1
|
Quadros Barsé L, Düchting P, Lupilov N, Bandow JE, Krämer U, Leichert LI. Auranofin induces disulfide bond-mimicking S-Au adducts in protein thiol pairs. J Biol Chem 2025; 301:108159. [PMID: 39761857 PMCID: PMC11875817 DOI: 10.1016/j.jbc.2025.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
Auranofin is an inhibitor of human thioredoxin reductase, clinically used in the treatment of rheumatoid arthritis. More recently, it has been shown to possess strong antibacterial activity. Despite the structural dissimilarity and the independent evolutionary origins of human thioredoxin reductase and its bacterial counterpart (TrxB), inhibition of bacterial thioredoxin reductase is often suggested to be a major factor in auranofin's antibacterial mode of action. To test this hypothesis, we attempted to determine the mechanism of inhibition of auranofin for bacterial TrxB in the presence of thioredoxin, TrxB's natural substrate. However, the data obtained in these experiments was not consistent with a specific and exclusive interaction between TrxB and auranofin. Instead, it suggested that auranofin directly interacts with the cysteine thiols in thioredoxin, TrxB's substrate. Using the fluorescent redox protein roGFP2, we showed that auranofin does indeed directly interact with cysteine pairs in proteins, forming a thiol modification that is similar to, but clearly distinct from a disulfide bond. The Au:protein stoichiometries of auranofin-treated roGFP2 and thioredoxin strongly suggest the presence of an S-Au-S bridge between two cysteines in those proteins. These S-Au adducts form independent of thioredoxin reductase at a rate that indicates their pertinence in auranofin's antibacterial mode of action.
Collapse
Affiliation(s)
- Laísa Quadros Barsé
- Microbial Biochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Petra Düchting
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Natalie Lupilov
- Microbial Biochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lars I Leichert
- Microbial Biochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
2
|
Cao Y, Li L, Qiu F, Wen W, Zhang H, Chen Y, Cai X, Huang Y. Triglyceride-glucose index and mortality risks in Helicobacter pylori-infected patients: a national cohort study. BMC Infect Dis 2025; 25:180. [PMID: 39910498 PMCID: PMC11800404 DOI: 10.1186/s12879-025-10556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND While Helicobacter pylori (H. pylori) infection is associated with insulin resistance and higher mortality, research on insulin resistance indices and outcomes in H. pylori-infected patients is scarce. This study examines the association between the triglyceride-glucose (TyG) index, an insulin resistance marker, and all-cause and cardiovascular mortality in these patients. METHODS This study analyzed NHANES 1999-2000 data to assess the association between the TyG index and all-cause and cardiovascular mortality in H. pylori-infected patients using weighted Cox models and restricted cubic spline analysis. RESULTS Among 627 participants with a median follow-up of 20.8 years, 108 all-cause and 28 cardiovascular deaths occurred. Cox models showed that TyG was linked to a hazard ratio (HR) of 1.70 for all-cause mortality (95% CI: 1.23-2.34, P < 0.01) and an HR of 2.90 for cardiovascular mortality (95% CI: 1.91-4.42, P < 0.001). Restricted cubic spline analysis confirmed a linear relationship between the TyG index and both mortality risks. Stratified analyses showed that this relationship was significantly associated in most subgroups, but there was no significant interaction. CONCLUSION Higher TyG index is strongly linked to increased risks of both all-cause and cardiovascular mortality in H. pylori-infected patients.
Collapse
Affiliation(s)
- Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan City, Guangdong, 528308, China
| | - Lingxiao Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan City, Guangdong, 528308, China
| | - Feipeng Qiu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan City, Guangdong, 528308, China
| | - Weixing Wen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan City, Guangdong, 528308, China
| | - Hao Zhang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan City, Guangdong, 528308, China
| | - Yangxin Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Cai
- Department of Scientific Research and Education, Shunde Hospital, Southern Medical University, Foshan, China.
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan City, Guangdong, 528308, China.
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
3
|
Chen X, Lv L, Wei S, Liu W. The antimicrobial activity of auranofin and other gold complexes. Future Med Chem 2025; 17:263-265. [PMID: 39813128 PMCID: PMC11792856 DOI: 10.1080/17568919.2025.2453422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Affiliation(s)
- Xiuli Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, Hubei, China
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Ferretti C, Chiaverini L, Poma N, Dalli A, Di Leo R, Rindi L, Marrone A, Tolbatov I, La Mendola D, Tavanti A, Marzo T, Di Luca M. Antimicrobial and Antibiofilm Activity of Auranofin and Its Two Derivatives Bearing Naproxen and Acetylcysteine as Ligands Against Staphylococci. Antibiotics (Basel) 2025; 14:118. [PMID: 40001362 PMCID: PMC11851661 DOI: 10.3390/antibiotics14020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The ability of bacteria to form biofilms makes them more tolerant to traditional antibiotics. Given the lack of new antibiotic development, drug repurposing offers a strategy for discovering new treatments. Auranofin (AF), a gold-based compound indicated for the treatment of rheumatoid arthritis, shows promising antibacterial activity. This study investigates the antimicrobial and antibiofilm activity of AF and its two derivatives in which the thiosugar ligand is replaced by acetylcysteine (AF-AcCys) or naproxen (AF-Napx), against Staphylococcus aureus and Staphylococcus epidermidis. Methods: AF was conjugated by transmetalation with either naproxen or acetylcysteine. Assessments of their stability in DMSO/H2O and lipophilicity expressed as the LogP were performed. The antimicrobial activity of AF and its analogues were investigated by broth microdilution assay to determine the minimum inhibitory concentration (MIC) and versus biofilm to obtain the minimum bactericidal biofilm concentration (MBBC) and minimum biofilm eradication concentration (MBEC). Results: AF derivatives were found to be stable in a DMSO/H2O mixture for 48 h. AF-Napx showed a LogP = 1.25 ± 0.22, close to AF, while AF-AcCys had a LogP = -0.95. MIC values of S. aureus and S. epidermidis were ranging from 2 µM to 0.25 µM, and ≤0.12 µM, respectively. Both AF and AF-Napx maintained efficacy against biofilm-embedded S. aureus and S. epidermidis at non-cytotoxic concentrations, with AF-Napx demonstrating lower MBBC values for S. epidermidis. Conclusions: AF, and especially its naproxen conjugate, holds potential as a therapeutic agent for treating biofilm-associated infections caused by S. aureus and S. epidermidis, particularly in device-related infections where both infection and inflammation are present.
Collapse
Affiliation(s)
- Caterina Ferretti
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (C.F.); (N.P.); (A.D.); (A.T.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.C.); (R.D.L.); (D.L.M.)
| | - Noemi Poma
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (C.F.); (N.P.); (A.D.); (A.T.)
| | - Andrea Dalli
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (C.F.); (N.P.); (A.D.); (A.T.)
| | - Riccardo Di Leo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.C.); (R.D.L.); (D.L.M.)
- CNR IFC, Institute of Clinical Physiology, National Research Council of Italy CNR Research Area, 56124 Pisa, Italy
| | - Laura Rindi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Alessandro Marrone
- Department of Pharmacy, University of Chieti-Pescara “G. D’Annunzio”, 66100 Chieti, Italy;
| | - Iogann Tolbatov
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.C.); (R.D.L.); (D.L.M.)
| | - Arianna Tavanti
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (C.F.); (N.P.); (A.D.); (A.T.)
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.C.); (R.D.L.); (D.L.M.)
| | - Mariagrazia Di Luca
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (C.F.); (N.P.); (A.D.); (A.T.)
| |
Collapse
|
5
|
Fathi Kisomi M, Yadegar A, Shekari T, Amin M, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Rad-Malekshahi M, Miri AH, Hamblin MR, Wacker MG. Unveiling the potential role of micro/nano biomaterials in the treatment of Helicobacter pylori infection. Expert Rev Anti Infect Ther 2024; 22:613-630. [PMID: 39210553 DOI: 10.1080/14787210.2024.2391910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Helicobacter pylori causes stubborn infections and leads to a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. Although antibiotic-based approaches have been widely used against H. pylori, some challenges such as antibiotic resistance are increasing in severity. Therefore, simpler but more effective strategies are needed. AREAS COVERED In this review, basic information on functionalized and non-functionalized micro/nano biomaterials and routes of administration for H. pylori inhibition are provided in an easy-to-understand format. Afterward, in vitro and in vivo studies of some promising bio-platforms including metal-based biomaterials, biopolymers, small-molecule saccharides, and vaccines for H. pylori inhibition are discussed in a holistic manner. EXPERT OPINION Functionalized or non-functionalized micro/nano biomaterials loaded with anti-H. pylori agents can show efficient bactericidal activity with no/slight negative influence on the host gastrointestinal microbiota. However, this claim needs to be substantiated with hard data such as assessment of the biopharmaceutical parameters of anti-H. pylori systems and the measurement of diversity/abundance of bacterial genera in the host gastric/gut microbiota before and after H. pylori eradication.
Collapse
Affiliation(s)
- Misagh Fathi Kisomi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Shekari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and the Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
6
|
Zhou T, Hao J, Tang Q, Chandarajoti K, Ye W, Fan C, Wang X, Wang C, Zhang K, Han X, Zhou W, Ge Y. Antimicrobial activity and structure-activity relationships of molecules containing mono- or di- or oligosaccharides: An update. Bioorg Chem 2024; 148:107406. [PMID: 38728907 DOI: 10.1016/j.bioorg.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Bacterial infections are the second leading cause of death worldwide, and the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens exacerbate the threat crisis. Carbohydrates participate in bacterial infection, drug resistance and the process of host immune regulation. Numerous antimicrobials derived from carbohydrates or contained carbohydrate scaffolds that are conducive to an increase in pathogenic bacteria targeting, the physicochemical properties and druggability profiles. In the paper, according to the type and number of sugar residues contained in antimicrobial molecules collected from the literatures ranging from 2014 to 2024, the antimicrobial activities, action mechanisms and structure-activity relationships were delineated and summarized, for purpose to provide the guiding template to select the type and size of sugars in the design of oligosaccharide-based antimicrobials to fight the looming antibiotic resistance crisis.
Collapse
Affiliation(s)
- Tiantian Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat‑Yai, Songkhla, 90112, Thailand
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yuewei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
7
|
Maydaniuk DT, Martens B, Iqbal S, Hogan AM, Lorente Cobo N, Motnenko A, Truong D, Liyanage SH, Yan M, Prehna G, Cardona ST. The mechanism of action of auranofin analogs in B. cenocepacia revealed by chemogenomic profiling. Microbiol Spectr 2024; 12:e0320123. [PMID: 38206016 PMCID: PMC10846046 DOI: 10.1128/spectrum.03201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Drug repurposing efforts led to the discovery of bactericidal activity in auranofin, a gold-containing drug used to treat rheumatoid arthritis. Auranofin kills Gram-positive bacteria by inhibiting thioredoxin reductase, an enzyme that scavenges reactive oxygen species (ROS). Despite the presence of thioredoxin reductase in Gram-negative bacteria, auranofin is not always active against them. It is not clear whether the lack of activity in several Gram-negative bacteria is due to the cell envelope barrier or the presence of other ROS protective enzymes such as glutathione reductase (GOR). We previously demonstrated that chemical analogs of auranofin (MS-40 and MS-40S), but not auranofin, are bactericidal against the Gram-negative Burkholderia cepacia complex. Here, we explore the targets of auranofin, MS-40, and MS-40S in Burkholderia cenocepacia and elucidate the mechanism of action of the auranofin analogs by a genome-wide, randomly barcoded transposon screen (BarSeq). Auranofin and its analogs inhibited the B. cenocepacia thioredoxin reductase and induced ROS but did not inhibit the bacterial GOR. Genome-wide, BarSeq analysis of cells exposed to MS-40 and MS-40S compared to the ROS inducers arsenic trioxide, diamide, hydrogen peroxide, and paraquat revealed common and unique mediators of drug susceptibility. Furthermore, deletions of gshA and gshB that encode enzymes in the glutathione biosynthetic pathway led to increased susceptibility to MS-40 and MS-40S. Overall, our data suggest that the auranofin analogs kill B. cenocepacia by inducing ROS through inhibition of thioredoxin reductase and that the glutathione system has a role in protecting B. cenocepacia against these ROS-inducing compounds.IMPORTANCEThe Burkholderia cepacia complex is a group of multidrug-resistant bacteria that can cause infections in the lungs of people with the autosomal recessive disease, cystic fibrosis. Specifically, the bacterium Burkholderia cenocepacia can cause severe infections, reducing lung function and leading to a devastating type of sepsis, cepacia syndrome. This bacterium currently does not have an accepted antibiotic treatment plan because of the wide range of antibiotic resistance. Here, we further the research on auranofin analogs as antimicrobials by finding the mechanism of action of these potent bactericidal compounds, using a powerful technique called BarSeq, to find the global response of the cell when exposed to an antimicrobial.
Collapse
Affiliation(s)
| | - Brielle Martens
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Sarah Iqbal
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Andrew M. Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Neil Lorente Cobo
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Dang Truong
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
| | - Sajani H. Liyanage
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
- Department of Medical Microbiology & Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Silvia T. Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Disease, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
8
|
Dhara D, Mulard LA, Hollenstein M. Expedient synthesis of l-heptose derived septacidin building blocks from l-glucose. Carbohydr Res 2023; 534:108985. [PMID: 38016254 DOI: 10.1016/j.carres.2023.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
Bacterial natural products containing heptosides such as septacidin represent interesting scaffolds for the development of drugs to combat antimicrobial resistance. However, very few synthetic strategies have been reported to grant access to these derivatives. Here, we have devised a synthetic pathway to l-glycero-l-glucoheptoside, a key building block en route to septacidin, directly from l-glucose. Importantly, we show that carbon homologation at C6, encompassing oxidation of the C6-OH followed by methylenation, is significantly influenced by the nature of the C4-moiety. In order to observe the effect of various patterns, namely azide (N3), p-methoxybenzyloxy (OPMB), and benzyloxy (OBn), a thorough analysis was conducted on the corresponding l-glucosides. The results unveiled a distinct trend where the efficiency of methylenation followed the trend OBn > OPMB > N3. Finally, the C6-alkene was dihydroxylated in the presence of osmium tetroxide to yield the expected l/d-glycero-l-glucoheptosides. The lead building block, which features a C-4 azide, was delivered as a phenyl thioglycoside. Added to the suitable masking of the 6,7-diol, this combination enables further functionalization to achieve versatile compounds of biological interest. The study insights into the interplay between substitution at C-4 and carbon homologation at C-6 provide valuable guidance for future endeavors in the synthesis of these carbohydrate molecules.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, 28 Rue Du Docteur Roux, 75724, Paris, Cedex 15, France; Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue Du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, 28 Rue Du Docteur Roux, 75724, Paris, Cedex 15, France.
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue Du Docteur Roux, 75724, Paris, Cedex 15, France.
| |
Collapse
|
9
|
Chen C, Li J, Dan H, He J, Wang D, Oelschlaeger P, Wang N, Zhang Y, Pei Y, Yang KW. A self-reported inhibitor of metallo-carbapenemases for reversing carbapenem resistance. Int J Biol Macromol 2023; 252:126441. [PMID: 37607651 DOI: 10.1016/j.ijbiomac.2023.126441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Metallo-carbapenemases-mediated carbapenem-resistant Enterobacterales (CREs) has been acknowledged as "urgent threat" by the World Health Organization. The discovery of new strategies that block metallo-carbapenemases activity to reverse carbapenem resistance is an urgent need. In this study, a coumarin copper complex containing a PEG linker and glucose ligand, GluC-Cu, was used to reverse carbapenem resistance. Interestingly, it could effectively inhibit metallo-carbapenemases (NDM-1, IMP-1 and ImiS) with an IC50 value in the range of 0.23-1.21 μM, and simultaneously release the green fluorescence signal (GluC), therefore exhibiting self-reported inhibition performance. The inhibition mechanism of oxidizing Zn(II) thiolate site of NDM-1 from Cu2+ to Cu+ was verified by fluorescence assay, HR-MS, and XPS. Moreover, GluC-Cu in combination with meropenem showed excellent synergistic antibacterial effect to effectively combat E. coli expressing metallo-carbapenemases in vitro and in a mice infection model. This bifunctional metallo-carbapenemases inhibitor provides a novel chemical tool to overcome carbapenem resistance.
Collapse
Affiliation(s)
- Cheng Chen
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China; Key laboratory synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jiahui Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Heng Dan
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Jingyi He
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Dongmei Wang
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China.
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, 91766, CA, United States
| | - Nana Wang
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | | | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Ke-Wu Yang
- Key laboratory synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
10
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
11
|
Ndugire W, Truong D, Hasitha Raviranga NG, Lao J, Ramström O, Yan M. Turning on the Antimicrobial Activity of Gold Nanoclusters Against Multidrug-Resistant Bacteria. Angew Chem Int Ed Engl 2023; 62:e202214086. [PMID: 36642692 PMCID: PMC10356176 DOI: 10.1002/anie.202214086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
In this work, we show that the addition of thiourea (TU) initiated broad-spectrum antimicrobial activity of otherwise inactive D-maltose-capped gold nanoclusters (AuNC-Mal). For example, AuNC-Mal/TU was effective against multidrug-resistant Pseudomonas aeruginosa with a minimum inhibitory concentration (MIC) of 1 μg mL-1 (2.5 μM [Au]) while having 30-60 times lower in vitro cytotoxicity against mammalian cells. The reaction of AuNC-Mal and TU generated the antimicrobial species of [Au(TU)2 ]+ and smaller AuNCs. TU increased the accumulation of Au in bacteria and helped maintain the oxidation state as AuI (vs. AuIII ). The modes of action included the inhibition of thioredoxin reductase, interference with the CuI regulation and depletion of ATP. Moreover, the antimicrobial activity did not change in the presence of colistin or carbonyl cyanide 3-chlorophenylhydrazone, suggesting that AuNC-Mal/TU was indifferent to the outer membrane barrier and to bacterial efflux pumps.
Collapse
Affiliation(s)
- William Ndugire
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
| | - Dang Truong
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
| | - N G Hasitha Raviranga
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
| | - Jingzhe Lao
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
| |
Collapse
|
12
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
13
|
Auranofin inhibits virulence pathways in Pseudomonas aeruginosa. Bioorg Med Chem 2023; 79:117167. [PMID: 36682225 DOI: 10.1016/j.bmc.2023.117167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Pseudomonas aeruginosa is widely attributed as the leading cause of hospital-acquired infections. Due to intrinsic antibiotic resistance mechanisms and the ability to form biofilms, P. aeruginosa infections are challenging to treat. P. aeruginosa employs multiple virulence mechanisms to establish infections, many of which are controlled by the global virulence regulator Vfr. An attractive strategy to combat P. aeruginosa infections is thus the use of anti-virulence compounds. Here, we report the discovery that FDA-approved drug auranofin attenuates virulence pathways in P. aeruginosa, including quorum sensing (QS) and Type IV pili (TFP). We show that auranofin acts via multiple targets, one of which being Vfr. Consistent with inhibition of QS and TFP expression, we show that auranofin attenuates biofilm maturation, and when used in combination with colistin, displays strong synergy in eradicating P. aeruginosa biofilms. Auranofin may have immediate applications as an anti-virulence drug against P. aeruginosa infections.
Collapse
|
14
|
Ndugire W, Raviranga NGH, Lao J, Ramström O, Yan M. Gold Nanoclusters as Nanoantibiotic Auranofin Analogues. Adv Healthc Mater 2022; 11:e2101032. [PMID: 34350709 PMCID: PMC8816973 DOI: 10.1002/adhm.202101032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Auranofin, a gold(I)-complex with tetraacetylated thioglucose (Ac4 GlcSH) and triethylphosphine ligands, is an FDA-approved drug used as an anti-inflammatory aid in the treatment of rheumatoid arthritis. In repurposing auranofin for other diseases, it was found that the drug showed significant activity against Gram-positive but was inactive against Gram-negative bacteria. Herein, the design and synthesis of gold nanoclusters (AuNCs) based on the structural motif of auranofin are reported. Phosphine-capped AuNCs are synthesized and glycosylated, yielding auranofin analogues with mixed triphenylphosphine monosulfonate (TPPMS)/Ac4 GlcSH ligand shells. These AuNCs are active against both Gram-negative and Gram-positive bacteria, including multidrug-resistant pathogens. Notably, an auranofin analogue, a mixed-ligand 1.6 nm AuNC 4b, is more active than auranofin against Pseudomonas aeruginosa, while exhibiting lower toxicity against human A549 cells. The enhanced antibacterial activity of these AuNCs is characterized by a greater uptake of Au by the bacteria compared to AuI complexes. Additional factors include increased oxidative stress, moderate inhibition of thioredoxin reductase (TrxR), and DNA damage. Most intriguingly, the uptake of AuNCs are not affected by the bacterial outer membrane (OM) barrier or by binding with the extracellular proteins. This contrasts with AuI complexes like auranofin that are susceptible to protein binding and hindered by the OM barrier.
Collapse
Affiliation(s)
- William Ndugire
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - N G Hasitha Raviranga
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Jingzhe Lao
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| |
Collapse
|
15
|
Liu Y, Lu Y, Xu Z, Ma X, Chen X, Liu W. Repurposing of the gold drug auranofin and a review of its derivatives as antibacterial therapeutics. Drug Discov Today 2022; 27:1961-1973. [DOI: 10.1016/j.drudis.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
|
16
|
Li D, Gao S, Ye K, Wang Q, Xie C, Wu W, Feng L, Jiang L, Zheng K, Pang Q. Membrane-active La(III) and Ce(III) complexes as potent antibacterial agents: synthesis, characterization, in vitro, in silico, and in vivo studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics (Basel) 2021; 10:antibiotics10121443. [PMID: 34943654 PMCID: PMC8697972 DOI: 10.3390/antibiotics10121443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteria of the genus Burkholderia include pathogenic Burkholderia mallei, Burkholderia pseudomallei and the Burkholderia cepacia complex (Bcc). These Gram-negative pathogens have intrinsic drug resistance, which makes treatment of infections difficult. Bcc affects individuals with cystic fibrosis (CF) and the species B. cenocepacia is associated with one of the worst clinical outcomes. Following the repurposing of auranofin as an antibacterial against Gram-positive bacteria, we previously synthetized auranofin analogs with activity against Gram-negatives. In this work, we show that two auranofin analogs, MS-40S and MS-40, have antibiotic activity against Burkholderia clinical isolates. The compounds are bactericidal against B. cenocepacia and kill stationary-phase cells and persisters without selecting for multistep resistance. Caenorhabditis elegans and Galleria mellonella tolerated high concentrations of MS-40S and MS-40, demonstrating that these compounds have low toxicity in these model organisms. In summary, we show that MS-40 and MS-40S have antimicrobial properties that warrant further investigations to determine their therapeutic potential against Burkholderia infections.
Collapse
|
18
|
New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics (Basel) 2021. [PMID: 34943654 DOI: 10.3390/antibiotics10121443/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Bacteria of the genus Burkholderia include pathogenic Burkholderia mallei, Burkholderia pseudomallei and the Burkholderia cepacia complex (Bcc). These Gram-negative pathogens have intrinsic drug resistance, which makes treatment of infections difficult. Bcc affects individuals with cystic fibrosis (CF) and the species B. cenocepacia is associated with one of the worst clinical outcomes. Following the repurposing of auranofin as an antibacterial against Gram-positive bacteria, we previously synthetized auranofin analogs with activity against Gram-negatives. In this work, we show that two auranofin analogs, MS-40S and MS-40, have antibiotic activity against Burkholderia clinical isolates. The compounds are bactericidal against B. cenocepacia and kill stationary-phase cells and persisters without selecting for multistep resistance. Caenorhabditis elegans and Galleria mellonella tolerated high concentrations of MS-40S and MS-40, demonstrating that these compounds have low toxicity in these model organisms. In summary, we show that MS-40 and MS-40S have antimicrobial properties that warrant further investigations to determine their therapeutic potential against Burkholderia infections.
Collapse
|
19
|
Abstract
Gold compounds have been employed throughout history to treat various types of disease, from ancient times to the present day. In the year 1985, auranofin, a gold-containing compound, was approved by U.S. Food and Drug Administration (FDA) as a therapeutic agent to target rheumatoid arthritis that would facilitate easy oral drug administration as opposed to conventional intramuscular injection used in treatments. Furthermore, auranofin demonstrates promising results for the treatment of various diseases beyond rheumatoid arthritis, including cancer, neurodegenerative diseases, acquired immune deficiency syndrome, and bacterial and parasitic infections. Various potential novel applications for auranofin have been proposed for treating human diseases. Auranofin has previously been demonstrated to inhibit thioredoxin reductase (TrxR) involved within the thioredoxin (Trx) system that comprises one of the critical cellular redox systems within the body. TrxR comprises the sole known enzyme that catalyzes Trx reduction. With cancers in particular, TrxR inhibition facilitates an increase in cellular oxidative stress and suppresses tumor growth. In this review, we describe the potential of auranofin to serve as an anticancer agent and further drug repurposing to utilize this as a strategy for further appropriate drug developments.
Collapse
Affiliation(s)
- Isao Momose
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation
| | - Takefumi Onodera
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation
| |
Collapse
|
20
|
Frei A. Metal Complexes, an Untapped Source of Antibiotic Potential? Antibiotics (Basel) 2020; 9:E90. [PMID: 32085590 PMCID: PMC7168053 DOI: 10.3390/antibiotics9020090] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/08/2023] Open
Abstract
With the widespread rise of antimicrobial resistance, most traditional sources for new drug compounds have been explored intensively for new classes of antibiotics. Meanwhile, metal complexes have long had only a niche presence in the medicinal chemistry landscape, despite some compounds, such as the anticancer drug cisplatin, having had a profound impact and still being used extensively in cancer treatments today. Indeed, metal complexes have been largely ignored for antibiotic development. This is surprising as metal compounds have access to unique modes of action and exist in a wider range of three-dimensional geometries than purely organic compounds. These properties make them interesting starting points for the development of new drugs. In this perspective article, , the encouraging work that has been done on antimicrobial metal complexes, mainly over the last decade, is highlighted. Promising metal complexes, their activity profiles, and possible modes of action are discussed and issues that remain to be addressed are emphasized.
Collapse
Affiliation(s)
- Angelo Frei
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
21
|
Martín-Encinas E, Conejo-Rodríguez V, Miguel JA, Martínez-Ilarduya JM, Rubiales G, Knudsen BR, Palacios F, Alonso C. Novel phosphine sulphide gold(i) complexes: topoisomerase I inhibitors and antiproliferative agents. Dalton Trans 2020; 49:7852-7861. [DOI: 10.1039/d0dt01467b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold(i) increases the cytotoxicity of phosphine sulfide quinolines against cancer cell lines, while heterocycles maintain the TopI inhibitory activity.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | | | - Jesús A. Miguel
- IU CINQUIMA/Química Inorgánica
- Faculty of Science
- University of Valladolid
- Valladolid
- Spain
| | | | - Gloria Rubiales
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | - Birgitta R. Knudsen
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO)
- University of Aarhus
- Aarhus
- Denmark
| | - Francisco Palacios
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | - Concepción Alonso
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| |
Collapse
|