstrated effective antibiotic activity against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Yong Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - He Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Guangguang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Karuppu Selvaraj
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
4
|
Williford E, Xue YP, Tang WK, Li R, Jones KV, Blake KS, Blaine HC, Lian X, Stallings CL, Tolia NH, Dantas G, Wencewicz TA. C10-Benzoate Esters of Anhydrotetracycline Inhibit Tetracycline Destructases and Recover Tetracycline Antibacterial Activity. ACS Infect Dis 2025; 11:738-749. [PMID: 39912785 PMCID: PMC11915366 DOI: 10.1021/acsinfecdis.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Tetracyclines (TCs) are an important class of antibiotics threatened by enzymatic inactivation. These tetracycline-inactivating enzymes, also known as tetracycline destructases (TDases), are a subfamily of class A flavin monooxygenases (FMOs) that catalyze hydroxyl group transfer and oxygen insertion (Baeyer-Villiger type) reactions on TC substrate scaffolds. Semisynthetic modification of TCs (e.g., tigecycline, omadacycline, eravacycline, and sarecycline) has proven effective in evading certain resistance mechanisms, such as ribosomal protection and efflux, but does not protect against TDase-mediated resistance. Here, we report the design, synthesis, and evaluation of a new series of 22 semisynthetic TDase inhibitors that explore D-ring substitution of anhydrotetracycline (aTC) including 14 C10-benzoate ester and eight C9-benzamides. Overall, the C10-benzoate esters displayed enhanced bioactivity and water solubility compared to the corresponding C9-benzamides featuring the same heterocyclic aryl side chains. The C10-benzoate ester derivatives of aTC were prepared in a high-yield one-step synthesis without the need for protecting groups. The C10-esters are water-soluble, stable toward hydrolysis, and display dose-dependent rescue of tetracycline antibiotic activity in E. coli expressing two types of tetracycline destructases, represented by TetX7 (Type 1) and Tet50 (Type 2). The best inhibitors recovered tetracycline antibiotic activity at concentrations as low as 2 μM, producing synergistic scores <0.5 in the fractional inhibitory concentration index (FICI) against TDase-expressing strains of E. coli and clinical P. aeruginosa. The C10-benzoate ester derivatives of aTC reported here are promising new leads for the development of tetracycline drug combination therapies to overcome TDase-mediated antibiotic resistance.
Collapse
Affiliation(s)
- Emily
E. Williford
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Yao-Peng Xue
- The
Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Wai Kwan Tang
- Host−Pathogen
Interactions and Structural Vaccinology Section, Laboratory of Malaria
Immunology and Vaccinology, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Ruihao Li
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Katherine V. Jones
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Kevin S. Blake
- The
Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
- Department
of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Helen C. Blaine
- Department
of Molecular Microbiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
| | - Xiang Lian
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Christina L. Stallings
- Department
of Molecular Microbiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
| | - Niraj H. Tolia
- Host−Pathogen
Interactions and Structural Vaccinology Section, Laboratory of Malaria
Immunology and Vaccinology, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Gautam Dantas
- The
Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
- Department
of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Molecular Microbiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Biomedical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
- Department
of Pediatrics, Washington University School
of Medicine, St. Louis, Missouri 63110, United States
| | - Timothy A. Wencewicz
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Blake KS, Xue YP, Gillespie VJ, Fishbein SRS, Tolia NH, Wencewicz TA, Dantas G. The tetracycline resistome is shaped by selection for specific resistance mechanisms by each antibiotic generation. Nat Commun 2025; 16:1452. [PMID: 39920134 PMCID: PMC11806011 DOI: 10.1038/s41467-025-56425-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
The history of clinical resistance to tetracycline antibiotics is characterized by cycles whereby the deployment of a new generation of drug molecules is quickly followed by the discovery of a new mechanism of resistance. This suggests mechanism-specific selection by each tetracycline generation; however, the evolutionary dynamics of this remain unclear. Here, we evaluate 24 recombinant Escherichia coli strains expressing tetracycline resistance genes from each mechanism (efflux pumps, ribosomal protection proteins, and enzymatic inactivation) in the context of each tetracycline generation. We employ a high-throughput barcode sequencing protocol that can discriminate between strains in mixed culture and quantify their relative abundances. We find that each mechanism is preferentially selected for by specific antibiotic generations, leading to their expansion. Remarkably, the minimum inhibitory concentration associated with individual genes is secondary to resistance mechanism for inter-mechanism relative fitness, but it does explain intra-mechanism relative fitness. These patterns match the history of clinical deployment of tetracycline drugs and resistance discovery in pathogens.
Collapse
Affiliation(s)
- Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao-Peng Xue
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vincent J Gillespie
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Li Y, Liu X, Wang J, Li S. High-generation tetracyclines shifted microbial community composition and induced the emergence of antibiotic resistant bacteria in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135757. [PMID: 39259998 DOI: 10.1016/j.jhazmat.2024.135757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Tetracyclines (TCs) have been widely detected in agricultural soil due to their widespread use in animal husbandry. The impact of low-generation TCs, i.e., the first- and second- generations, on soil ecosystem has attracted widespread attention. However, the dynamic response of soil microbial community to high-generation TCs, i.e., the third- and fourth- generations, remains largely unknown. Herein, we characterized the variations in the composition, diversity and succession of microbial community and the proliferation of antibiotic resistance genes (ARGs) under the stress of four generations of TCs in brown soil and red soil. The results demonstrated that the exposure of low- and high- generation TCs consistently decreased the alpha diversity and stimulated the succession rate of microbial community in soil. High-generation TCs strongly shifted microbial community composition by reducing community resilience. The complexity of microbial networks and cross-module associations were strengthened to cope with the stress of high-generation TCs in soil. The abundance of ARGs was exacerbated by 1.75 times in response to the fourth-generation TCs compared to control in brown soil. The potential bacterial hosts of ARGs were more diverse in brown soil exposed to high-generation TCs, but the dominant hosts were not changed. These results highlight the potential ecological risk of the newly developed antibiotics, which is helpful for a comprehensive risk assessment of emerging contaminants.
Collapse
Affiliation(s)
- Ying Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoying Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Yantai Institute of China Agricultural University, Yantai 264670, China.
| |
Collapse
|
7
|
Sun S, Chen X. Mechanism-guided strategies for combating antibiotic resistance. World J Microbiol Biotechnol 2024; 40:295. [PMID: 39122871 DOI: 10.1007/s11274-024-04106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Bacterial antibiotic resistance has been recognized as a global threat to public health. It challenges the antibiotics currently used in clinical practice and causes severe and often fatal infectious diseases. Fighting against antibiotic-resistant bacteria (ARB) is growing more urgent. While understanding the molecular mechanisms that underlie resistance is a prerequisite, several major mechanisms have been previously proposed including bacterial efflux systems, reduced cell membrane permeability, antibiotic inactivation by enzymes, target modification, and target protection. In this context, this review presents a panel of promising and potential strategies to combat antibiotic resistance/resistant bacteria. Different types of direct-acting and indirect resistance breakers, such as efflux pump inhibitors, antibiotic adjuvants, and oxidative treatments are discussed. In addition, the emerging multi-omics approaches for rapid resistance identification and promising alternatives to existing antibiotics are highlighted. Overall, this review suggests that continued effort and investment in research are required to develop new antibiotics and alternatives to existing antibiotics and translate them into environmental and clinical applications.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xueyingzi Chen
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
8
|
Sun F, Zhang L, Ma X, Ali T, Wu Y, Li L. A promising metabolite, 9-aminominocycline, restores the sensitivity of tigecycline against tet(X4)-positive Escherichia coli. Front Microbiol 2024; 15:1432320. [PMID: 39044954 PMCID: PMC11264248 DOI: 10.3389/fmicb.2024.1432320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
The emergence and widespread of tigecycline resistance undoubtedly poses a serious threat to public health globally. The exploration of combination therapies has become preferred antibacterial strategies to alleviate this global burden. In this study, tigecycline-resistant tet(X4)-positive Escherichia coli were selected for adjuvant screening. Interestingly, 9-aminominocycline (9-AMC), one of the tigecycline metabolites, exhibits synergistic antibacterial activity with tigecycline using checkerboard assay. The efficacy in vitro and in vivo was evaluated, and the synergistic mechanism was further explored. The results suggested that 9-AMC combined with tigecycline could inhibit the growth of antibiotic resistant bacteria, efficiently retard the evolution of tet(X4) gene and narrow the drug mutant selection window. In addition, the combination of tigecycline and 9-AMC could destroy the normal membrane structure of bacteria, inhibit the formation of biofilm, remarkably reduce the level of intracellular ATP level, and accelerate the oxidative damage of bacteria. Furthermore, 9-AMC is more stable in the bind of Tet(X4) inactivating enzyme. The transcriptomics analysis revealed that the genes related to the 9-AMC and tigecycline were mainly enriched in ABC transporters. Collectively, the results reveal the potentiation effects on tigecycline and the probability of 9-AMC as a novel tigecycline adjuvant against tet(X4)-positive Escherichia coli, which provides new insights for adjuvant screening.
Collapse
Affiliation(s)
- Feifei Sun
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Lin Zhang
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xuan Ma
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tariq Ali
- College of Veterinary Sciences, University of Agriculture, Peshawar, Peshawar, Pakistan
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Blake KS, Kumar H, Loganathan A, Williford EE, Diorio-Toth L, Xue YP, Tang WK, Campbell TP, Chong DD, Angtuaco S, Wencewicz TA, Tolia NH, Dantas G. Sequence-structure-function characterization of the emerging tetracycline destructase family of antibiotic resistance enzymes. Commun Biol 2024; 7:336. [PMID: 38493211 PMCID: PMC10944477 DOI: 10.1038/s42003-024-06023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Tetracycline destructases (TDases) are flavin monooxygenases which can confer resistance to all generations of tetracycline antibiotics. The recent increase in the number and diversity of reported TDase sequences enables a deep investigation of the TDase sequence-structure-function landscape. Here, we evaluate the sequence determinants of TDase function through two complementary approaches: (1) constructing profile hidden Markov models to predict new TDases, and (2) using multiple sequence alignments to identify conserved positions important to protein function. Using the HMM-based approach we screened 50 high-scoring candidate sequences in Escherichia coli, leading to the discovery of 13 new TDases. The X-ray crystal structures of two new enzymes from Legionella species were determined, and the ability of anhydrotetracycline to inhibit their tetracycline-inactivating activity was confirmed. Using the MSA-based approach we identified 31 amino acid positions 100% conserved across all known TDase sequences. The roles of these positions were analyzed by alanine-scanning mutagenesis in two TDases, to study the impact on cell and in vitro activity, structure, and stability. These results expand the diversity of TDase sequences and provide valuable insights into the roles of important residues in TDases, and flavin monooxygenases more broadly.
Collapse
Affiliation(s)
- Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hirdesh Kumar
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Anisha Loganathan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily E Williford
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao-Peng Xue
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tayte P Campbell
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David D Chong
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Angtuaco
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Zhang S, Cui M, Liu D, Fu B, Shi T, Wang Y, Sun C, Wu C. Tigecycline Sensitivity Reduction in Escherichia coli Due to Widely Distributed tet(A) Variants. Microorganisms 2023; 11:3000. [PMID: 38138144 PMCID: PMC10745318 DOI: 10.3390/microorganisms11123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Despite scattered studies that have reported mutations in the tet(A) gene potentially linked to tigecycline resistance in clinical pathogens, the detailed function and epidemiology of these tet(A) variants remains limited. In this study, we analyzed 64 Escherichia coli isolates derived from MacConkey plates supplemented with tigecycline (2 μg/mL) and identified five distinct tet(A) variants that account for reduced sensitivity to tigecycline. In contrast to varied tigecycline MICs (0.25 to 16 μg/mL) of the 64 tet(A)-variant-positive E. coli isolates, gene function analysis confirmed that the five tet(A) variants exhibited a similar capacity to reduce tigecycline sensitivity in DH5α carrying pUC19. Among the observed seven non-synonymous mutations, the V55M mutation was unequivocally validated for its positive role in conferring tigecycline resistance. Interestingly, the variability in tigecycline MICs among the E. coli strains did not correlate with tet(A) gene expression. Instead, a statistically significant reduction in intracellular tigecycline concentrations was noted in strains displaying higher MICs. Genomic analysis of 30 representative E. coli isolates revealed that tet(A) variants predominantly resided on plasmids (n = 14) and circular intermediates (n = 13). Within China, analysis of a well-characterized E. coli collection isolated from pigs and chickens in 2018 revealed the presence of eight tet(A) variants in 103 (4.2%, 95% CI: 3.4-5.0%) isolates across 13 out of 17 tested Chinese provinces or municipalities. Globally, BLASTN analysis identified 21 tet(A) variants in approximately 20.19% (49,423/244,764) of E. coli genomes in the Pathogen Detection database. These mutant tet(A) genes have been widely disseminated among E. coli isolates from humans, food animals, and the environment sectors, exhibiting a growing trend in tet(A) variants over five decades. Our findings underscore the urgency of addressing tigecycline resistance and the underestimated role of tet(A) mutations in this context.
Collapse
Affiliation(s)
- Shan Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mingquan Cui
- China Institute of Veterinary Drug Control, Beijing 100081, China;
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bo Fu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tingxuan Shi
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengtao Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Wen X, Nobakht MS, Yang Y, Kouhsari E, Hajilari S, Shakourzadeh MZ, Azizian K. Tetracyclines resistance in Mycoplasma and Ureaplasma urogenital isolates derived from human: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2023; 22:83. [PMID: 37697380 PMCID: PMC10496389 DOI: 10.1186/s12941-023-00628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Urogenital Mycoplasma infections are considered an important public health problem, owing to the presence of antibiotic resistance or decreased susceptibility, the treatment options are limited. OBJECTIVE Therefore, this meta-analysis aimed to estimate resistance rates of genital Mycoplasmas to tetracyclines (tetracycline, doxycycline, and minocycline). METHODS We searched the relevant published studies in PubMed, Scopus, and Embase until 3, March 2022. All statistical analyses were carried out using the statistical package R. RESULTS The 26 studies included in the analysis were performed in 15 countries. In the metadata, the proportions of tetracycline, doxycycline, and minocycline resistance in Mycoplasma and Ureaplasma urogenital isolates were reported 14.2% (95% CI 8.2-23.2%), 5% (95% CI 3-8.1%), and 11.9% (95% CI 6.3-21.5%), respectively. According to the meta-regression, the tetracycline and minocycline resistance rate decreased over time. Although, the doxycycline resistance rate increased over time. There was a statistically significant difference in the tetracyclines resistance rates between different continents/countries (P < 0.05). CONCLUSION The prevalence rate and antibiotic susceptibility profiles vary geographically. Therefore, rigorous or improved antimicrobial stewardship, contact tracing, and enhanced intensive surveillance systems are necessitated for preventing the emergence and further spreading of tetracyclines resistance in genital Mycoplasmas.
Collapse
Affiliation(s)
- Xiaoyan Wen
- Urology Department of Affiliated Hospital of Chengdu University, Chengdu, 610000, Sichuan, China.
| | - Mojgan Sarabi Nobakht
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Sirjan Branch, Sirjan, Iran
| | - Yue Yang
- Urology Department of Affiliated Hospital of Chengdu University, Chengdu, 610000, Sichuan, China
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Hajilari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
12
|
Kumar H, Williford EE, Blake KS, Virgin-Downey B, Dantas G, Wencewicz TA, Tolia NH. Structure of anhydrotetracycline-bound Tet(X6) reveals the mechanism for inhibition of type 1 tetracycline destructases. Commun Biol 2023; 6:423. [PMID: 37062778 PMCID: PMC10106456 DOI: 10.1038/s42003-023-04792-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/31/2023] [Indexed: 04/18/2023] Open
Abstract
Inactivation of tetracycline antibiotics by tetracycline destructases (TDases) remains a clinical and agricultural threat. TDases can be classified as type 1 Tet(X)-like TDases and type 2 soil-derived TDases. Type 1 TDases are widely identified in clinical pathogens. A combination therapy of tetracycline and a TDase inhibitor is much needed to rescue the clinical efficacy of tetracyclines. Anhydrotetracycline is a pan-TDase inhibitor that inhibits both type 1 and type 2 TDases. Here, we present structural, biochemical, and phenotypic evidence that anhydrotetracycline binds in a substrate-like orientation and competitively inhibits the type 1 TDase Tet(X6) to rescue tetracycline antibiotic activity as a sacrificial substrate. Anhydrotetracycline interacting residues of Tet(X6) are conserved within type 1 TDases, indicating a conserved binding mode and mechanism of inhibition. This mode of binding and inhibition is distinct from anhydrotetracycline's inhibition of type 2 TDases. This study forms the framework for development of next-generation therapies to counteract enzymatic tetracycline resistance.
Collapse
Affiliation(s)
- Hirdesh Kumar
- Host-pathogen interaction and structural vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emily E Williford
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brett Virgin-Downey
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA.
| | - Niraj H Tolia
- Host-pathogen interaction and structural vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
13
|
Yukhajon P, Somboon T, Sansuk S. Enhanced adsorption and colorimetric detection of tetracycline antibiotics by using functional phosphate/carbonate composite with nanoporous network coverage. J Environ Sci (China) 2023; 126:365-377. [PMID: 36503763 DOI: 10.1016/j.jes.2022.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/17/2023]
Abstract
This work presents efficient tetracycline (TC) antibiotics adsorption using a functional porous phosphate/carbonate composite (PCC). The PCC was fabricated by anion-exchange of phosphate on the surface of vaterite-phase calcium carbonate particle scaffolds. The PCC, having dense nanoporous network coverage with large surface area and pore volume, exhibited excellent TC adsorption in solution. Its adsorption isotherm fitted well to the Freundlich model, with a maximum adsorption capacity of 118.72 mg/g. The adsorption process was spontaneous, endothermic, and followed pseudo-second-order kinetics. From the XPS analysis, the hydrogen bonding and surface complexation were the key interactions in the process. In addition, a colorimetric TC detection method was developed considering its complexation with phosphate ions, originating from PCC dissolution, during adsorption. The method was used to detect TC in mg/L concentrations in water samples. Thus, the multifunctional PCC exhibited potential for use in TC removal and environmental remediation.
Collapse
Affiliation(s)
- Pratchayaporn Yukhajon
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Titikan Somboon
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Sira Sansuk
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
14
|
Williford EE, DeAngelo CM, Blake KS, Kumar H, Lam KK, Jones KV, Tolia NH, Dantas G, Wencewicz TA. Structure-Based Design of Bisubstrate Tetracycline Destructase Inhibitors That Block Flavin Redox Cycling. J Med Chem 2023; 66:3917-3933. [PMID: 36877173 PMCID: PMC10099279 DOI: 10.1021/acs.jmedchem.2c01629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Tetracyclines (TCs) are an important class of antibiotics threatened by an emerging new resistance mechanism─enzymatic inactivation. These TC-inactivating enzymes, also known as tetracycline destructases (TDases), inactivate all known TC antibiotics, including drugs of last resort. Combination therapies consisting of a TDase inhibitor and a TC antibiotic represent an attractive strategy for overcoming this type of antibiotic resistance. Here, we report the structure-based design, synthesis, and evaluation of bifunctional TDase inhibitors derived from anhydrotetracycline (aTC). By appending a nicotinamide isostere to the C9 position of the aTC D-ring, we generated bisubstrate TDase inhibitors. The bisubstrate inhibitors have extended interactions with TDases by spanning both the TC and presumed NADPH binding pockets. This simultaneously blocks TC binding and the reduction of FAD by NADPH while "locking" TDases in an unproductive FAD "out" conformation.
Collapse
Affiliation(s)
- Emily E. Williford
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Caitlin M. DeAngelo
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Kevin S. Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4513 Clayton Ave., St. Louis, MO, 63108, USA
| | - Hirdesh Kumar
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, BG 29B Rm 4NN08, Bethesda, MD, 20814, USA
| | - Kendrick K. Lam
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Katherine V. Jones
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Niraj H. Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, BG 29B Rm 4NN08, Bethesda, MD, 20814, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4513 Clayton Ave., St. Louis, MO, 63108, USA
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| |
Collapse
|
15
|
He Y, Gao M, Zhou Y, Zhou Y. Efficient photocatalytic remediation of typical antibiotics in water via Mn 3O 4 decorated carbon nitride nanotube. CHEMOSPHERE 2023; 311:136925. [PMID: 36283432 DOI: 10.1016/j.chemosphere.2022.136925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/20/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic abuse will seriously affect the ecology and environment. Photocatalytic oxidation technology based on carbon nitride (g-C3N4) has been widely adopted to treat wastewater containing antibiotics. Here, a novel composite photocatalyst MCNT was prepared by loading manganese oxide (Mn3O4) on the surface of g-C3N4 nanotubes (CNT). Three typical antibiotics, trimethoprim (TMP), norfloxacin (NOR), and tetracycline (TC) were used as model contaminants to evaluate the oxidative properties of prepared materials. Compared with bulk g-C3N4, the degradation rates of TMP, NOR, and TC catalyzed by MCNT-5 were increased by 2, 3, and 1.4 times, respectively, mainly due to 1) the larger specific surface area of the nanotube structure of CNT, which provides abundant active sites for antibiotic adsorption and catalytic oxidation, and 2) the loading of Mn3O4, which promotes the directional migration of photogenerated charges and improves the separation efficiency of photogenerated electrons and holes. The free radical capture and quenching experiments confirmed that MCNT degraded the target organic pollutants with hydroxyl radical (·OH) and singlet oxygen (1O2) as the main active oxidants. This catalyst maintained 80% photocatalytic oxidation performance after five cyclic experiments. This study provides new insights into developing efficient, stable, and environmentally-friendly photocatalysts and provides a new dimension to mitigate the antibiotic pollution problem.
Collapse
Affiliation(s)
- Yiling He
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Gao
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanbo Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
16
|
El-Khoury C, Mansour E, Yuliandra Y, Lai F, Hawkins BA, Du JJ, Sundberg EJ, Sluis-Cremer N, Hibbs DE, Groundwater PW. The role of adjuvants in overcoming antibacterial resistance due to enzymatic drug modification. RSC Med Chem 2022; 13:1276-1299. [PMID: 36439977 PMCID: PMC9667779 DOI: 10.1039/d2md00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023] Open
Abstract
Antibacterial resistance is a prominent issue with monotherapy often leading to treatment failure in serious infections. Many mechanisms can lead to antibacterial resistance including deactivation of antibacterial agents by bacterial enzymes. Enzymatic drug modification confers resistance to β-lactams, aminoglycosides, chloramphenicol, macrolides, isoniazid, rifamycins, fosfomycin and lincosamides. Novel enzyme inhibitor adjuvants have been developed in an attempt to overcome resistance to these agents, only a few of which have so far reached the market. This review discusses the different enzymatic processes that lead to deactivation of antibacterial agents and provides an update on the current and potential enzyme inhibitors that may restore bacterial susceptibility.
Collapse
Affiliation(s)
- Christy El-Khoury
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Elissar Mansour
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Yori Yuliandra
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Felcia Lai
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Bryson A Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine Pittsburgh PA 15213 USA
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
17
|
Lipase-activated glycopeptide nano-assemblies as an antibiotic nano-adjuvant to inhibit Pseudomonas aeruginosa biofilm and enhance antibacterial activity. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1348-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Yang F, Li J, Qi B, Zou L, Shi Z, Lei Y, Li J, Luo X, Zeng F, Lu S, Huang X, Liu R, Lan Y. Clinical Symptoms and Outcomes of Severe Pneumonia Caused by Chlamydia psittaci in Southwest China. Front Cell Infect Microbiol 2022; 11:727594. [PMID: 35071027 PMCID: PMC8770948 DOI: 10.3389/fcimb.2021.727594] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Here, we aimed to retrospectively analyze the clinical characteristics of 27 patients with severe pneumonia caused by Chlamydia psittaci between January 2019 and April 2021 in southwest China. To this end, we collected data on the exposure history, clinical symptoms, laboratory examination, imaging characteristics, evolution, etiology, treatment, and outcomes to suggest a better diagnosis and prevention system. Our results showed that a metagenomic next-generation sequencing test could provide early diagnosis. All patients were sensitive to quinolones and tetracyclines, and the recovery rate was relatively high. Overall, all patients were in critical condition with moderate to severe acute respiratory distress syndrome and shock. In conclusion, early diagnosis of pneumonia caused by C. psittaci depends on effective molecular testing, and most patients recover after treatment.
Collapse
Affiliation(s)
- Fuxun Yang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiajia Li
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Qi
- Department of Intensive Care Unit, 903 Hospital, Mianyang, China
| | - Longfei Zou
- Department of ICU, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zongming Shi
- Department of ICU, Neijiang People's Hospital Southwest Medical University, Sichuan, China
| | - Yu Lei
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Li
- Department of ICU, Shifang City People's Hospital Affiliated to North Sichuan Medical College, Shifang, China
| | - Xiaoxiu Luo
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sen Lu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongan Liu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunping Lan
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Cui CY, Chen Q, He Q, Chen C, Zhang RM, Feng Y, Sun J. Transferability of tigecycline resistance: Characterization of the expanding Tet(X) family. WIREs Mech Dis 2022; 14:e1538. [PMID: 35023325 DOI: 10.1002/wsbm.1538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023]
Abstract
Tetracycline and its derivative tigecycline are clinical options against Gram-negative bacterial infections. The emergence of mobile Tet(X) enzymes that destruct tetracycline-type antibiotics is posing a big challenge to antibacterial therapy and food/environmental securities. Here, we present an update on a growing number of Tet(X) variants. We describe structure and action of Tet(X) enzyme, and discuss the evolutional origin. In addition, potential Tet(X) inhibitors are given. This mini-review might benefit better understanding of Tet(X)-mediated tigecycline resistance. This article is categorized under: Infectious Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rong-Min Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Youjun Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.,Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Plasmid-Mediated Antibiotic Resistant Escherichia coli in Sarawak Rivers and Aquaculture Farms, Northwest of Borneo. Antibiotics (Basel) 2021; 10:antibiotics10070776. [PMID: 34202216 PMCID: PMC8300627 DOI: 10.3390/antibiotics10070776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The emergence of plasmid-mediated antibiotic resistance in Escherichia coli in water resources could pose a serious threat to public health. The study aims to investigate the dispersion of plasmid-mediated antibiotic-resistant E. coli from six rivers in Sarawak and two aquaculture farms in Borneo. Methods: A total of 74 water samples were collected for the determination of their bacteria colony count. An IMViC test identified 31 E. coli isolates and tested their susceptibility against twelve clinically important antibiotics. The extraction of plasmid DNA was done using alkali lysis SDS procedures. Characteristics, including plasmid copy number, molecular weight size, resistance rate and multiple antibiotic resistance (MAR), were assessed. Results: Our findings revealed that bacterial counts in rivers and aquaculture farms ranged from log 2.00 to 3.68 CFU/mL and log 1.70 to 5.48 cfu/mL, respectively. Resistance to piperacillin (100%) was observed in all E. coli; resistance to amoxicillin (100%) and ampicillin (100%) was observed in E. coli found in aquaculture farms; resistance to streptomycin (93%) was observed in E. coli found in rivers. All E. coli were resistant to ≥2 antibiotics and formed 26 MAR profiles, ranging from an index of 0.17 to 0.83, indicating that there are high risks of contamination. Some (48.4%) of the E. coli were detected with plasmids (1.2 to >10 kb), whereas 51.6% of the E. coli did not harbor any plasmids. The plasmid copy numbers reported were one plasmid (n = 7), two plasmids (n = 4), ≥ two plasmids (4). E. coli isolated from the Muara Tuang River showed the highest-molecular-weight plasmids. A statistical analysis revealed that there is no significant correlation (r = 0.21, p = 0.253) between the number of plasmids and the MAR index of the tested isolates. Conclusion: The distribution of MAR in E. coli from rivers is higher compared to the aquaculture environment. Our study suggests that MAR in isolates could be chromosome-mediated. Our results suggest that riverbed sediments could serve as reservoirs for MAR bacteria, including pathogens, under different climatic conditions, and their analysis could provide information for public health concerns.
Collapse
|
21
|
Cui CY, He Q, Jia QL, Li C, Chen C, Wu XT, Zhang XJ, Lin ZY, Zheng ZJ, Liao XP, Kreiswirth BN, Liu YH, Chen L, Sun J. Evolutionary Trajectory of the Tet(X) Family: Critical Residue Changes towards High-Level Tigecycline Resistance. mSystems 2021; 6:e00050-21. [PMID: 34006624 PMCID: PMC8269203 DOI: 10.1128/msystems.00050-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/05/2021] [Indexed: 01/05/2023] Open
Abstract
The emergence of the plasmid-mediated high-level tigecycline resistance mechanism Tet(X) threatens the role of tigecycline as the "last-resort" antibiotic in the treatment of infections caused by carbapenem-resistant Gram-negative bacteria. Compared with that of the prototypical Tet(X), the enzymatic activities of Tet(X3) and Tet(X4) were significantly enhanced, correlating with high-level tigecycline resistance, but the underlying mechanisms remain unclear. In this study, we probed the key amino acid changes leading to the enhancement of Tet(X) function and clarified the structural characteristics and evolutionary path of Tet(X) based upon the key residue changes. Through domain exchange and site-directed mutagenesis experiments, we successfully identified five candidate residues mutations (L282S, A339T, D340N, V350I, and K351E), involved in Tet(X2) activity enhancement. Importantly, these 5 residue changes were 100% conserved among all reported high-activity Tet(X) orthologs, Tet(X3) to Tet(X7), suggesting the important role of these residue changes in the molecular evolution of Tet(X). Structural analysis suggested that the mutant residues did not directly participate in the substrate and flavin adenine dinucleotide (FAD) recognition or binding, but indirectly altered the conformational dynamics of the enzyme through the interaction with adjacent residues. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and UV full-wavelength scanning experiments confirmed that each mutation led to an increase in activity without changing the biochemical properties of the Tet(X) enzyme. Further phylogenetic analysis suggested that Riemerella anatipestifer served as an important incubator and a main bridge vector for the resistance enhancement and spread of Tet(X). This study expands the knowledge of the structure and function of Tet(X) and provides insights into the evolutionary relationship between Tet(X) orthologs.IMPORTANCE The newly emerged tigecycline-inactivating enzymes Tet(X3) and Tet(X4), which are associated with high-level tigecycline resistance, demonstrated significantly higher activities in comparison to that of the prototypical Tet(X) enzyme, threatening the clinical efficacy of tigecycline as a last-resort antibiotic to treat multidrug-resistant (MDR) Gram-negative bacterial infections. However, the molecular mechanisms leading to high-level tigecycline resistance remain elusive. Here, we identified 5 key residue changes that lead to enhanced Tet(X) activity through domain swapping and site-directed mutagenesis. Instead of direct involvement with substrate binding or catalysis, these residue changes indirectly alter the conformational dynamics and allosterically affect enzyme activities. These findings further broaden the understanding of the structural characteristics and functional evolution of Tet(X) and provide a basis for the subsequent screening of specific inhibitors and the development of novel tetracycline antibiotics.
Collapse
Affiliation(s)
- Chao-Yue Cui
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qiu-Lin Jia
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Cang Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chong Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Xiao-Ting Wu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Jing Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuo-Yu Lin
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Jian Zheng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Ya-Hong Liu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Jian Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Ahmadi MH. Resistance to tetracyclines among clinical isolates of Mycoplasma hominis and Ureaplasma species: a systematic review and meta-analysis. J Antimicrob Chemother 2021; 76:865-875. [PMID: 33367765 DOI: 10.1093/jac/dkaa538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Resistance to tetracyclines, the first-line treatment for urogenital infections caused by Mycoplasma hominis and Ureaplasma species, is increasing worldwide. The aim of the present study was to determine the global status of resistance to this class of antibiotics. METHODS Electronic databases were searched using keywords including 'Mycoplasma', 'Mycoplasma hominis', 'M. hominis', 'Ureaplasma', 'Ureaplasma urealyticum', 'Ureaplasma parvum', 'U. urealyticum', 'U. parvum', 'Ureaplasma species', 'resistance', 'antibiotic resistance', 'antibiotic susceptibility', 'antimicrobial resistance', 'antimicrobial susceptibility', 'tetracycline', 'doxycycline' and 'minocycline'. Finally, after some exclusions, 37 studies from different countries were included in the study and meta-analysis was performed on the data collected. RESULTS The midrange resistance rates for M. hominis and U. urealyticum/parvum to tetracycline, doxycycline and minocycline were 50.0%, 9.0% and 16.7% and 43.3%, 28.6% and 9.0%, respectively. A high level of heterogeneity was observed in all studies (I2 > 50%, P value < 0.05), except those representing doxycycline resistance in M. hominis isolates (I2 = 39.1%, P = 0.02). No evidence of publication bias was observed in the studies and neither Egger's test nor Begg's test showed significant publication bias. CONCLUSIONS The results of the present study show that the overall resistance to tetracyclines is relatively high and prevalent among M. hominis and Ureaplasma species throughout the world. This highlights the importance of and necessity for regional and local antibiotic susceptibility testing before treatment choice as well as development of newer generations of tetracyclines to prevent antibiotic misuse, emergence and spread of resistant strains and, finally, the failure of treatment.
Collapse
Affiliation(s)
- Mohammad H Ahmadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
23
|
Hobson C, Chan AN, Wright GD. The Antibiotic Resistome: A Guide for the Discovery of Natural Products as Antimicrobial Agents. Chem Rev 2021; 121:3464-3494. [PMID: 33606500 DOI: 10.1021/acs.chemrev.0c01214] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of life-saving antibiotics has long been plagued by the ability of pathogenic bacteria to acquire and develop an array of antibiotic resistance mechanisms. The sum of these resistance mechanisms, the antibiotic resistome, is a formidable threat to antibiotic discovery, development, and use. The study and understanding of the molecular mechanisms in the resistome provide the basis for traditional approaches to combat resistance, including semisynthetic modification of naturally occurring antibiotic scaffolds, the development of adjuvant therapies that overcome resistance mechanisms, and the total synthesis of new antibiotics and their analogues. Using two major classes of antibiotics, the aminoglycosides and tetracyclines as case studies, we review the success and limitations of these strategies when used to combat the many forms of resistance that have emerged toward natural product-based antibiotics specifically. Furthermore, we discuss the use of the resistome as a guide for the genomics-driven discovery of novel antimicrobials, which are essential to combat the growing number of emerging pathogens that are resistant to even the newest approved therapies.
Collapse
Affiliation(s)
- Christian Hobson
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Andrew N Chan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
24
|
Abstract
Omadacycline is a novel aminomethylcycline antibiotic developed as a once-daily, intravenous and oral treatment for acute bacterial skin and skin structure infection (ABSSSI) and community-acquired bacterial pneumonia (CABP). Omadacycline, a derivative of minocycline, has a chemical structure similar to tigecycline with an alkylaminomethyl group replacing the glycylamido group at the C-9 position of the D-ring of the tetracycline core. Similar to other tetracyclines, omadacycline inhibits bacterial protein synthesis by binding to the 30S ribosomal subunit. Omadacycline possesses broad-spectrum antibacterial activity against Gram-positive and Gram-negative aerobic, anaerobic, and atypical bacteria. Omadacycline remains active against bacterial isolates possessing common tetracycline resistance mechanisms such as efflux pumps (e.g., TetK) and ribosomal protection proteins (e.g., TetM) as well as in the presence of resistance mechanisms to other antibiotic classes. The pharmacokinetics of omadacycline are best described by a linear, three-compartment model following a zero-order intravenous infusion or first-order oral administration with transit compartments to account for delayed absorption. Omadacycline has a volume of distribution (Vd) ranging from 190 to 204 L, a terminal elimination half-life (t½) of 13.5-17.1 h, total clearance (CLT) of 8.8-10.6 L/h, and protein binding of 21.3% in healthy subjects. Oral bioavailability of omadacycline is estimated to be 34.5%. A single oral dose of 300 mg (bioequivalent to 100 mg IV) of omadacycline administered to fasted subjects achieved a maximum plasma concentration (Cmax) of 0.5-0.6 mg/L and an area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of 9.6-11.9 mg h/L. The free plasma area under concentration-time curve divided by the minimum inhibitory concentration (i.e., fAUC24h/MIC), has been established as the pharmacodynamic parameter predictive of omadacycline antibacterial efficacy. Several animal models including neutropenic murine lung infection, thigh infection, and intraperitoneal challenge model have documented the in vivo antibacterial efficacy of omadacycline. A phase II clinical trial on complicated skin and skin structure infection (cSSSI) and three phase III clinical trials on ABSSSI and CABP demonstrated the safety and efficacy of omadacycline. The phase III trials, OASIS-1 (ABSSSI), OASIS-2 (ABSSSI), and OPTIC (CABP), established non-inferiority of omadacycline to linezolid (OASIS-1, OASIS-2) and moxifloxacin (OPTIC), respectively. Omadacycline is currently approved by the FDA for use in treatment of ABSSSI and CABP. Phase II clinical trials involving patients with acute cystitis and acute pyelonephritis are in progress. Mild, transient gastrointestinal events are the predominant adverse effects associated with use of omadacycline. Based on clinical trial data to date, the adverse effect profile of omadacycline is similar to studied comparators, linezolid and moxifloxacin. Unlike tigecycline and eravacycline, omadacycline has an oral formulation that allows for step-down therapy from the intravenous formulation, potentially facilitating earlier hospital discharge, outpatient therapy, and cost savings. Omadacycline has a potential role as part of an antimicrobial stewardship program in the treatment of patients with infections caused by antibiotic-resistant and multidrug-resistant Gram-positive [including methicillin-resistant Staphylococcus aureus (MRSA)] and Gram-negative pathogens.
Collapse
|
25
|
Yu T, Jiang G, Gao R, Chen G, Ren Y, Liu J, van der Mei HC, Busscher HJ. Circumventing antimicrobial-resistance and preventing its development in novel, bacterial infection-control strategies. Expert Opin Drug Deliv 2020; 17:1151-1164. [PMID: 32510243 DOI: 10.1080/17425247.2020.1779697] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Development of new antimicrobials with ever 'better' bacterial killing has long been considered the appropriate response to the growing threat of antimicrobial-resistant infections. However, the time-period between the introduction of a new antibiotic and the appearance of resistance amongst bacterial pathogens is getting shorter and shorter. This suggests that alternative pathways than making ever 'better' antimicrobials should be taken. AREAS COVERED This review aims to answer the questions (1) whether we have means to circumvent existing antibiotic-resistance mechanisms, (2) whether we can revert existing antibiotic-resistance, (3) how we can prevent the development of antimicrobial-resistance against novel infection-control strategies, including nano-antimicrobials. EXPERT OPINION Relying on relieving antibiotic-pressure and natural outcompeting of antimicrobial-resistant bacteria seems an uncertain way out of the antibiotic-crisis facing us. Novel, non-antibiotic, nanotechnology-based infection control-strategies are promising. At the same time, rapid development of new resistance mechanisms once novel strategies is taken into global clinical use, may not be ruled out and must be closely monitored. This suggests focusing research and development on designing suitable combinations of existing antibiotics with new nano-antimicrobials in a way that induction of new antimicrobial-resistance mechanisms is avoided. The latter suggestion, however, requires a change of focus in research and development.
Collapse
Affiliation(s)
- Tianrong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Jiangsu, P. R. China.,Department of Biomedical Engineering, University of Groningen and University Medical Center , Groningen, The Netherlands
| | - Guimei Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Jiangsu, P. R. China.,Department of Biomedical Engineering, University of Groningen and University Medical Center , Groningen, The Netherlands
| | - Ruifang Gao
- Department of Biomedical Engineering, University of Groningen and University Medical Center , Groningen, The Netherlands.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, P.R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, P.R. China
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center of Groningen , Groningen, The Netherlands
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Jiangsu, P. R. China
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center , Groningen, The Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center , Groningen, The Netherlands
| |
Collapse
|
26
|
Yarlagadda V, Medina R, Wright GD. Venturicidin A, A Membrane-active Natural Product Inhibitor of ATP synthase Potentiates Aminoglycoside Antibiotics. Sci Rep 2020; 10:8134. [PMID: 32424122 PMCID: PMC7235042 DOI: 10.1038/s41598-020-64756-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the remarkable advances due to the discovery and development of antimicrobials agents, infectious diseases remain the second leading cause of death worldwide. This fact underlines the importance of developing new therapeutic strategies to address the widespread antibiotic resistance, which is the major contributing factor for clinical failures of the current therapeutics. In a screen for antibiotic adjuvants, we identified a natural product from actinomycetes, venturicidin A (VentA), that potentiates the aminoglycoside antibiotic gentamicin against multidrug-resistant clinical isolates of Staphylococcus, Enterococcus, and Pseudomonas aeruginosa. Furthermore, the combination of gentamicin and VentA was bactericidal and rapidly eradicated methicillin-resistant S. aureus (MRSA). The molecular mechanism of gentamicin potentiation activity is attributed to uncoupling of ATP synthesis by VentA from electron transport presumably by blocking the proton flow through ATP synthase, which results in an elevated concentration of extracellular protons and subsequent anticipated raise in gentamicin uptake. The disruption of the proton flux was characterized by perturbed membrane potential in MRSA. These results demonstrate that inhibition of ATP synthase along with the subsequent membrane dysregulation, as shown here with VentA, complements aminoglycoside antibiotics against MDR bacteria, and that this approach may be employed to combat bacterial resistance.
Collapse
Affiliation(s)
- Venkateswarlu Yarlagadda
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Ricardo Medina
- Department of Microbiology, Central University of Las Villas, Santa Clara, Villa Clara, Cuba
| | - Gerard D Wright
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
| |
Collapse
|
27
|
Gasparrini AJ, Markley JL, Kumar H, Wang B, Fang L, Irum S, Symister CT, Wallace M, Burnham CAD, Andleeb S, Tolia NH, Wencewicz TA, Dantas G. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Commun Biol 2020; 3:241. [PMID: 32415166 PMCID: PMC7229144 DOI: 10.1038/s42003-020-0966-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Tetracycline resistance by antibiotic inactivation was first identified in commensal organisms but has since been reported in environmental and pathogenic microbes. Here, we identify and characterize an expanded pool of tet(X)-like genes in environmental and human commensal metagenomes via inactivation by antibiotic selection of metagenomic libraries. These genes formed two distinct clades according to habitat of origin, and resistance phenotypes were similarly correlated. Each gene isolated from the human gut encodes resistance to all tetracyclines tested, including eravacycline and omadacycline. We report a biochemical and structural characterization of one enzyme, Tet(X7). Further, we identify Tet(X7) in a clinical Pseudomonas aeruginosa isolate and demonstrate its contribution to tetracycline resistance. Lastly, we show anhydrotetracycline and semi-synthetic analogues inhibit Tet(X7) to prevent enzymatic tetracycline degradation and increase tetracycline efficacy against strains expressing tet(X7). This work improves our understanding of resistance by tetracycline-inactivation and provides the foundation for an inhibition-based strategy for countering resistance.
Collapse
Affiliation(s)
- Andrew J Gasparrini
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jana L Markley
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Hirdesh Kumar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luting Fang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Sidra Irum
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Chanez T Symister
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Meghan Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carey-Ann D Burnham
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
28
|
Manenda MS, Picard MÈ, Zhang L, Cyr N, Zhu X, Barma J, Pascal JM, Couture M, Zhang C, Shi R. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations. J Biol Chem 2020; 295:4709-4722. [PMID: 32111738 DOI: 10.1074/jbc.ra119.011212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/26/2020] [Indexed: 02/02/2023] Open
Abstract
Group A flavin-dependent monooxygenases catalyze the cleavage of the oxygen-oxygen bond of dioxygen, followed by the incorporation of one oxygen atom into the substrate molecule with the aid of NADPH and FAD. These flavoenzymes play an important role in many biological processes, and their most distinct structural feature is the choreographed motions of flavin, which typically adopts two distinct conformations (OUT and IN) to fulfill its function. Notably, these enzymes seem to have evolved a delicate control system to avoid the futile cycle of NADPH oxidation and FAD reduction in the absence of substrate, but the molecular basis of this system remains elusive. Using protein crystallography, size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), and small-angle X-ray scattering (SEC-SAXS) and activity assay, we report here a structural and biochemical characterization of PieE, a member of the Group A flavin-dependent monooxygenases involved in the biosynthesis of the antibiotic piericidin A1. This analysis revealed that PieE forms a unique hexamer. Moreover, we found, to the best of our knowledge for the first time, that in addition to the classical OUT and IN conformations, FAD possesses a "sliding" conformation that exists in between the OUT and IN conformations. This observation sheds light on the underlying mechanism of how the signal of substrate binding is transmitted to the FAD-binding site to efficiently initiate NADPH binding and FAD reduction. Our findings bridge a gap currently missing in the orchestrated order of chemical events catalyzed by this important class of enzymes.
Collapse
Affiliation(s)
- Mahder S Manenda
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Marie-Ève Picard
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Normand Cyr
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Xiaojun Zhu
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Julie Barma
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - John M Pascal
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Manon Couture
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Rong Shi
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada .,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
29
|
Sukhum KV, Diorio-Toth L, Dantas G. Genomic and Metagenomic Approaches for Predictive Surveillance of Emerging Pathogens and Antibiotic Resistance. Clin Pharmacol Ther 2019; 106:512-524. [PMID: 31172511 PMCID: PMC6692204 DOI: 10.1002/cpt.1535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Antibiotic-resistant organisms (AROs) are a major concern to public health worldwide. While antibiotics have been naturally produced by environmental bacteria for millions of years, modern widespread use of antibiotics has enriched resistance mechanisms in human-impacted bacterial environments. Antibiotic resistance genes (ARGs) continue to emerge and spread rapidly. To combat the global threat of antibiotic resistance, researchers must develop methods to rapidly characterize AROs and ARGs, monitor their spread across space and time, and identify novel ARGs and resistance pathways. We review how high-throughput sequencing-based methods can be combined with classic culture-based assays to characterize, monitor, and track AROs and ARGs. Then, we evaluate genomic and metagenomic methods for identifying ARGs and biosynthetic pathways for novel antibiotics from genomic data sets. Together, these genomic analyses can improve surveillance and prediction of emerging resistance threats and accelerate the development of new antibiotic therapies to combat resistance.
Collapse
Affiliation(s)
- Kimberley V. Sukhum
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- To whom correspondence should be addressed during review: LD-T ()
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Corresponding author: GD ()
| |
Collapse
|
30
|
Wencewicz TA. Crossroads of Antibiotic Resistance and Biosynthesis. J Mol Biol 2019; 431:3370-3399. [PMID: 31288031 DOI: 10.1016/j.jmb.2019.06.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
The biosynthesis of antibiotics and self-protection mechanisms employed by antibiotic producers are an integral part of the growing antibiotic resistance threat. The origins of clinically relevant antibiotic resistance genes found in human pathogens have been traced to ancient microbial producers of antibiotics in natural environments. Widespread and frequent antibiotic use amplifies environmental pools of antibiotic resistance genes and increases the likelihood for the selection of a resistance event in human pathogens. This perspective will provide an overview of the origins of antibiotic resistance to highlight the crossroads of antibiotic biosynthesis and producer self-protection that result in clinically relevant resistance mechanisms. Some case studies of synergistic antibiotic combinations, adjuvants, and hybrid antibiotics will also be presented to show how native antibiotic producers manage the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
31
|
Durães F, Sousa E. Omadacycline: A Newly Approved Antibacterial from the Class of Tetracyclines. Pharmaceuticals (Basel) 2019; 12:ph12020063. [PMID: 31010063 PMCID: PMC6630996 DOI: 10.3390/ph12020063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022] Open
Abstract
Omadacycline (Nuzyra®) is a new aminomethylcycline, approved by the U. S. Food and Drug Administration in 2018, as a tetracycline antibacterial. It can be used in community-acquired pneumonia and in acute bacterial skin and skin-structure infections. It was developed and is commercialized by Paratek Pharmaceuticals. It is a semisynthetic compound, derived from minocycline, capable of evading widely distributed efflux and target protection antibacterial resistance mechanisms and has demonstrated activity in a broad spectrum of bacteria.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| |
Collapse
|