1
|
Lyu Z, Lyu X, Malyutin AG, Xia G, Carney D, Alves VM, Falk M, Arora N, Zou H, McGrath AP, Kang Y. Structural basis for the activation of proteinase-activated receptors PAR1 and PAR2. Nat Commun 2025; 16:3931. [PMID: 40287415 PMCID: PMC12033368 DOI: 10.1038/s41467-025-59138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Members of the proteinase-activated receptor (PAR) subfamily of G protein-coupled receptors (GPCRs) play critical roles in processes like hemostasis, thrombosis, development, wound healing, inflammation, and cancer progression. Comprising PAR1-PAR4, these receptors are specifically activated by protease cleavage at their extracellular amino terminus, revealing a 'tethered ligand' that self-activates the receptor. This triggers complex intracellular signaling via G proteins and beta-arrestins, linking external protease signals to cellular functions. To date, direct structural visualization of these ligand-receptor complexes has been limited. Here, we present structural snapshots of activated PAR1 and PAR2 bound to their endogenous tethered ligands, revealing a shallow and constricted orthosteric binding pocket. Comparisons with antagonist-bound structures show minimal conformational changes in the TM6 helix and larger movements of TM7 upon activation. These findings reveal a common activation mechanism for PAR1 and PAR2, highlighting critical residues involved in ligand recognition. Additionally, the structure of PAR2 bound to a pathway selective antagonist, GB88, demonstrates how potent orthosteric engagement can be achieved by a small molecule mimicking the endogenous tethered ligand's interactions.
Collapse
Affiliation(s)
- Zongyang Lyu
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Xiaoxuan Lyu
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Andrey G Malyutin
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Guliang Xia
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Daniel Carney
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Vinicius M Alves
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Matthew Falk
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Nidhi Arora
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Hua Zou
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA
| | - Aaron P McGrath
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA.
| | - Yanyong Kang
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, USA.
| |
Collapse
|
2
|
Kim T, Lee Y, Lim H, Kim Y, Cho H, Namkung W, Han G. Discovery of Protease-activated receptor 2 antagonists derived from phenylalanine for the treatment of breast cancer. Bioorg Chem 2024; 150:107496. [PMID: 38850590 DOI: 10.1016/j.bioorg.2024.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Protease-activated receptor 2 (PAR2) has garnered attention as a potential therapeutic target in breast cancer. PAR2 is implicated in the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) via G protein and beta-arrestin pathways, contributing to the proliferation and metastasis of breast cancer cells. Despite the recognized role of PAR2 in breast cancer progression, clinically effective PAR2 antagonists remain elusive. To address this unmet clinical need, we synthesized and evaluated a series of novel compounds that target the orthosteric site of PAR2. Using in silico docking simulations, we identified compound 9a, an optimized derivative of compound 1a ((S)-N-(1-(benzylamino)-1-oxo-3-phenylpropan-2-yl)benzamide), which exhibited enhanced PAR2 antagonistic activity. Subsequent molecular dynamics simulations comparing 9a with the partial agonist 9d revealed that variations in ligand-induced conformational changes and interactions dictated whether the compound acted as an antagonist or agonist of PAR2. The results of this study suggest that further development of 9a could contribute to the advancement of PAR2 antagonists as potential therapeutic agents for breast cancer.
Collapse
Affiliation(s)
- Taegun Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yechan Lee
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Hocheol Lim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yeonhwa Kim
- Graduate Program of Industrial Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Haeun Cho
- Graduate Program of Industrial Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Wan Namkung
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Gyoonhee Han
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea.
| |
Collapse
|
3
|
Vesey DA, Iyer A, Owen E, Kamato D, Johnson DW, Gobe GC, Fairlie DP, Nikolic-Paterson DJ. PAR2 activation on human tubular epithelial cells engages converging signaling pathways to induce an inflammatory and fibrotic milieu. Front Pharmacol 2024; 15:1382094. [PMID: 39005931 PMCID: PMC11239397 DOI: 10.3389/fphar.2024.1382094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Key features of chronic kidney disease (CKD) include tubulointerstitial inflammation and fibrosis. Protease activated receptor-2 (PAR2), a G-protein coupled receptor (GPCR) expressed by the kidney proximal tubular cells, induces potent proinflammatory responses in these cells. The hypothesis tested here was that PAR2 signalling can contribute to both inflammation and fibrosis in the kidney by transactivating known disease associated pathways. Using a primary cell culture model of human kidney tubular epithelial cells (HTEC), PAR2 activation induced a concentration dependent, PAR2 antagonist sensitive, secretion of TNF, CSF2, MMP-9, PAI-1 and CTGF. Transcription factors activated by the PAR2 agonist 2F, including NFκB, AP1 and Smad2, were critical for production of these cytokines. A TGF-β receptor-1 (TGF-βRI) kinase inhibitor, SB431542, and an EGFR kinase inhibitor, AG1478, ameliorated 2F induced secretion of TNF, CSF2, MMP-9, and PAI-1. Whilst an EGFR blocking antibody, cetuximab, blocked PAR2 induced EGFR and ERK phosphorylation, a TGF-βRII blocking antibody failed to influence PAR2 induced secretion of PAI-1. Notably simultaneous activation of TGF-βRII (TGF-β1) and PAR2 (2F) synergistically enhanced secretion of TNF (2.2-fold), CSF2 (4.4-fold), MMP-9 (15-fold), and PAI-1 (2.5-fold). In summary PAR2 activates critical inflammatory and fibrotic signalling pathways in human kidney tubular epithelial cells. Biased antagonists of PAR2 should be explored as a potential therapy for CKD.
Collapse
Affiliation(s)
- David A Vesey
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Evan Owen
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Danielle Kamato
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - David W Johnson
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia
| |
Collapse
|
4
|
Kume M, Ahmad A, Shiers S, Burton MD, DeFea KA, Vagner J, Dussor G, Boitano S, Price TJ. C781, a β-Arrestin Biased Antagonist at Protease-Activated Receptor-2 (PAR2), Displays in vivo Efficacy Against Protease-Induced Pain in Mice. THE JOURNAL OF PAIN 2023; 24:605-616. [PMID: 36417966 PMCID: PMC10079573 DOI: 10.1016/j.jpain.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
Given the limited options and often harmful side effects of current analgesics and the suffering caused by the opioid crisis, new classes of pain therapeutics are needed. Protease-activated receptors (PARs), particularly PAR2, are implicated in a variety of pathologies, including pain. Since the discovery of the role of PAR2 in pain, development of potent and specific antagonists has been slow. In this study, we describe the in vivo characterization of a novel small molecule/peptidomimetic hybrid compound, C781, as a β-arrestin-biased PAR2 antagonist. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale. Pharmacokinetic studies were done to assess pharmacokinetic/pharmacodynamic relationship in vivo. We used both prevention and reversal paradigms with protease treatment to determine whether C781 could attenuate protease-evoked pain. C781 effectively prevented and reversed mechanical and spontaneous nociceptive behaviors in response to small molecule PAR2 agonists, mast cell activators, and neutrophil elastase. The ED50 of C781 (intraperitoneal dosing) for inhibition of PAR2 agonist (20.9 ng 2-AT)-evoked nociception was 6.3 mg/kg. C781 was not efficacious in the carrageenan inflammation model. Pharmacokinetic studies indicated limited long-term systemic bioavailability for C781 suggesting that optimizing pharmacokinetic properties could improve in vivo efficacy. Our work demonstrates in vivo efficacy of a biased PAR2 antagonist that selectively inhibits β-arrestin/MAPK signaling downstream of PAR2. Given the importance of this signaling pathway in PAR2-evoked nociception, C781 exemplifies a key pharmacophore for PAR2 that can be optimized for clinical development. PERSPECTIVE: Our work provides evidence that PAR2 antagonists that only block certain aspects of signaling by the receptor can be effective for blocking protease-evoked pain in mice. This is important because it creates a rationale for developing safer PAR2-targeting approaches for pain treatment.
Collapse
Affiliation(s)
- Moeno Kume
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Ayesha Ahmad
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Michael D Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | | | - Josef Vagner
- University of Arizona Bio5 Institute, Tucson, Arizona
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Scott Boitano
- University of Arizona Bio5 Institute, Tucson, Arizona; Asthma and Airway Disease Research Center, University of Arizona Heath Sciences, Tucson, Arizona; Department of Physiology, University of Arizona Heath Sciences, Tucson, Arizona
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
5
|
Shpakov AO. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 2023; 24:6187. [PMID: 37047169 PMCID: PMC10094638 DOI: 10.3390/ijms24076187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allosteric regulation is critical for the functioning of G protein-coupled receptors (GPCRs) and their signaling pathways. Endogenous allosteric regulators of GPCRs are simple ions, various biomolecules, and protein components of GPCR signaling (G proteins and β-arrestins). The stability and functional activity of GPCR complexes is also due to multicenter allosteric interactions between protomers. The complexity of allosteric effects caused by numerous regulators differing in structure, availability, and mechanisms of action predetermines the multiplicity and different topology of allosteric sites in GPCRs. These sites can be localized in extracellular loops; inside the transmembrane tunnel and in its upper and lower vestibules; in cytoplasmic loops; and on the outer, membrane-contacting surface of the transmembrane domain. They are involved in the regulation of basal and orthosteric agonist-stimulated receptor activity, biased agonism, GPCR-complex formation, and endocytosis. They are targets for a large number of synthetic allosteric regulators and modulators, including those constructed using molecular docking. The review is devoted to the principles and mechanisms of GPCRs allosteric regulation, the multiplicity of allosteric sites and their topology, and the endogenous and synthetic allosteric regulators, including autoantibodies and pepducins. The allosteric regulation of chemokine receptors, proteinase-activated receptors, thyroid-stimulating and luteinizing hormone receptors, and beta-adrenergic receptors are described in more detail.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
6
|
Wang YJ, Yu SJ, Tsai JJ, Yu CH, Liao EC. Antagonism of Protease Activated Receptor-2 by GB88 Reduces Inflammation Triggered by Protease Allergen Tyr-p3. Front Immunol 2021; 12:557433. [PMID: 34566947 PMCID: PMC8456102 DOI: 10.3389/fimmu.2021.557433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
The occurrence of allergic diseases induced by aeroallergens has increased in the past decades. Among inhalant allergens, mites remain the important causal agent of allergic diseases. Storage mites- Tyrophagus putrescentiae are found in stored products or domestic environments. Major allergen Tyr-p3 plays a significant role in triggering IgE-mediated hypersensitivity. However, its effects on pulmonary inflammation, internalization, and activation in human epithelium remain elusive. Protease-activated receptors (PARs) are activated upon cleavage by proteases. A549 cells were used as an epithelial model to examine the PAR activation by Tyr-p3 and therapeutic potential of PAR-2 antagonist (GB88) in allergic responses. Enzymatic properties and allergen localization of Tyr-p3 were performed. The release of inflammatory mediators, phosphorylation of mitogen-activated protein kinase (MAPK), and cell junction disruptions were evaluated after Tyr-p3 challenge. Enzymatic properties determined by substrate digestion and protease inhibitors indicated that Tyr-p3 processes a trypsin-like serine protease activity. The PAR-2 mRNA levels were significantly increased by nTyr-p3 but inhibited by protease inhibitors or GB88. Protease allergen of nTyr-p3 significantly increased the levels of pro-inflammatory cytokines (IL-6 and TNF-α), chemokine (IL-8), and IL-1β in epithelial cells. nTyr-p3 markedly increased phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and MAP kinase. When cells were pretreated with GB88 then added nTyr-p3, the phosphorylated ERK1/2 did not inhibit by GB88. GB88 increased ERK1/2 phosphorylation in human epithelium cells. GB88 is able to block PAR-2-mediated calcium signaling which inhibits the nTyr-p3-induced Ca2+ release. Among the pharmacologic inhibitors, the most effective inhibitor of the nTyr-p3 in the induction of IL-8 or IL-1β levels was GB88 followed by SBTI, MAPK/ERK, ERK, and p38 inhibitors. Levels of inflammatory mediators, including GM-CSF, VEGF, COX-2, TSLP, and IL-33 were reduced by treatment of GB88 or SBTI. Further, GB88 treatment down-regulated the nTyr-p3-induced PAR-2 expression in allergic patients with asthma or rhinitis. Tight junction and adherens junction were disrupted in epithelial cells by nTyr-p3 exposure; however, this effect was avoided by GB88. Immunostaining with frozen sections of the mite body showed the presence of Tyr-p3 throughout the intestinal digestive system, especially in the hindgut around the excretion site. In conclusion, our findings suggest that Tyr-p3 from domestic mites leads to disruption of the airway epithelial barrier after inhalation. Proteolytic activity of Tyr-p3 causes the PAR-2 mRNA expression, thus leading to the release of numerous inflammatory mediators. Antagonism of PAR2 activity suggests GB88 as the therapeutic potential for anti-inflammation medicine, especially in allergy development triggered by protease allergens.
Collapse
Affiliation(s)
- Yun-Ju Wang
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Sheng-Jie Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jaw-Ji Tsai
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan.,Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Hsiang Yu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - En-Chih Liao
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
7
|
Humphries TLR, Shen K, Iyer A, Johnson DW, Gobe GC, Nikolic-Paterson D, Fairlie DP, Vesey DA. PAR2-Induced Tissue Factor Synthesis by Primary Cultures of Human Kidney Tubular Epithelial Cells Is Modified by Glucose Availability. Int J Mol Sci 2021; 22:ijms22147532. [PMID: 34299151 PMCID: PMC8304776 DOI: 10.3390/ijms22147532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Coagulopathies common to patients with diabetes and chronic kidney disease (CKD) are not fully understood. Fibrin deposits in the kidney suggest the local presence of clotting factors including tissue factor (TF). In this study, we investigated the effect of glucose availability on the synthesis of TF by cultured human kidney tubular epithelial cells (HTECs) in response to activation of protease-activated receptor 2 (PAR2). PAR2 activation by peptide 2f-LIGRLO-NH2 (2F, 2 µM) enhanced the synthesis and secretion of active TF (~45 kDa) which was blocked by a PAR2 antagonist (I-191). Treatment with 2F also significantly increased the consumption of glucose from the cell medium and lactate secretion. Culturing HTECs in 25 mM glucose enhanced TF synthesis and secretion over 5 mM glucose, while addition of 5 mM 2-deoxyglucose (2DOG) significantly decreased TF synthesis and reduced its molecular weight (~40 kDa). Blocking glycosylation with tunicamycin also reduced 2F-induced TF synthesis while reducing its molecular weight (~36 kDa). In conclusion, PAR2-induced TF synthesis in HTECs is enhanced by culture in high concentrations of glucose and suppressed by inhibiting either PAR2 activation (I-191), glycolysis (2DOG) or glycosylation (tunicamycin). These results may help explain how elevated concentrations of glucose promote clotting abnormities in diabetic kidney disease. The application of PAR2 antagonists to treat CKD should be investigated further.
Collapse
Affiliation(s)
- Tyrone L. R. Humphries
- Centre for Kidney Disease Research, Translational Research Institute, Faulty of Medicine, The University of Queensland at the Princess Alexandra, Brisbane, QLD 4072, Australia; (T.L.R.H.); (K.S.); (D.W.J.); (G.C.G.)
| | - Kunyu Shen
- Centre for Kidney Disease Research, Translational Research Institute, Faulty of Medicine, The University of Queensland at the Princess Alexandra, Brisbane, QLD 4072, Australia; (T.L.R.H.); (K.S.); (D.W.J.); (G.C.G.)
| | - Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (A.I.); (D.P.F.)
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David W. Johnson
- Centre for Kidney Disease Research, Translational Research Institute, Faulty of Medicine, The University of Queensland at the Princess Alexandra, Brisbane, QLD 4072, Australia; (T.L.R.H.); (K.S.); (D.W.J.); (G.C.G.)
- Department of Nephrology, The University of Queensland at Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Glenda C. Gobe
- Centre for Kidney Disease Research, Translational Research Institute, Faulty of Medicine, The University of Queensland at the Princess Alexandra, Brisbane, QLD 4072, Australia; (T.L.R.H.); (K.S.); (D.W.J.); (G.C.G.)
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland at the Translational Research Institute, Brisbane, QLD 4072, Australia
| | - David Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, VIC 3168, Australia;
| | - David P. Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (A.I.); (D.P.F.)
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Faulty of Medicine, The University of Queensland at the Princess Alexandra, Brisbane, QLD 4072, Australia; (T.L.R.H.); (K.S.); (D.W.J.); (G.C.G.)
- Department of Nephrology, The University of Queensland at Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Correspondence: ; Tel.: +61-7-3443-8013
| |
Collapse
|
8
|
Morais C, Rajandram R, Blakeney JS, Iyer A, Suen JY, Johnson DW, Gobe GC, Fairlie DP, Vesey DA. Expression of protease activated receptor-2 is reduced in renal cell carcinoma biopsies and cell lines. PLoS One 2021; 16:e0248983. [PMID: 33765016 PMCID: PMC7993771 DOI: 10.1371/journal.pone.0248983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/09/2021] [Indexed: 01/09/2023] Open
Abstract
Expression of the protease sensing receptor, protease activated receptor-2 (PAR2), is elevated in a variety of cancers and has been promoted as a potential therapeutic target. With the development of potent antagonists for this receptor, we hypothesised that they could be used to treat renal cell carcinoma (RCC). The expression of PAR2 was, therefore, examined in human RCC tissues and selected RCC cell lines. Histologically confirmed cases of RCC, together with paired non-involved kidney tissue, were used to produce a tissue microarray (TMA) and to extract total tissue RNA. Immunohistochemistry and qPCR were then used to assess PAR2 expression. In culture, RCC cell lines versus primary human kidney tubular epithelial cells (HTEC) were used to assess PAR2 expression by qPCR, immunocytochemistry and an intracellular calcium mobilization assay. The TMA revealed an 85% decrease in PAR2 expression in tumour tissue compared with normal kidney tissue. Likewise, qPCR showed a striking reduction in PAR2 mRNA in RCC compared with normal kidney. All RCC cell lines showed lower levels of PAR2 expression than HTEC. In conclusion, we found that PAR2 was reduced in RCC compared with normal kidney and is unlikely to be a target of interest in the treatment of this type of cancer.
Collapse
Affiliation(s)
- Christudas Morais
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | - Retnagowri Rajandram
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Jade S. Blakeney
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Abishek Iyer
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jacky Y. Suen
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David W. Johnson
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C. Gobe
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - David P. Fairlie
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David A. Vesey
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
- * E-mail:
| |
Collapse
|
9
|
Klösel I, Schmidt MF, Kaindl J, Hübner H, Weikert D, Gmeiner P. Discovery of Novel Nonpeptidic PAR2 Ligands. ACS Med Chem Lett 2020; 11:1316-1323. [PMID: 32551018 DOI: 10.1021/acsmedchemlett.0c00154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
Proteinase-activated receptor 2 (PAR2) is a class A G protein-coupled receptor whose activation has been associated with inflammatory diseases and cancer, thus representing a valuable therapeutic target. Pathophysiological roles of PAR2 are often characterized using peptidic PAR2 agonists. Peptidic ligands are frequently unstable in vivo and show poor bioavailability, and only a few approaches toward drug-like nonpeptidic PAR2 ligands have been described. The herein-described ligand 5a (IK187) is a nonpeptidic PAR2 agonist with submicromolar potency in a functional assay reflecting G protein activation. The ligand also showed substantial β-arrestin recruitment. The development of the compound was guided by the crystal structure of PAR2, when the C-terminal end of peptidic agonists was replaced by a small molecule based on a disubstituted phenylene scaffold. IK187 shows preferable metabolic stability and may serve as a lead compound for the development of nonpeptidic drugs addressing PAR2.
Collapse
Affiliation(s)
- Ilona Klösel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Maximilian F. Schmidt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Pawar NR, Buzza MS, Antalis TM. Membrane-Anchored Serine Proteases and Protease-Activated Receptor-2-Mediated Signaling: Co-Conspirators in Cancer Progression. Cancer Res 2019; 79:301-310. [PMID: 30610085 DOI: 10.1158/0008-5472.can-18-1745] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Pericellular proteolysis provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Recent advances demonstrate that pericellular proteases can also communicate directly to cells by activation of a unique group of transmembrane G-protein-coupled receptors (GPCR) known as protease-activated receptors (PAR). In this review, we discuss the specific roles of one of four mammalian PARs, namely PAR-2, which is overexpressed in advanced stage tumors and is activated by trypsin-like serine proteases that are highly expressed or otherwise dysregulated in many cancers. We highlight recent insights into the ability of different protease agonists to bias PAR-2 signaling and the newly emerging evidence for an interplay between PAR-2 and membrane-anchored serine proteases, which may co-conspire to promote tumor progression and metastasis. Interfering with these pathways might provide unique opportunities for the development of new mechanism-based strategies for the treatment of advanced and metastatic cancers.
Collapse
Affiliation(s)
- Nisha R Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Bhuniya D, Bhosale S, Reddy SB, Reddy SN. Isoxazole-tethered diarylheptanoid analogs: Discovery of a new drug-like PAR2 antagonist. Bioorg Med Chem Lett 2018; 28:2285-2288. [PMID: 29798827 DOI: 10.1016/j.bmcl.2018.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 01/30/2023]
Abstract
A new class of isoxazole-tethered diarylheptanoids having characteristic 1,3-syn-diol and 1,3-anti-diol chemophoric moieties, e.g. 4a-d and 5a-c respectively, have been designed and synthesized starting from d-glucose following a stereo-conserved general synthetic strategy. The isoxazole heterocycle was installed using our recently elaborated methodology deploying Magtrieve™ as a selective oxidizing agent. Two of these new analogs 4a and 5a exhibited significantly improved in vitro drug-like properties including solubility, metabolic stability, cell permeability and lack of nonspecific cytotoxicity when compared with curcumin-I. In a HEK293 cell-based intracellular calcium [Ca2+]i release assay, 4a and 5a, when tested at 30 μM, inhibited the trypsin agonist induced protease-activated receptor-2 (PAR2) activity by 80% and 70% respectively. IC50 of 4a (SB70) has been determined as 6 μM which is in the same range of current benchmarks for PAR2 antagonists.
Collapse
Affiliation(s)
- Debnath Bhuniya
- Drug Discovery Facility - Pune, Advinus Therapeutics Limited, Block No. 21 & 22, Phase II, Peenya Industrial Area, Bangalore 560058, India; Interdisciplinary Science and Technology Research Academy (ISTRA), Abeda Inamdar College, University of Pune, 2390-B, Hidayatullah Road, Pune 411001, India.
| | - Sandeep Bhosale
- Drug Discovery Facility - Pune, Advinus Therapeutics Limited, Block No. 21 & 22, Phase II, Peenya Industrial Area, Bangalore 560058, India
| | - Satyanarayana B Reddy
- Drug Discovery Facility - Pune, Advinus Therapeutics Limited, Block No. 21 & 22, Phase II, Peenya Industrial Area, Bangalore 560058, India
| | - Sudharshan N Reddy
- Drug Discovery Facility - Pune, Advinus Therapeutics Limited, Block No. 21 & 22, Phase II, Peenya Industrial Area, Bangalore 560058, India
| |
Collapse
|
12
|
Jiang Y, Yau MK, Lim J, Wu KC, Xu W, Suen JY, Fairlie DP. A Potent Antagonist of Protease-Activated Receptor 2 That Inhibits Multiple Signaling Functions in Human Cancer Cells. J Pharmacol Exp Ther 2018; 364:246-257. [PMID: 29263243 DOI: 10.1124/jpet.117.245027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/04/2017] [Indexed: 01/15/2023] Open
Abstract
Protease-activated receptor 2 (PAR2) is a cell surface protein linked to G-protein dependent and independent intracellular signaling pathways that produce a wide range of physiological responses, including those related to metabolism, inflammation, pain, and cancer. Certain proteases, peptides, and nonpeptides are known to potently activate PAR2. However, no effective potent PAR2 antagonists have been reported yet despite their anticipated therapeutic potential. This study investigates antagonism of key PAR2-dependent signaling properties and functions by the imidazopyridazine compound I-191 (4-(8-(tert-butyl)-6-(4-fluorophenyl)imidazo[1,2-b]pyridazine-2-carbonyl)-3,3-dimethylpiperazin-2-one) in cancer cells. At nanomolar concentrations, I-191 inhibited PAR2 binding of and activation by structurally distinct PAR2 agonists (trypsin, peptide, nonpeptide) in a concentration-dependent manner in cells of the human colon adenocarcinoma grade II cell line (HT29). I-191 potently attenuated multiple PAR2-mediated intracellular signaling pathways leading to Ca2+ release, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, Ras homologue gene family, member A (RhoA) activation, and inhibition of forskolin-induced cAMP accumulation. The mechanism of action of I-191 was investigated using binding and calcium mobilization studies in HT29 cells where I-191 was shown to be noncompetitive and a negative allosteric modulator of the agonist 2f-LIGRL-NH2 The compound alone did not activate these PAR2-mediated pathways, even at high micromolar concentrations, indicating no bias in these signaling properties. I-191 also potently inhibited PAR2-mediated downstream functional responses, including expression and secretion of inflammatory cytokines and cell apoptosis and migration, in human colon adenocarcinoma grade II cell line (HT29) and human breast adenocarcinoma cells (MDA-MB-231). These findings indicate that I-191 is a potent PAR2 antagonist that inhibits multiple PAR2-induced signaling pathways and functional responses. I-191 may be a valuable tool for characterizing PAR2 functions in cancer and in other cellular, physiological, and disease settings.
Collapse
Affiliation(s)
- Yuhong Jiang
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mei-Kwan Yau
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Junxian Lim
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Kai-Chen Wu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Weijun Xu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Ungefroren H, Witte D, Rauch BH, Settmacher U, Lehnert H, Gieseler F, Kaufmann R. Proteinase-Activated Receptor 2 May Drive Cancer Progression by Facilitating TGF-β Signaling. Int J Mol Sci 2017; 18:E2494. [PMID: 29165389 PMCID: PMC5713460 DOI: 10.3390/ijms18112494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/23/2022] Open
Abstract
The G protein-coupled receptor proteinase-activated receptor 2 (PAR2) has been implicated in various aspects of cellular physiology including inflammation, obesity and cancer. In cancer, it usually acts as a driver of cancer progression in various tumor types by promoting invasion and metastasis in response to activation by serine proteinases. Recently, we discovered another mode through which PAR2 may enhance tumorigenesis: crosstalk with transforming growth factor-β (TGF-β) signaling to promote TGF-β1-induced cell migration/invasion and invasion-associated gene expression in ductal pancreatic adenocarcinoma (PDAC) cells. In this chapter, we review what is known about the cellular TGF-β responses and signaling pathways affected by PAR2 expression, the signaling activities of PAR2 required for promoting TGF-β signaling, and the potential molecular mechanism(s) that underlie(s) the TGF-β signaling-promoting effect. Since PAR2 is activated through various serine proteinases and biased agonists, it may couple TGF-β signaling to a diverse range of other physiological processes that may or may not predispose cells to cancer development such as local inflammation, systemic coagulation and pathogen infection.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany.
| | - David Witte
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Bernhard H Rauch
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, D-17487 Greifswald, Germany.
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, D-07747 Jena, Germany.
| | - Hendrik Lehnert
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Frank Gieseler
- First Department of Medicine, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany.
| | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, D-07747 Jena, Germany.
| |
Collapse
|